Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 54 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
54
Dung lượng
2,57 MB
Nội dung
TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI KHOA VẬT LÝ NGƠ THỊ TRƢỜNG ẢNH HƢỞNG KÍCH THƢỚC HẠTPHATỪCỨNGĐẾNTÍNHCHẤTTỪCỦAVẬTLIỆUTỪCỨNGNANOCOMPOSITE Mn-Bi/Fe-Co KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Vật lí chất rắn HÀ NỘI – 2018 TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI KHOA VẬT LÝ NGƠ THỊ TRƢỜNG ẢNH HƢỞNG KÍCH THƢỚC HẠTPHATỪCỨNGĐẾNTÍNHCHẤTTỪCỦAVẬTLIỆUTỪCỨNGNANOCOMPOSITE Mn-Bi/Fe-Co KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Vật lí chất rắn Ngƣời hƣớng dẫn khoa học ThS NGUYỄN MẪU LÂM HÀ NỘI – 2018 LỜI CẢM ƠN Lời tơi xin đƣợc bày tỏ lòng biết ơn sâu sắc tới ThS Nguyễn Mẫu Lâm thầy hƣớng dẫn khoa học bảo tận tình suốt thời gian làm khóa luận Tiếp theo tơi xin cảm ơn Phòng thực hành Chun đề, Khoa Vật lý, Trƣờng Đại học Sƣ phạm Hà Nội 2, Phòng thí nghiệm trọng điểm Vậtliệu Linh kiện điện tử, Phòng Vật lý vậtliệutừ Siêu dẫn, Viện Khoa học Vật liệu-Viện Hàn lâm Khoa học Công nghệ Việt Nam tài trợ kinh phí đề tài cấp sở Trƣờng Đại học Sƣ phạm Hà Nội Tôi xin chân thành cảm ơn Hà Nội, tháng năm 2018 Sinh viên Ngơ Thị Trường LỜI CAM ĐOAN Khóa luận tốt nghiệp ‘Ảnh hƣởng kích thƣớc hạtphatừcứngđếntínhchấttừvậtliệunanocomposite Mn-Bi/Fe-Co’ kết nghiên cứu riêng dƣới hƣớng dẫn Th.s Nguyễn Mẫu Lâm Kết không trùng với kết nhóm tác giả khác Tơi xin cam đoan điều thật, sai tơi chịu hồn tồn trách nhiệm Hà Nội, tháng năm 2018 Sinh viên Ngô Thị Trường MỤC LỤC MỞ ĐẦU 1 Lí chọn đề tài Mục đích nghiên cứu Nhiệm vụ nghiên cứu Đối tƣợng phạm vi nghiên cứu Phƣơng pháp nghiên cứu Giả thuyết khoa học Cấu trúc khóa luận NỘI DUNG CHƢƠNG TỔNG QUAN VỀ VẬTLIỆUTỪCỨNGNANOCOMPOSITE MNBI/FE-CO 1.1 Lịch sử phát triển vậtliệutừcứng 1.2 Vậtliệutừcứng không chứa đất Mn-Bi 1.2.1 Cấu trúc tinh thể Mn-Bi 1.2.2 Tínhchấttừ Mn-Bi 1.2.3 Phƣơng pháp chế tạo 1.3 Vậtliệutừ mềm Fe-Co 1.3.1 Cấu trúc tinh thể 1.3.2 Tínhchấttừ 1.3.3 Phƣơng pháp chế tạo 1.4 Vậtliệutừcứngtổhợpnanocomposite Mn-Bi/Fe-Co 1.4.1.Mô Hình Kneller-Hawig 1.4.2 Vậtliệutừcứngnanocomposite Mn-Bi 14 đẳng hƣớng b) dị hƣớng 15 CHƢƠNG THỰC NGHIỆM 20 2.1 Chế tạo hợp kim từcứng Mn-Bi/Fe-Co 20 2.1.1 Chế tạo hợp kim khối Mn-Bi phƣơng pháp hồ quang 20 2.1.2 Chế tạo mẫu bột Mn-Bi nghiền lƣợng cao 22 2.1.3 Ép viên, xử lí nhiệt bột hợp kim Mn-Bi 26 2.2 Chế tạo hợp kim từ mềm Fe-Co theo phƣơng pháp đồng kết tủa 28 2.3 Chế tạo tổhợpnanocomposite Mn-Bi/Fe-Co 29 2.4 Các phƣơng pháp nghiên cứu cấu trúc 