Làm khuôn (Application guide: Die & Mould Making)

189 215 0
Làm khuôn (Application guide: Die & Mould Making)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Tài liệu của Sandvik về gia công CNC, khuôn mẫu

APPLICATION GUIDE Die & Mould Making CONTENTS Introduction Die construction work flow Die and mould material Cast-iron From quotation to a finished press tool 13 Process planning 18 The right choice of highly productive cutting tools for roughing to finishing 20 The versatility of round inserts 23 Application technology 25 Sculptured surfaces 32 Pitch 33 Entrance and exit of cut 36 Ramping and circular interpolation 38 Choice of holding tools 40 Extended tools in roughing of a cavity 46 Machining in segments 47 Methods for machining of corners 48 Methods for machining of a cavity 50 HSM-High speed machining 52 Application of high speed machining 60 CAD/CAM and CNC structures 68 Cutting fluid in milling 75 The insert and its parameters 78 Coating methods 82 Choose the right grade for milling 84 Cutting tools 90 Drilling tools for dies and moulds 107 CoroGrip precision power chuck 116 Coromant Capto 120 Machining examples 124 Trouble shooting 165 Technical data 170 Cutting data 171 Material cross reference list 183 INTRODUCTION Within the die and mould making industry the development has been strong the last years Machine tools and cutting tools get more and more sophisticated every day and can perform applications at a speed and accuracy not even thought of ten years ago Today CAD/CAM is very common and to machine with so called HSM (High Speed Machining) it is a necessity To manufacture a die or mould, many different cutting tools are involved, from deep hole drills to the smallest ball nose endmills In this application guide the whole process of die and mould making will be explained with focus on the machining process and how to best utilise the cutting tools However, programming of machine tools, software, workpiece materials, the function of different types of dies and mould will also be explained First let us take a look at a simplified flowchart to see what the different stages are in the die and mould making process DIE CONSTRUCTION WORK FLOW Simplified, the die construction work flow can be explained as in the illustration below Receiving - standard die parts, steel castings, planning and scheduling Model shop - tooling aide and checking fixtures CAM-room - schedule, exchange reports DNC/CNC programme match, layout 2D-machining - shoes, pads, Blocking - die packs, die design 3D-machining sub-assembled dies Polishing - standard parts and components Tryout - sheet steel material specifications check fixture Inspection - Functional build evaluation, stable metal panel product fixture Die completion - die design handling devices, production requirements, inspection requirements 10 Feed back - die history book, check list base 11 Shipping 10 10 10 11 When a tool has to be made, for instance, to a hood of a car you not make one press tool and the material for the hood goes in on one side, gets pressed and comes out finished on the other side It is often complicated shapes, geometries, which has to be pressed, with different radii and cavities, to close tolerances To this the material for the hood has to be pressed in several press tools where a small change in the shape is made each time It is not unusual that up to 10 different steps are needed to make a complete component There are basic types of dies and moulds; pressing dies, casting dies, forging dies, injection moulds and compression moulds Pressing dies are for cold-forming of, for instance, automobile panels with complex shapes When producing a bonnet for a car many pressing dies are involved performing different tasks from shaping to cutting and flanging the component As mentioned earlier there can be over 10 different steps in completing a component The dies are usually made of a number of components normally made of alloyed grey cast-iron However, these materials are not suitable for trim dies with sharp cutting edges for cutting off excessive material after the component has been shaped