29 2.4.1 Phƣơng pháp nhiễu xạ tia X 29 2.4.2 Phƣơng pháp phân tích hiển vi điện tử quét (SEM) 31 2.5.Các phép đo nghiên cứu tínhchấttừ 32 2.5.1 Phép đo từ nhiệt hệ từ kế mẫu rung 32 2.5.2 Phép đo từ trễ hệ từ trƣờng xung 33 CHƢƠNG THẢO LUẬN KẾT QUẢ 35 3.1 Chế tạo phatừcứngphatừ mềm 35 3.1.1 Chế tạo phatừcứng Mn-Bi 35 3.1.2 Chế tạo phatừ mềm Fe-Co 37 3.2 Chế tạo VậtliệutừcứngNanocomposite Mn50Bi50/Fe65Co35 39 3.2.1 Sử dụng phatừcứng chƣa ủ nhiệt 39 3.2.2 Sử dụng phatừcứng ủ nhiệt 40 KẾT LUẬN 42 TÀI LIỆU THAM KHẢO 43 DANH MỤC CÁC TỪ VIẾT TẮT VLTC: Vậtliệutừcứng NCVC: Nam châm vĩnh cửu NCNC: Nam châm nanocomposite NCNLC: Nghiền lƣợng cao DANH MỤC BẢNG Bảng 1.1 Tínhchấttừphatừcứngphatừ mềm 15 Bảng 2.1 Hợp phần mẫu Fe65Co35 28 Bảng 3.1 Từ độ bão hòa lực kháng từ mẫu trƣớc sau ủ nhiệt 280oC 40 Bảng 3.2 Từ độ bão hòa lực kháng từ mẫu tổhợpcóphatừcứng ủ nhiệt 41 DANH MỤC HÌNH VẼ Hình 1.1 Sự phát triển nam châm vĩnh cửu (theo (BH)max) Hình 1.2 Cấu trúc tinh thể hợp kim Mn-Bi (LTP) Hình 1.3 Đƣờng cong Bethe – Slater Hình 1.4 Sự phụ thuộc lực kháng từ vào nhiệt độ Mn-Bi Hình 1.5 Đƣờng cong từ hóa Mn-Bi nhiệt độ khác Hình 1.6 Các dạng cấu trúc tinh thể Fe (bcc, fcc) Co (hcp, fcc) Hình 1.7 Sự thay đổi từ độ bão hòa hợp kim Fe-Co theo tỉ lệ Co Hình 1.8 Mẫu vi cấu trúc chiều cấu trúc vi từvậtliệu composite tƣơng tác trao đổi đƣợc sử dụng làm sở để tínhkích thƣớc tới hạn vùng pha, (a) độ từ hóa đạt bão hòa, (b)-(c) Sự khử từ tăng từ trƣờng nghịch đảo H trƣờng hợp bm >> bcm , (d) Sự khử từ trƣờng hợp giảm bm đếnkích thƣớc tới hạn bcm 11 Hình 1.9 Cấu trúc hai chiều lí tƣởng nam châm đàn hồi 13 Hình 1.10 Các đƣờng cong khử từ điển hình: (a) Có tƣơng tác trao đổi,bm = bcm (b) Có tƣơng tác trao đổi với vi cấu trúc dƣ thừa, bm >> bcm (c) Chỉcó phatừcứng (d) Hai phatừ cứng, từ mềm không tƣơng tác với 14 Hình 1.11 Đƣờng cong khử từvậtliệutổhợp 15 Hình 1.12 Tích chấttừvậtliệutổ hợp: a) đẳng hƣớng b) dị hƣớng 16 Hình 1.13 Đƣờng khử từvậtliệutổ hợp: a) Mn-Bi/Fe b)Mn-Bi/Co(NW) 16 Hình 1.14 Tínhchấttừvậtliệutổhợp Mn-Bi/Co (NW) 17 Hình 1.15 Ảnh SEM đƣờng từ trễ phatừcứngphatừ mềm 17 Hình 1.16 a) đƣờng cong từ trễ b) từ độ M lực kháng từ Hc mẫu tổhợp với khối lƣợng phatừ mềm tƣơng ứng 18 Hình 1.17 a) từ độ dƣ Mr b) tích lƣợng cực đại phụ thuộc lực ép 19 Hình 1.18 a) Đƣờng từ trễ b) giá trị M, Mr, Hc theo nhiệt độ mẫu MnBi/FeCo với 5% khối lƣợng phatừ mềm FeCo 19 Hình 2.1 Sơ đồ khối hệ nấu mẫu hồ quang 20 Hình 2.2 Hệ nấu hợp kim hồ quang 21 Hình 2.3 Máy nghiền SPEX 8000D (a), cối bi nghiền (b) 22 Hình 2.4 Cấu tạo chi tiết máy nghiền SPEX 8000D [2] 23 Hình 2.5 Sơ đồ khối buồng khí r 24 Hình 2.6 Ảnh thực BOX khí Ar 25 Hình 2.7 Hệ ép mẫu 26 Hình 2.8 Lò xử lý nhiệt Thermo lindberg blue M 27 Hình 2.9 Buồng xử lý nhiệt 27 Hình 2.10 Máy khuấy từ 28 Hình 2.11 Máy rung siêu âm 28 Hình 2.12 Bộ thí nghiệm chế tạo mẫu 29 Hình 2.13 Sơ đồ chế tạo vậtliệutừnanocomposite Mn-Bi/Fe-Co 29 Hình 2.14 Hiện tƣợng nhiễu xạ tia X 30 Hình 2.15 Nhiễu xạ kế tia X D8- Advance Bruker 31 Hình 2.16 Thiết bị HITACHI S - 4800 31 Hình 2.17 Sơ đồ nguyên lý hệ từ kế mẫu rung (VSM) 32 Hình 2.18 Sơ đồ nguyên lý hệ đo từ trƣờng xung 33 Hình 2.19 Hệ đo từ trƣờng xung (PFM) 34 Hình 3.1 Ảnh SEM mẫu Mn50Bi50 với thời gian nghiền h h 35 Hình 3.2 Phổ nhiễu xạ tia X 36 Hình 3.3 Đƣờng cong từ trễ mẫu bột Mn50Bi50 với thời gian nghiền khác chƣa ủ nhiệt 36 Hình 3.4 a) Phổ nhiễu xạ tia X , b) đƣờng cong từ trễ mẫu bột Mn50Bi50 với thời gian nghiền khác đƣợc ủ nhiệt 280oC thời gian 37 Hình 3.5 a) Ảnh SEM mẫu Fe65Co35, b) Phổ nhiễu xạ tia X 38 Hình 3.6 Đƣờng cong từ trễ phatừ mềm Fe65Co35 38 Hình 3.7 Đƣờng cong từ trễ phatừcứng chƣa ủ nhiệt 39 Hình 3.8 Đƣờng cong từ trễ phatừcứng ủ nhiệt 40 Hình 3.9: Đƣờng cong từ trễ mẫu tổhợp cứng/mềm với phatừcứng ủ nhiệt 41 cho tia X tác động lên mẫu Hình 2.14 Hiện tượng nhiễu xạ tia X Hình 2.14 mơ tả trình phản xạ mặt phẳng mạng song song chùm tia X Khoảng cách mặt phẳng mạng d Tia X xuyên sâu vào vậtliệu phản xạ mặt phẳng mạng tinh thể nằm phía sâu dƣới (hkl) Hiệu quang trình mặt phẳng mạng liên tiếp : 2d sin Phƣơng trình Bragg, điều kiện để xuất nhiễu xạ: 2d sin = n (2.1) kích thƣớc hạttinh thể gần theo công thức Scherrer, D= 0,9 cos( ) (2.2) Trong đó: : bƣớc sóng kích thích tia X (với = 0,5406 Å) : độ bán rộng : góc nhiễu xạ 30 Hình 2.15 Nhiễu xạ kế tia X D8- Advance Bruker Hình 2.15 thiết bị nhiễu xạ kế tia X- D8 Advance Bruker đặt Đại học khoa học tự nhiên 2.4.2 Phương pháp phân tích hiển vi điện tử quét (SEM) Để khảo sát vi cấu trúc vậtliệu phƣơng pháp nhiễu xạ tia X số mẫu sử dụng phƣơng pháp hiển vi điện tử quét Kính hiển vi điện tử quét thiết bị dùng để chụp ảnh vi cấu trúc bề mặt với độ phóng đại gấp nhiều lần so với kính hiển vi quang học Kính hiển vi điện tử tạo ảnhcó độ phân giải cao Hình 2.16 Thiết bị HITACHI S - 4800 Hình 2.16 kính hiển vi điện tử qt HITACHIS-4800, đặt phòng phân tích 31 cấu trúc thuộc Viện Khoa học Vật liệu, Viện Hàn Lâm Khoa học Công nghệ Việt Nam 2.5.Các phép đo nghiên cứu tínhchấttừ 2.5.1 Phép đo từ nhiệt hệ từ kế mẫu rung Các phép đo từ độ phụ thuộc nhiệt độ phép đo đƣờng cong từ hóa