For this purpose an alloyed tool steel is used, often cast Example of a chain of process within the automotive industry Blank die to cut out blanks from coiled material Draw die to shape the blank Trim die to cut off excessive material Flange die to make the initial bend for flanges Cam flange die to bend the flanges further inside Material properties especially influencing machinability are: • Surface hardness - to resist abrasive and adhesive wear • High content of carbides - to resist abrasive wear • Toughness/ductility - to resist chipping and breakage Dies and moulds for hot work such as die casting and forging are used for manufacturing of for instance engine blocks These dies and moulds are exposed to a number of demanding conditions of which the following are particularly critical for the machinability of the tool material • Hot hardness - to resist plastic deformation and erosion • Temperature resistance - to resist softening at high temperature • Ductility/toughness - to resist fatigue cracking • Hot yield strength - to resist heat checking Moulds for plastic materials include injection, compression, blow and extrusion moulds Factors that influnence the machinability in a plastic mould steel are: • Hardness • Toughness/ductility • Homogenity of microstructure and hardness Die and mould material The materials described and used as reference-material in this guide are mainly from the steel manufacturer Uddeholm, with a cross reference list at the end of the chapter A substantial proportion of production costs in the die and mould industry is involved in machining, as large volumes of metal are generally removed The finished die/mould is also subjected to strict geometrical- and surface tolerances Many different tool steels are used to produce dies and moulds In forging and die casting the choice is generally hot-work tool steels that can withstand the relatively high working temperatures involved Plastic moulds for thermoplastics and thermosets are sometimes made from coldwork tool steel In addition, some stainless steels and grey cast iron are used for dies and moulds Typical in-service hardness is in the range of 32 - 58 HRC for die and mould material CAST-IRON Cast-iron is an ironcarbon alloy with a carbon content of mostly 2-4% as well as other elements like silicon, manganese, phosphorus and sulphur Corrosion and heat resistance may be improved with additions of nickel, chromium, molybdenum and copper Good rigidity, compressive strength and fluidity for cast iron are typical properties Ductility and strength can be improved by various treatments, which affect the microstructure Cast-iron is specified, not by chemical analysis, but by the respective mechanical properties This is partly due to that the cooling rate affects the cast-iron properties Carbon is presented as carbide-cementite and as free carbon-graphite The extents of these forms depend partly on the amount of other elements in the alloy For instance, a high-silicon cast-iron will be made up of graphite with hardly any cementite This is the type known as grey iron The silicone content usually varies between 1-3% A low amount of silicone will stabilize carbides and the cast-iron will be made up dominantly of cementite with little graphite This is a hard but weak brittle type called white iron In spite of the silicone content having a decisive influence on the structure, the cooling rate of cast iron in castings is also influential Rapid cooling may not leave enough time for grey iron to form, as the silicone has not had time to decompose the cementite into the graphite Varying sectional thicknesses in castings affect the cooling rate, affecting the state of carbon Thick section will solidify into grey iron while thin ones will chill into white iron Hence chilled cast-iron Modern casting techniques control analysis, cooling rates, etc to provide the cast-iron components with the right graphite structure Also to provide chilled parts where needed, for instance a wear face on a component Manganese strengthens and toughens castiron and is usually present in amounts of 0.5-1% For this