đẳng nhiệt đƣợc thực hệ đo từ kế mẫu rung (VSM) Phòng Vật lý VậtliệuTừ Siêu dẫn thuộc Viện Khoa học vật liệu, Viện Hàn lâm Khoa học công nghệ Việt Nam Thiết bịcó độ nhạy cỡ 10 -4 emu hoạt động từ trƣờng (từ -12 kOe đến 12 kOe) nhiệt độ (từ 77 K đến 1000 K) Mẫu đo đƣợc đặt bình đựng mẫu đƣợc ép chặt thành khối để tránh xáo trộn mẫu trình đo Quá trình đo từ độ nhiệt độ cao đƣợc thực mơi trƣờng khí r Hình 2.17 Sơ đồ nguyên lý hệ từ kế mẫu rung (VSM) (1) Màng rung điện động (7) Mẫu đo (2) Giá đỡ hình nón (8) Cuộn dây thu tín hiệu (3) Mẫu so sánh (9) Các cực nam châm (4) Cuộn dây thu tín hiệu so sánh Hệ VSM hoạt động dựa vào thay đổi từ thông cuộn dây thu, đặt gần mẫu mẫu dao động với tần số xác định theo phƣơng cố định nhờ màng 32 rung điện động Suất điện động cảm ứng xuất cuộn dây thu thay đổi khoảng cách tƣơng đối mẫu đo cuộn dây, mẫu dao động Biểu thức suất điện động cảm ứng: e = MAG(r)cos(t) Trong M, (2.3) lần lƣợt mơmen từ, tần số biên độ dao động mẫu; G(r) hàm độ nhạy phụ thuộc vào vị trí đặt mẫu so với cuộn dây thu cấu hình cuộn thu Tín hiệu thu đƣợc từ cuộn dây đƣợc khuếch đại khuếch đại lọc lựa tần số nhạy pha trƣớc đến xử lý để hiển thị kết 2.5.2 Phép đo từ trễ hệ từ trường xung Các phép đo từ trễ đƣợc thực hệ đo từ trƣờng xung với từ trƣờng cực đại lên đến 90 kOe Hình 2.19 hình ảnh hệ đo từ trƣờng xung Hệ đƣợc thiết kế theo nguyên tắc nạp - phóng điện qua tụ điện cuộn dây (hình 2.18) Dòng chiều qua K1, nạp điện cho tụ, tụ tích lƣợng cỡ vài chục KJ Khố K2 đóng, dòng điện hình sin tắt dần Dòng điện thời gian tồn ngắn phóng điện qua cuộn dây nam châm L tạo lòng ống dây từ trƣờng xung cao Mẫu đo đƣợc đặt tâm cuộn nam châm với hệ cuộn dây cảm biến pick - up Hình 2.18 Sơ đồ nguyên lý hệ đo từ trường xung Tín hiệu lối tỷ lệ với vi phân từ độ vi phân từ trƣờng đƣợc thu thập, 33 xử lí lƣu trữ cho mục đích cụ thể Từ trƣờng lòng ống dây đƣợc sử dụng để nạp từ cho mẫu vậtliệu dùng nửa chu kì hình sin dòng điện phóng Từ trƣờng lớn hệ đạt tới 100 kOe Hệ đƣợc điều khiển đo đạc kĩ thuật điện tử ghép nối với máy tính Hình 2.19 Hệ đo từ trường xung (PFM) Để tránh đƣợc hiệu ứng trƣờng khử từ, mẫu đƣợc đặt cho từ trƣờng song song dọc theo chiều dài mẫu, mẫu khối đƣợc cắt theo dạng hình trụ Các mẫu đo đƣợc gắn chặt vào bình mẫu để tránh xáo trộn mẫu trình đo 34 CHƢƠNG THẢO LUẬN KẾT QUẢ 3.1 Chế tạo phatừcứngphatừ mềm 3.1.1 Chế tạo phatừcứng Mn-Bi Từ kết công bố vậtliệutừcứng Mn-Bi , nhóm chúng tơi định lựa chọn hợp phần để nghiên cứu Mn50Bi50 Chúng tiến hành nấu hồ quang nghiền lƣợng cao mẫu Mn50Bi50 thời gian 2h 1h Hình 3.1 Ảnh SEM mẫu Mn50Bi50 với thời gian nghiền h h Hình 3.1 ảnh SEM mẫu Mn50Bi50 sau nghiền Kết từ hình 3.1 cho ta thấy, kích thƣớc hạt mẫu Mn50Bi50 nghiền cókích thƣớc từ 50 nm đến 70 nm Mẫu Mn50Bi50 nghiền cókích thƣớc hạttừ 40-60 nm Kích thƣớc hạt mẫu Mn50Bi50 nghiền từđến thay đổi không nhiều Hợp phần Mn50Bi50 sau nghiền đƣợc khảo sát cấu trúc phép đo nhiễu xạ tia X Hình 3.2 phổ nhiễu xạ tia X mẫu Mn50Bi50 nghiền Từ hình 3.2 ta thấy cƣờng độ đỉnh nhiễu xạ đặc trƣng cho pha MnBi thấp, đỉnh nhiễu xạ nguyên tốBi chiếm ƣu sắc nét Trong mẫu tồn phatinh thể MnBi riêng biệt chứng tỏ nguyên tốMnBi chƣa thể kết hợp để tạo thành phatinh thể MnBi 35 C-êng ®é (d v t y) * MnBi 2h * MnBi * * 1h 20 25 30 35 40 45 50 55 60 65 70 2 ) Hình 3.2 Phổ nhiễu xạ tia X Hình 3.3 đƣờng cong từ trễ mẫu nghiền với thời gian khác chƣa ủ nhiệt 30 M (emu/g) 20 1h 2h 10 -10 -20 -30 -40 -30 -20 -10 10 H (kOe) 20 30 40 Hình 3.3 Đường cong từ trễ mẫu bột Mn50Bi50 với thời gian nghiền khác chưa ủ nhiệt Từ hình 3.3 ta thấy, dáng điệu đƣờng từ khử thể tínhtừcứng nhƣng từ độ bão hòa thấp Ms cỡ 20 emu/g nhƣng lực kháng từ lớn từ 17 kOe đến 20 kOe Để tăng cƣờng tỉ phần phatừcứng mẫu chúng tơi tiến hành ủ nhiệt Hình 3.4 giản đồ nghiễu xạ tia X đƣờng cong từ trễ mẫu Mn50Bi50 sau ủ nhiệt Hình 3.4a phổ nhiễu xạ tia X mẫu Mn50Bi50 với thời gian nghiền khác 36 đƣợc ủ nhiệt 280oC thời gian Từ giản đồ nhiễu xạ tia X cho thấy cƣờng độ đỉnh nhiễu xạ phatinh thể MnBi tăng lên đáng kể cƣờng độ nhiễu xạ phaBi giảm rõ rệt, chứng tỏ sau ủ nhiệt phần phatinh thể Mn, Bi kết hợp với để tạo thành pha MnBi * MnBi Mn 60 Bi M (emu/g) C-êng ®é (d v t y) 40 * * 1h * 1h 2h 20 -20 -40 2h -60 -40 -30 -20 -10 20 25 30 35 40 45 50 55 60 65 70 2 ) 10 20 30 40 H (kOe) b) a) Hình 3.4 a) Phổ nhiễu xạ tia X , b) đường cong từ trễ mẫu bột Mn50Bi50 với thời gian nghiền khác ủ nhiệt 280oC thời gian Đƣờng cong từ trễ đƣợc thể hình 3.4b cho thấy sau ủ nhiệt, lực kháng từ Hc giảm 10 - 11 kOe nhƣng từ độ bão hòa Ms tăng lên đáng kể cỡ 50 emu/g Dáng điệu đƣờng cong từ trễ vng Tínhchấttừ thu đƣợc phù hợp với kết thể giản đồ nhiễu xạ tia X 3.1.2 Chế tạo phatừ mềm Fe-Co Hợp phần lựa chọn chế tạo vậtliệutừ mềm Fe-Co phƣơng pháp đồng kết tủa Fe65Co35 Sau chế tạo, mẫu bột đƣợc phân tích cấu trúc phƣơng pháp nhiễu xạ tia X(XRD) phƣơng pháp hiển vi điện tử qt (SEM) Hình 3.5 kích thƣớc hạt giản đồ nhiễu xạ tia X phatừ mềm Fe65Co35 37 C-êng ®é (®.v.t.y) FeCo x = 65 20 30 40 50 2 60 70 80 Hình 3.5 a) Ảnh SEM mẫu Fe65Co35, b) Phổ nhiễu xạ tia X Từ hình 3.5a cho