reason, a thin or tapered section will tend to be more white iron because of the cooling effect in the mould Also the surface skin of the casting is often harder, white iron while underneath is grey iron The basic structural consituents of the different types of cast-iron are ferritic, pearlitic or a mixture of these Types of cast-iron with ferritic matrix and little or no pearlite are easy to machine They have low strength and normally a hardness of less than 150 Brinell Because of the softness and high ductility of ferrite these types of cast-iron can be ”sticky” and result in built-up edge forming at low cutting data, but this can be avoided by increasing the cutting speed, if the operation permits Types of cast-iron with ferritic/pearlitic or pearlitic matrix range from about 150 HB with relatively low strength to highstrength, hard cast-irons of 280-300 HB where pearlitic matrix dominates Pearlite has a stronger, harder and less ductile structure than ferrite, its strength and hardness depending on whether it has rough or fine lamellar The more fine-grained and more fine lamellar the pearlite, the higher strength and hardness This means it has smaller carbides with less abrasive wear but is more toughness demanding due to smearing and built up edge formation Carbides are extremely hard constituents whether they are of pure cementite or contain alloying material In thin plates, as in pearlite, cementite can be machined, but in larger particles which separate the constituents they drastically reduce the machinability Carbides often occur in thin sections, projecting parts or corners of castings due to the rapid solidification, giving a finer structure, of these parts Hardness of cast iron-is often measured in Brinell It is an indication of machinability, which deteriorates with increasing Brinell hardness But the hardness value is an unreliable measurement of machinability when there are two factors that the value does not show Abrasive hardness due to sand inclusions and free carbides is very negative for machinability A cast-iron of 200 HB and with a number of free carbides is more difficult to machine than a cast-iron of 200 HB and a 100% pearlitic structure with no free carbides In most machining operations it is the hard parts at the edges and corners of components which cause problems when machining The Brinell test cannot be carried out on edges and corners and therefore the high hardness in these parts is not discovered before machining is undertaken Alloy additives in cast-iron affect machinability in as much as they form or prevent the forming of carbides, affect strength and /or hardness The structure within the castiron is affected by the alloying material which, depending on its individual character, can be divided into two groups A Brinell test says nothing about the castiron’s abrasive hardness which is the difference between the hardness on the basic structure and the hardness of the constituent e.g a particle of carbide Carbide forming: Chromium (Cr), cobalt (Co), manganese (Mr), vanadium (V) Graphitizing elements: Silicone (Si), nickel (Ni), aluminium (Al), copper (Cu), titanium (Ti) Grey cast-iron There is a large range of grey cast-irons with varying tensile strengths The silicon content/sectional area combinations form various structures of which the low-silicon, fine graphite and pearlite make the strongest and toughest material Tensile strength varies considerably throughout the range A coarse graphite structure means a weaker type A typical cast-iron, where metal cutting is involved, often has a silicon content of around 2% Common are the austenitic types Nodular cast-iron (SG) The graphite is contained as round nodules Magnesium especially is used to deposit the gobules and added to become a magnesium-nickel alloy Tensile strength, toughness and ductility are considerably improved Ferritic, pearlitic and martensitic types with various tensile strengths occur The SG cast-iron is also a graphite structure with properties in-between that of grey and nodular cast-iron The graphite flakes are compacted into short ones with round ends