thấy kích thƣớc hạtphatừ mềm Fe65Co35 đạt cỡ 50nm -70 nm Trên phổ nhiễu xạ tia X xuất đỉnh nhiễu xạ đặc trƣng cho kết tinhphatinh thể Fe65Co35 Đỉnh nhiễu xạ FeCo xuất góc 2 = 44,7o, 2 = 65,2o đạt cực đại góc 2 = 44,7o 200 x = 65 150 M (emu/g) 100 50 -50 -100 -150 -200 -12 -8 -4 H (kOe) 12 Hình 3.6 Đường cong từ trễ phatừ mềm Fe65Co35 Hình 3.6 đƣờng cong từ trễ phatừ mềm Fe65Co35 Đƣờng cong từ trễ mẫu Fe65Co35 thể tínhtừ mềm, giá trị từ độ bão hòa đạt 185 eum/g, lực kháng từcỡ 70 Oe 38 3.2 Chế tạo VậtliệutừcứngNanocomposite Mn50Bi50/Fe65Co35 3.2.1 Sử dụng phatừcứng chưa ủ nhiệt Sử dụng bột từcứng Mn50Bi50 chƣa ủ nhiệt bột từ mềm Fe65Co35 đƣợc cân theo tỉ lệ định khối lƣợng phatừ mềm Fe65Co35 2, 4, 8% khối lƣợng phatừcứng Hỗn hợp cứng/mềm đƣợc trộn thời gian 1h Hình 3.7 đƣờng cong từ trễ mẫu tổhợpTừ hình 3.7 cho thấy sau trộn với phatừcứng chƣa ủ nhiệt mẫu thể tính đa phatừ mạnh Biểu đƣờng cong từ trễ thắt dần tăng theo tỉ lệ phatừ mềm Điều cho thấy phatừ chƣa tƣơng tác với 40 2% 30 M (emu/g) 20 M (emu/g) 40 2% 4% 6% 8% -20 4% 20 6% 10 8% -10 -20 -30 -40 -40 -20 H (kOe) 20 -40 40 a) h -40 -30 -20 -10 10 H (kOe) 20 30 40 b) h Hình 3.7 Đường cong từ trễ phatừcứng chưa ủ nhiệt Với mong muốn tăng cƣờng phatừcứng tƣơng tác phatừcứngphatừ mềm, thực ủ nhiệt 280oC thời gian Hình 3.8 đƣờng cong từ trễ mẫu tổhợp ủ nhiệt Sau ủ nhiệt lực kháng từ tăng Hc tăng, từ độ bão hòa Ms tăng nhƣng không đáng kể nhiên dáng điệu đƣờng cong từ trễ vuông Chứng tỏ sau ủ nhiệt tƣơng tác hai pha cứng/mềm tăng lên Điều giải thích nhƣ sau: với nhiệt độ ủ 280oC không thay đổi cấu trúc phatừ mềm nhƣng làm tăng tỉ phần phatừcứng Bởi vì, nhiệt độ 280 oC nhiệt độ thích hợp để tạo pha MnBi 39 60 60 2% 4% 6% 8% 20 40 M (emu/g) M (emu/g) 40 2% 4% 6% 8% -20 -40 20 -20 -40 -60 -40 -20 H (kOe) 20 -60 -40 40 -20 H (kOe) 20 40 Hình 3.8 Đường cong từ trễ phatừcứng ủ nhiệt Giá trị lực kháng từtừ độ bão hòa trƣớc sau ủ nhiệt đƣợc thể bảng 3.1 Bảng 3.1 Từ độ bão hòa lực kháng từ mẫu trước sau ủ nhiệt 280oC Tỉ lệ phatừ mềm 2% Fe65Co35 4% 6% 8% Tínhchấttừvật Ms Hc liệutổhợp emu/g kOe 1h 24 11,94 27 5,71 30 3,11 34 2,59 2h 23 14,19 26 5,93 30 3,87 33 2,83 1h 39 8,1 43 7,02 46 5,67 49 4,05 2h 35 10,27 38 8,1 43 5,94 46 4,32 Trƣớc ủ nhiệt Sau ủ nhiệt Ms Hc Ms Hc Ms Hc emu/g kOe emu/g kOe emu/g kOe Từ bảng kết ta thấy sau ủ nhiệt phatừcứngphatừ mềm tƣơng tác với nhƣng yếu Tínhchấttừ đƣợc cải thiện nhƣng chƣa đáng kể Sự thay đổi tínhchấttừphatừcứng nghiền chƣa đáng kể Do tiếp tục khảo sát ảnh hƣởng phatừcứng ủ nhiệt đếntínhchấtvậtliệutừtổhợp Mn50Bi50/Fe65 Co35 3.2.2 Sử dụng phatừcứng ủ nhiệt Phatừcứng đƣợc ủ nhiệt 280oC thời gian Lựa chọn tỉ lệ 40 khối lƣợng phatừ mềm 2, 4, 8% khối lƣợng phatừcứng Hỗn hợp đƣợc trộn với thời gian mơi trƣờng khí r 60 2% 4% 6% 20 M (emu/g) M (emu/g) 40 8% -20 -40 -60 -40 -20 H (kOe) 20 40 50 2% 40 4% 30 6% 20 8% 10 -10 -20 -30 -40 -50 -40 -30 -20 -10 10 H (kOe) 1h 20 30 40 2h Hình 3.9: Đường cong từ trễ mẫu tổhợp cứng/mềm với phatừcứng ủ nhiệt Từ hình 3.9 cho thấy mẫu tổhợp thể tính đa phatừ Hình dáng đƣờng cong từ trễ chƣa đƣợc cải thiện so với kết Giá trị lực kháng từtừ độ bão hòa thể bảng 3.2 Bảng 3.2 Từ độ bão hòa lực kháng từ mẫu tổhợpcóphatừcứng ủ nhiệt Tỉ lệ phatừ mềm Fe65Co35 2% Tínhchấttừvật 4% Hc Ms 8% Ms Hc emu/g kOe Thời gian nghiền h 34 11,09 38 8,00 46 6,45 48 4,38 Thời gian nghiền h 31 10,14 36 5,63 41 3,67 45 3,94 liệutổhợp Ms 6% emu/g kOe emu/g Hc kOe Ms Hc emu/g kOe Đem so sánh kết bảng 3.1 3.2 chúng tơi nhận thấy chƣa có khác biệt phatừcứng nghiền phatừcứng nghiền Vậtliệutổhợpnanocomposite với phatừcứng nghiền ủ nhiệt tốt phatừcứng ủ nhiệt nghiền tổhợp nanocoposite chƣa ủ nhiệt ủ nhiệt Tuy nhiên hình dáng đƣờng cong từ trễ thể tính đa pha từ, phẩm chấttừ chƣa đƣợc nhƣ kì vọng 41 KẾT LUẬN Đã chế tạo đƣợc vậtliệutừcứng Mn-Bi phƣơng pháp nghiền lƣợng cao xử lí nhiệt Kết thu đƣợc lực kháng từ tƣơng đối cao cỡ 11 kOe từ độ bão hòa đạt cỡ 50 eum/g Đã chế tạo thành công hệ vậtliệutừ mềm Fe65Co35 theo phƣơng pháp đồng kết tủa Kết thu đƣợc từ độ bão hòa lớn đạt cỡ 185 emu/g lực kháng từcỡ 70 Oe Đã thử nghiệm chế tạo vậtliệutổhợp Mn50Bi50/Fe65Co35 với tỉ lệ phatừ mềm Fe65Co35 lần lƣợt 2, 4, 8% khối lƣợng phatừcứng với hai trƣờng hợpphatừcứng chƣa ủ nhiệt phatừcứng ủ nhiệt Khảo sát đƣợc ảnh hƣởng kích thƣớc hạtphatừcứngđếntínhchấttừvậtliệutổhợpVậtliệutổhợpnanocomposite với phatừcứng nghiền ủ nhiệt tốt phatừcứng ủ nhiệt nghiền tổhợp nanocoposite chƣa ủ nhiệt ủ nhiệt 42 TÀI LIỆU THAM KHẢO Tiếng việt Nguyễn Mẫu Lâm, Nghiên cứu chế tạo vậtliệutừcứngnanocomposite (Nd,Pr)-Fe-Nb-B (2008) Luận văn thạc sỹ khoa học Vật lí, Trƣờng Đại học Sƣ phạm Hà Nội 2 Trần thị Hà, Nghiên cứu chế tao vậtliệutừcứng naono Mn-Bi/Fe-Co (2015) Luận văn thạc sĩ khoa học vật chất, Trƣờng Đại học Sƣ phạm Hà Nội Tiếng anh George C Hadjipanayis, Moving Beyond Neodymium-Iron Permanent Magnets for Electric Vehicle Motors December (2010) Trans-Atlantic Workshop on Rare-Earth Elements and Other Critical Materials for a Clean Energy Future Cambridge, Massachusetts, J F Herbst, J J Croat and W B Yelon, Structural and magnetic properties of Nd2Fe14Bn (1985) Journal of Applied Physics 57(8) 4086-4090 Jihoon Park, Yang-Ki Hong, Jaejin Lee, Woncheol Lee, Seong-Gon Kim and C.