through the addition of titanium and other treatment Malleable cast-iron When white iron is heat treated in a particular way, ferritic, pearlitic or martensitic malleable cast-iron is formed The heat treatments may turn the cementite into spherical carbon particles or remove the carbides The cast-iron product is malleable, ductile and very strong The silicon content is low Three categories occur: ferritic, pearlitic and martensitic and they may also be categorized as Blackheart, Whiteheart and pearlitic Alloyed cast-iron These are cast-irons containing larger amounts of alloying elements and, generally, these have similar effects on properties of cast-iron as they on steel Alloying elements are used to improve properties by affecting structures Nickel, chromium, molybdenum, vanadium and copper are common ones The graphite-free white cast-iron is extremely wear resistant while the graphite-containing cast-iron is also known as heat resistant ductile cast-iron Corrosion resistance is also improved in some types Toughness, hardness and heat resistance are typically improved The main difference in these types is the form in which carbon, mainly graphite occurs The general relative machinability of the four main kinds of cast-iron is indicated in a diagram where (A) is grey cast-iron, (B) malleable, (C) S.G iron and (D) chilled, white cast-iron 100 90 80 70 60 50 40 30 20 10 A B C D Relative machinability CMC Material No ISO 100 mm Malleable cast iron Ferritic (short chipping) Pearlitic (long chipping) 08.1 08.2 Grey cast iron 09.1 09.2 Nodular cast iron 07.1 07.2 K 125 mm Specific cutting force kc Hardness Brinell N / mm2 HB BASIC GRADES 3020 3040 Feed, fz or hex 0,1– 0,2– 0,3 mc 0,1– 0,2– 0,4 Cutting speed, vc m / 800 900 130 230 0,28 0,28 265– 215– 180 220– 180– 145 240– 195– 135 195– 165– 110 Low tensile strength High tensile strength 900 1100 180 245 0,28 0,28 290– 235– 195 235– 190– 155 260– 215– 145 210– 170– 115 Ferritic Pearlitic 900 1350 160 250 0,28 0,28 180– 145– 125 165– 135– 115 165– 135– 150– 125– Specific cutting force kc Hardness Brinell N / mm2 HB CMC Material No BASIC GRADES 4020 Feed, fz or hex 3040 0,07– 0,1– 0,12 -H mc 04.1 Extra hard steel Hardened and tempered 4200 59 HRC 0,25 10.1 Chilled cast iron Cast or cast and aged 2200 400 0,28 CMC Material No Specific cutting force kc Hardness Brinell N / mm2 HB 174 0,07– 0,12– 0,2 Cutting speed, vc m / 55– 48 47– 41– 33 125– 110– 65– 90 90– 75– 65 BASIC GRADES H10 CD10 Feed, fz or hex 0,1– 0,15– 0,2 -N 90 85 mc 0,1– 0,15– 0,2 Cutting speed, vc m / 30.11 400 60 935– 870– 805 1875– 1740– 1615 30.12 650 100 845– 785– 725 1695– 1565– 1455 30.21 30.22 600 700 75 90 940– 870– 805 845– 785– 725 1880– 1745– 1615 1695– 1570– 1455 30.3 350 30 945– 875– 810 1890– 1755– 1625 30.41 30.42 700 700 130 130 375– 350– 325 285– 265– 245 755– 700– 645 565– 525– 485 33.1 33.2 33.3 550 550 1350 110 90 100 470– 435– 405 470– 435– 405 325– 305– 285 945– 875– 810 940– 875– 805 655– 610– 565 0,25 0,25 0,25 0,25 BASIC GRADES 4030 4040 H13A 690 CB50 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,1– 0,2– 0,4 0,1– 0,2– 0,4 0,1– 0,2– 0,4 0,1– 0,2– 0,3 195– 160– 105 160– 130– 85 120– 105– 95– 85– 545– 445– 365 455– 370– 305 230– 190– 125 185– 155– 105 215– 175– 115 170– 135– 95 130– 110– 105– 90– 145– 120– 135– 110– 135– 105– 125– 100– 0,1– 0,15– 0,2 Cutting speed, vc m / 215– 175– 115 175– 145– 95 80 75 75 65 80– 75– 70– 65– 75 65 – – – – 85 65 595– 485– 400 475– 395– 325 845– 725– 365 675– 575– 305 50 48 375– 305– 255 345– 285– 235 – – 495– 420– 360 BASIC GRADES 1025 530 CB50 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,07– 0,1– 0,12 0,07– 0,1– 0,12 0,07– 0,12– 0,2 Cutting speed, vc m / 41– 37– 35 75– 70– 65 70 160– 140– 115 155– 140– 135 80– 55– 305– 265– 215 H13A 1025 BASIC GRADES 530 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,1– 0,15– 0,2 0,1– 0,15– 0,2 0,1– 0,15– 0,2 Cutting speed, vc m / 1035– 955– 885 750– 695– 645 985– 915– 845 930– 865– 800 675– 625– 580 885– 825– 765 1035– 955– 885 930– 865– 800 750– 695– 645 675– 625– 580 985– 890– 915– 845 825– 765 1040– 965– 895 755– 700– 650 995– 920– 