-J Choi Electronic Structure and Maximum Energy Product of MnBi (2014) Metals 455-464 K Strnat, G Hoffer, J Olson, W Ostertag and J J Becker A Family of New Cobalt‐Base Permanent Magnet Materials (1967) Journal of Applied Physics 38(3) 1001-1002 K Kang et al Alignment and analyses of MnBi/Bi nanostructures (2005) Appl Phys Lett 87, 062505 , Kyongha Kang et al Magnetic and transport properties of MnBi/Bi nanocomposites (2006) J Appl Phys 99, 08N703 Keiichi Koyama et al, Magnetic Phase Transition of MnBi under High Magnetic Fields and High Temperature (2007) materials transactions 48, 2414 10 M Sagawa, S Fujimura, N Togawa, H Yamamoto and Y Matsuura, New 43 material for permanent magnets on a base of Nd and Fe (1984) Journal of Applied Physics 55(6) 2083-2087 11 S Kavita, V V Ramakrishna and A S a R Gopalan, Structural and magnetic properties of the low temperature phase MnBi with ball milling (2016) Mater Res Express 4(56102) 1-9 12 Tetsuji Saito and Daisuke Nishio-Hamane, New hard magnetic phase in Mn–Ga–Al system alloys (2015) Journal of Alloys and Compounds 632 486– 489 13 Yongsheng Liu et al, Microstructure, crystallization, and magnetization behaviors in MnBi-Bi composites aligned by applied magnetic field (2005) Phys Rev B 72, 214410 14 Yongsheng Liu et al, Effect of magnetic field on the TC and magnetic properties for the aligned MnBi compound (2006) Solid State Communications 138, 104, 15 Y.Q Guoa, W Lia, J Luob, W.C Fenga and J K Liang Structure and magnetic characteristics of novel SmCo-based hard magnetic alloys (2006) J Magn Magn Mater 303 e367 – e370 16 Yongsheng Liu et al, Magnetic anisotropy and spin disorder in textured MnBi crystals synthesized by a field-inducing approach at a high temperature (2008) J Appl Phys 104, 043901 44 ... tài: Ảnh hưởng kích thước hạt pha từ cứng đến tính chất từ vật liệu từ cứng nanocomposite Mn- Bi/ Fe- Cocứng tổ hợp nano Mn- Bi/ Fe- Co Mục đích nghiên cứu Khảo sát ảnh hƣởng kích thƣớc hạt pha từ cứng. .. cứng đến tính chất vật liệu từ cứng nanocoposite Mn- Bi/ Fe- Co Nhiệm vụ nghiên cứu Nghiên cứu ảnh hƣởng kích thƣớc hạt pha từ cứng Mn- Bi đến tính chất từ vật liệu tổ hợp nanocomposite Mn- Bi/ Fe- Co. .. Khảo sát cấu trúc, tính chất từ mẫu Đối tƣợng phạm vi nghiên cứu a Đối tượng nghiên cứu Vật liệu từ cứng Mn- Bi Vật liệu từ mềm Fe- Co Vật liệu từ cứng tổ hợp nanocomposite Mn- Bi/ Fe- Co b Phạm vi nghiên