855 415– 385– 355 310– 285– 265 300– 280– 260 225– 210– 195 395– 295– 365– 340 275– 255 515– 480– 445 515– 480– 445 365– 335– 310 375– 350– 325 375– 345– 325 265– 245– 225 5495– 455– 425 495– 455– 425 345– 320– 295 175 ENDMILLING ISO CMC Material No 10 mm Specific cutting force kc Hardness Brinell N / mm2 HB Basic grades 4020 4030 Feed, fz or hex 0,1– 0,2– 25 mm mc 0,3 0,05– 0,1– 0,15 Cutting speed, vc m / Steel P ISO 01.1 01.2 01.3 01.4 01.5 Unalloyed C = 0,10 – 0,25 % C = 0,25 – 0,55 % C = 0,55 – 0,80 % 1500 1600 1700 1800 2000 125 150 170 210 300 0,25 0,25 0,25 0,25 0,25 490– 440– 415– 365– 265– 02.1 02.2 02.2 Low-alloy (alloying elements ≤ 5%) Non-hardened Hardened and tempered 1700 2000 2300 175 275 350 0,25 0,25 0,25 345– 285– 230 245– 195– 165 195– 160– 130 305– 295– 290 215– 215– 205 175– 165– 165 03.11 03.13 03.21 03.22 High-alloy (alloying elements >5%) Annealed Hardened tool steel 1950 2150 2900 3100 200 200 300 380 0,25 0,25 0,25 0,25 295– 245– 200 245– 175– 145 185– 155– 125 115– 95– 75 230– 190– 165– 105– 06.1 06.2 06.3 Castings Unalloyed Low-alloy (alloying elements ≤ 5%) High-alloy, alloying elements >5%) 1400 1600 1950 150 200 200 0,25 0,25 0,25 350– 285– 235 275– 225– 185 205– 165– 135 310– 305– 295 245– 240– 235 180– 175– 175 Specific cutting force kc Hardness Brinell N / mm2 HB CMC Material No 405– 360– 340– 295– 220– 330 295 280 245 180 430– 385– 365– 320– 235– 425– 380– 355– 315– 230– 225– 185– 165– 100– 415 375 350 305 225 220 185 155 100 Basic grades 2030 2040 Feed, fz or hex 0,05– 0,15– 0,25 mc 0,1– 0,2– 0,3 Cutting speed, vc m / Stainless steel M 05.11 05.12 05.13 Ferritic/martensitic Non-hardened PH-hardened Hardened 1800 2800 2300 200 330 330 0,21 0,21 0,21 240– 190– 155 170– 135– 105 175– 140– 115 235– 190– 155 165– 130– 105 175– 135– 110 05.21 05.22 Austenitic Non-hardened PH-hardened 2000 2800 200 330 0,21 0,21 235– 185– 150 165– 130– 105 200– 160– 125 155– 125– 100 05.51 05.52 Austenitic-ferritic (Duplex) Non-weldable ≥ 0,05%C Weldable < 0,05%C 2000 2400 230 260 0,21 0,21 195– 155– 125 165– 130– 105 165– 135– 105 135– 105– 85 Non-hardened PH-hardened Hardened 1700 2500 2100 200 330 330 0,25 0,25 0,25 215– 170– 135 145– 115– 95 160– 125– 105 210– 170– 135 145– 115– 90 160– 125– 100 Stainless steel – Cast 15.11 15.12 15.13 15.21 15.22 Austenitic Austenitic PH-hardened 1800 2500 200 330 0,25 0,25 225– 175– 145 145– 115– 95 190– 155– 125 145– 115– 90 15.51 15.52 Austenitic-ferritic (Duplex) Non-weldable ≥ 0,05%C Weldable < 0,05%C 1800 2200 230 260 0,25 0,25 185– 145– 115 150– 120– 95 155– 125– 100 125– 100– 80 Specific cutting force kc Hardness Brinell N / mm2 HB CMC Material No Basic grades 1025 Feed, fz or hex 0,05– 0,1– 0,15 20.11 20.12 -S Heat resistant super alloys Iron base Annealed or solution treated Aged or solution treated and aged 0,05– 0,1– 0,15 Cutting speed, vc m / 2400 2500 200 280 0,25 0,25 70– 55– 70– 50– 65 50 65– 46– 60– 45– 60 45 20.21 20.22 20.24 Nickel base Annealed or solution treated Aged or solution treated and aged Cast or cast and aged 2650 2900 3000 250 350 320 0,25 0,25 0,25 65– 42– 50– 65– 42– 50– 65 41 50 60– 36– 45– 55– 36– 44– 55 35 44 20.31 20.32 20.33 Cobalt base Annealed or solution treated Solution treated and aged Cast or cast and aged 2700 3000 3100 200 300 320 0,25 0,25 0,25 30– 21– 20– 29– 21– 19– 29 20 19 26– 19– 18– 26– 18– 17– 25 18 17 Commercial pure (99,5% Ti) α, near α and α+β alloys, annealed α+β alloys in aged cond., β alloys, annealed or aged 1300 1400 1400 Rm2) 400 950 1050 0,23 0,23 0,23 Titanium alloys1) 23.1 23.21 23.22 1) 45–60° entering angle, positive cutting geometry and coolant should be used ) Rm = ultimate tensile strength measured in MPa 176 mc H10F 145– 145– 145 75– 75– 75 65– 65– 60 130– 125– 125 65– 65– 65 55– 55– 55 Basic grades 4040 1025 3040 530 SM30 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm)Feed, fn mm/r 0,05– 0,1– 0,15 0,05– 0,15– 0,25 0,05– 0,1– 0,15 0,05– 0,11– 0,2 0,08–0,15–0,25 465– 415– 395– 345– 255– 510– 460– 435– 375– 275– Cutting speed, vc m / 365– 330– 310– 275– 200– 350– 315– 295– 260– 195– 335 305 285 250 185 365– 330– 310– 275– 200– 350– 315– 295– 260– 195– 335 305 285 250 185 350– 315– 295– 260– 195– 335 305 285 245 185 495– 450– 425– 370– 275– 475 430 405 355 260 300– 270– 255– 225– 165– 295– 265– 245– 215– 160– 285 255 240 210 155 255– 245– 235 180– 175– 165 145– 140– 135 255– 245– 235 180– 175– 165 145– 140– 135 325– 245– 235 225– 175– 165 185– 140– 135 355– 350– 335 250– 255– 235 205– 195– 190 210– 205– 195 145– 145– 140 120– 115– 115 195– 185– 175 160– 155– 145 140– 135– 130 85– 85– 80 195– 185– 175 160– 155– 145 140– 135– 130 85– 85– 80 245– 185– 175 205– 155– 145 175– 135– 130 110– 85– 80 270– 225– 195– 125– 255 210 185 115 160– 155– 150 135– 130– 125 115– 115– 110 75– 70– 65 265– 250– 240 205– 200– 190 155– 145– 140 265– 250– 240 205– 200– 190 155– 145– 140 330– 250– 240 265– 200– 190 195– 145– 140 365– 355– 340 290– 285– 275 215– 205– 195 215– 210– 205 170– 165– 160 125– 125– 115 1025 530 4030 265– 220– 190– 120– Basic grades 4040 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,05– 0,12– 0,2 0,05– 0,12– 0,2 0,05– 0,1– 0,15 0,05– 0,1– 0,15 305– 295– 285 170– 165– 165 175– 175– 170 Cutting speed, vc m / 245– 235– 225 135– 135– 125 145– 140– 135 255– 245– 235 145– 140– 135 150– 145– 140 350– 340– 335 195– 195– 185 210– 200– 195 225– 220– 210 135– 125– 125 235– 230– 220 140– 135– 130 325– 315– 310 190– 185– 180 – – – – 220– 215– 205 195– 190– 185 235– 225– 215 205– 200– 190 315– 310– 300 280– 275– 265 – – – – 220– 215– 205 110– 105– 100 125– 115– 115 230– 225– 215 115– 110– 105 125– 125– 115 315– 305– 300 155– 155– 145 175– 170– 165 220– 215– 205 110– 105– 105 230– 225– 215 115– 110– 105 315– 305– 300 155– 155– 150 – – – 165– 155– 150 165– 160– 155 170– 165– 155 175– 165– 160 230– 225– 220 235– 230– 225 – – – – 275– 265– 260 135– 345– 130 150– 145– 145 Basic grades H13A Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,05– 0,1– 0,15 Cutting speed, vc m / 65– 50– 65– 49– 65 48 65– 40– 50– 65– 40– 49– 65 39 49 28– 20– 20– 28– 20– 19– 27 19 19 145– 140– 135 75– 75– 70 60– 55– 55 177 CMC Material No ISO Specific cutting force kc Hardness Brinell N / mm2 HB BASIC GRADES 3040 0,1– 0,2– 0,3 25 mm Malleable cast iron Ferritic (short chipping) Pearlitic (long chipping) 08.1 08.2 Grey cast iron 09.1 09.2 Nodular cst iron 07.1 07.2 K 4030 Feed, fz or hex 10 mm mc 0,1– 0,2– 0,3 Cutting speed, vc m / 800 900 130 230 0,28 0,28 280– 265– 255 230– 220– 210 245– 235– 225 205– 195– 185 Low tensile strength High tensile strength 900 1100 180 245 0,28 0,28 305– 290– 275 245– 235– 225 270– 255– 245 215– 205– 195 Ferritic Pearlitic 900 1350 160 250 0,28 0,28 190– 185– 175 175– 170– 160 170– 165– 155 155– 150– 145 Specific cutting force kc Hardness Brinell N / mm2 HB CMC Material No BASIC GRADES 4020 Feed, fz or hex 3040 0,07– 0,1– 0,12 -H mc 04.1 Extra hard steel Hard steel Hardened and tempered Hardened and tempered 4200 59 HRC 0,25 10.1 Chilled cast iron Cast or cast and aged 2200 400 0,28 CMC Material No Specific cutting force kc Hardness Brinell N / mm2 HB 95– 90– 90 30.11 Aluminium alloys Wrought or wrought and coldworked, non-aging 30.12 55– 175– 175– 175 55– 55 105– 100– 100 BASIC GRADES H10F H13A Feed, fz or hex 0,05– 0,1– 0,15 -N 0,07– 0,1– 0,12 Cutting speed, vc m / mc 0,05– 0,1– 0,15 Cutting speed, vc m / 400 60 1075– 1055– 1035 860– 845– 830 650 100 965– 955– 935 775– 760– 745 600 700 75 90 1075– 1065– 1040 970– 955– 935 860– 845– 830 775– 765– 750 Wrought or wrought and aged 30.21 Aluminium alloys 30.22 Cast, non-aging Cast or cast and aged 30.3 30.41 Aluminium alloys 30.42 33.1 33.2 33.3 178 Copper and copper alloys Cast, 13–15% Si Cast, 16–22% Si Free cutting alloys, ≥1% Pb Brass, leaded bronzes, ≤1% Pb Bronze and non-leadad copper incl electrolytic copper 0,25 0,25 350 30 1085– 1065– 1045 865– 850– 835 700 700 130 130 435– 425– 415 325– 315– 315 345– 340– 335 260– 255– 250 550 550 1350 110 90 100 540– 530– 520 535– 530– 520 375– 370– 365 430– 425– 415 430– 425– 415 300– 295– 290 0,25 0,25 BASIC GRADES 4040 H13A Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,1– 0,2– 0,3 0,05– 0,15– 0,25 Cutting speed, vc m / 225– 215– 205 185– 175– 170 135– 135– 125 115– 110– 105 245– 235– 225 195– 185– 180 150– 145– 140 120– 115– 110 155– 145– 140 145– 135– 130 95– 85– 90– 85– 85 80 BASIC GRADES 1025 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,07- 0,1- 0,12 Cutting speed, vc m / 47– 46– 46 90– 85– 85 BASIC GRADES 530 1025 Feed/tooth (fz , mm/tooth) or max chip thickness (hex, mm) 0,05– 0,1– 0,15 0,05– 0,1– 0,15 Cutting speed, vc m / 1185– 1165– 1145 1125– 1110– 1090 1165– 1045– 1030 1025– 1000– 985 1185– 1165– 1145 1165– 1045– 1030 1130– 1110– 1090 1015– 1000– 985 1190– 1170– 1150 1135– 1115– 1095 475– 465– 460 355– 350– 345 455– 445– 435 340– 335– 330 595– 585– 575 595– 585– 575 415– 405– 400 565– 555– 545 565– 555– 545 395– 385– 380 179 SOLID ENDMILLS General purpose milling with grades GC1010 and GC1020 R216.32- N 1020 R216.33- P 1020 R216.33- N 1020 R216.35- N 1020 R216.34- N 1020 R215.3X- H 1010 Only for hardened steel 55–63 HRC Max ae = 0,05 x Dc Reduce fz to 40% R215.36- L 1020 Materials Roughing – slotting Finishing ap = Dc ae ≤ 0,1 × Dc CMC No HB Cutting speed vc m/min 01.1 Unalloyed steel 01.2 02.1 Low alloy steel 02.2 03.11 High alloy steel 125 150 175 330 200 200–350 180–250 140–240 120–200 140–190 M 05.111) 05.211) Stainless steel 05.511) 20.22 Heat resistant alloys 23.22 Titanium alloys 200 200 230 350 350 90–160 80–120 60– 90 40– 50 50– 80 K 04 04 07.1 07.2 09.1 09.2 08.1 30.22 HRC55 HRC63 130 230 160 250 180 90 ISO P Hard steel Malleable cast iron Nodular SG iron Cast iron Aluminium alloys (cast) Dc mm 40– 70 30– 50 170–250 130–190 200–300 150–200 150–220 1000 ap × ae = 0,5 × Dc Cutting speed vc m/min Feed/tooth fz mm/z 0,01–0,02 0,01–0,02 0,02–0,04 0,03–0,06 0,03–0,07 10 12 0,04–0,08 0,05–0,09 0,07–0,10 0,07–0,12 0,08–0,13 14 16 18 20 25 0,08–0,14 0,09–0,15 0,10–0,16 0,10–0,16 0,10–0,16 125–220 120–190 90–160 80–120 90–130 40– 50– 40– 20– 50– 90 90 60 30 60 30– 50 130–190 100–130 130–190 100–140 100–150 1000 Dc mm 0,005–0,015 0,01–0,02 0,015–0,03 0,02–0,03 0,02–0,04 10 12 0,02–0,04 0,03–0,045 0,03–0,045 0,035–0,05 0,035–0,06 14 16 18 20 25 0,04–0,07 0,05–0,08 0,06–0,08 0,06–0,08 0,06–0,09 Calculations Table feed 1) For ramping and drilling n in stainless steel 0,8 × vc 0,15 × vf vf = fz × n × zn mm/min Dc ae Cutting speed vf vc = n × π × Dc m/min 1000 Spindle speed 0,25 × vf 180 n= vc × 1000 π × Dc Feed/tooth fz mm/z rpm SOLID ENDMILLS High speed machining (HSM) with grade GC1010 R216.22- L 1010 R216.24- L 1010 Materials Dc ap ≤ 0,1 × Dc ae < 0,3 × Dc ISO CMC No HB Cutting speed vc m/min P 01.1 Unalloyed steel 01.2 02.1 Low alloy steel 02.2 03.11 High alloy steel 125 150 175 330 200 300–500 250–450 200–400 180–330 200–330 M 05.11 05.21 Stainless steel 05.51 20.22 Heat resistant alloys 23.22 Titanium alloys 200 200 230 350 350 150–200 120–170 100–150 40– 70 70–120 0,03–0,04 0,04–0,07 0,05–0,09 0,05–0,10 K 04 04 07.1 07.2 09.1 09.2 08.1 30.22 HRC55 HRC63 130 230 160 250 180 90 150–250 90–150 200–450 300–450 400–500 200–350 300–500 1000 10 12 16 0,06–0,11 0,07–0,12 0,08–0,13 0,09–0,16 Hard steel Malleable cast iron Nodular SG iron Cast iron Aluminium alloys (cast) Dc mm Feed/tooth fz mm/z Calculations Table feed n vf = fz × n × zn mm/min Dc ae vf Cutting speed vc = ≤ 0,1 × Dc n × π × Dc m/min 1000 Spindle speed n= vc × 1000 π × Dc rpm 181 SOLID ENDMILLS Copy milling – high speed machining (HSM), grades GC1010 and GC1020 R216.42- L 1010 R216.64- L 100 R216.42- H 1010 R216.42- L 1010 R216.62- L 1010 R216.44- L 1010 R216.42- N 1020 R216.44- L 1020 Materials Coromant grade GC1010 Coromant grade GC1020 Effective cutting speed vc m/min ap ≤ 0,05 × Dc ISO P M K CMC No HB Effective cutting speed vc m/min 01.1 Unalloyed steel 01.2 02.1 Low alloy steel 02.2 03.11 High alloy steel 125 150 175 330 200 300–500 250–450 200–400 180–330 200–330 240–400 200–360 160–320 140–260 160–260 05.11 05.21 Stainless steel 05.51 20.22 Heat resistant alloys 23.22 Titanium alloys 200 200 230 350 350 150–200 120–170 100–150 40– 70 70–120 120–160 100–140 80–120 30– 60 50– 90 04 04 07.1 07.2 09.1 09.2 08.1 30.22 HRC55 HRC63 130 230 160 250 180 90 150–250 90–150 200–450 300–450 400–500 200–350 300–500 1000 120–200 70–120 160–360 240–360 320–400 160–280 240–400 800 Hard steel Malleable cast iron Nodular SG iron Cast iron Aluminium alloys (cast) Calculations Dc mm Feed per tooth fz mm/z 0,015–0,020 0,03 –0,04 0,04 –0,07 0,05 –0,09 0,05 –0,10 10 12 0,06 0,06 0,06 0,07 0,08 –0,10 –0,11 –0,12 –0,12 –0,13 14 16 18 20 0,08 0,09 0,09 0,09 –0,15 –0,16 –0,16 –0,16 Table feed vf = fz × n × zn mm/min Dc ap Resultant cutting speed De n × π × De m/min 1000 ve = Spindle speed n= ve ve × 1000 π × Dc rpm Effective cutting diameter De = 182 √ ap(Dc – ap) MATERIAL CROSS REFERENCE LIST ISO Coromant Material Classification (CMC) Country Great Britain Sweden USA Germany SS AISI/SAE W.-nr France Italy Spain Japan DIN AFNOR UNI UNF JIS Standard BS EN Structural and constructional steel P 01.1 01.1 01.2 01.2 01.3 01.3 01.1 01.1 01.1 01.2 01.1 01.1 02.1/02.2 02.1/02.2 01.1 01.2 01.1 01.2 01.2 01.2 01.2 01.3 01.2 01.3 06.33 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 03.11 03.11 02.2 02.1/02.2 02.1/02.2 2C 43D 8M 1B 45 32C 15 – 14A 43D 31 111A 36A 1350 1450 1550 1650 1655 1912 1914 1957 1926 2085 1370 – 2120 1572 1672 1674 1678 2258 2912 - 1015 1020 1035 1045 1055 1060 1213 12L13 1140 1215 12L14 9255 9262 1015 1039 1025 1335 1330 1035 1045 1055 1050 1060 52100 ASTM A204Gr.A 4520 ASTM A350LF5 ASTM A353 2515 3135 3415 3415;3310 1.0401 1.0402 1.0501 1.0503 1.0535 1.0601 1.0715 1.0718 1.0722 1.0726 1.0736 1.0737 1.0904 1.0961 1.1141 1.1157 1.1158 1.1167 1.1170 1.1183 1.1191 1.1203 1.1213 1.1221 1.3401 1.3505 1.5415 1.5423 1.5622 1.5662 1.5680 1.5710 1.5732 1.5752 C15 C22 C35 C45 C55 C60 9SMn28 9SMnPb28 10SPb20 35S20 9SMn36 9SMnPb36 55Si7 60SiCr7 Ck15 40Mn4 Ck25 36MN5 28Mn6 Cf35 Ck45 Ck55 Cf53 Ck60 G-X120Mn12 100Cr6 15Mo3 16Mo5 14Ni6 X8Ni9 12Ni19 36NiCr6 14NiCr10 14NiCr14 CC12 CC20 CC35 CC45 CC55 S250 S250Pb 10PbF2 35MF4 S 300 S300Pb 55S7 60SC7 XC12 35M5 40M5 20M5 XC38TS XC42 XC55 XC48TS XC60 Z120M12 100C6 15D3 16N6 Z18N5 35NC6 14NC11 12NC15 C15C16 C20C21 C35 C45 C55 C60 CF9SMn28 CF9SMnPb28 CF10SPb20 CF9SMn36 CF9SMnPb36 55Si8 60SiCr8 C16 – C28Mn C36 C45 C50 C53 C60 XG120Mn12 100Cr6 16Mo3KW 16Mo5 14Ni6 X10Ni9 16NiCr11 - F.111 F.112 F.113 F.114 11SMn28 11SMnPb28 10SPb20 F210G 12SMn35 12SMnP35 56Si7 60SiCr8 C15K 36Mn5 C45K C55K X120Mn12 F.131 16Mo3 16Mo5 15Ni6 XBNi09 15NiCr11 - SUM22 SUM22L S15C S25C SMn438(H) SCMn1 S35C S45C S55C S50C S58C SCMnH/1 SUJ2 SNC236 SNC415(H) SNC815(H) 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 03.11 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 080M15 050A20 060A35 080M46 070M55 080A62 230M07 212M36 240M07 250A53 080M15 150M36 – 150M28 060A35 080M46 070M55 060A52 080A62 Z120M12 534A99 1501-240 1503-245-420 1501-509;510 640A35 655M13; 655A12 816M40 805M20 311-Type 817M40 820A16 832M13 523M15 530A32 530M40 (527M20) 527A60 1717CDS110 110 362 24 36C 18B 18 48 - 2506 2541 2245 2511 2225 9840 8620 8740 4340 5015 5132 5140 5140 5115 5155 4130 1.6511 1.6523 1.6546 1.6582 1.6587 1.6657 1.7015 1.7033 1.7035 1.7045 1.7131 1.7176 1.7218 36CrNiMo4 21NiCrMo2 40NiCrMo22 35CrNiMo6 17CrNiMo6 14NiCrMo134 15Cr3 34Cr4 41Cr4 42Cr4 16MnCr5 55Cr3 25CrMo4 40NCD3 20NCD2 35NCD6 18NCD6 12C3 32C4 42C4 16MC5 55C3 25CD4 38NiCrMo4(KB) 20NiCrMo2 40NiCrMo2(KB) 35NiCrMo6(KB) 15NiCrMo13 34Cr4(KB) 41Cr4 16MnCr5 25CrMo4(KB) SNCM220(H) SNCM240 SCr415(H) SCr430(H) SCr440(H) SCr440 SUP9(A) SCM420;SCM430 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 708A37 708M40 708M40 1501-620Gr27 19B 19A 19A - 2234 2244 2244 2216 - 1.7220 1.7223 1.7225 1.7262 1.7335 34CrMo4 41CrMo4 42CrMo4 15CrMo5 13CrMo4 02.1/02.2 02.1/02.2 722M24 1501-622 Gr.31;45 1503-660-440 735A50 905M39 897M39 40B 47 41B 40C 2240 2218 4137;4135 4140;4142 4140 ASTM A182 F11;F12 ASTM A182 F.22 6150 - 35NiCrMo4 20NiCrMo2 40NiCrMo2 14NiCrMo13 14NiCrMo131 35Cr4 42Cr4 42Cr4 16MnCr5 55Cr3 AM26CrMo4 34CrMo4 42CrMo4 42CrMo4 12CrMo4 14CrMo45 F.124.A TU.H 13MoCrV6 51CrV4 41CrAlMo7 - SUP10 - 100Cr6 X210Cr12 SKD1 02.1/02.2 02.1/02.2 02.1/02.2 02.1/02.2 2230 2940 - 1.7361 1.7380 1.7715 1.8159 1.8509 1.8523 35CD4 42CD4TS 42CD4 12CD4 15CD3.5 15CD4.5 32CrMo12 30CD12 10CrMo9 10 12CD9, 10 14MoV6 50CrV4 50CV4 41CrAlMo7 40CAD6, 12 39CrMoV13 - 35CrMo4 41CrMo4 42CrMo4 14CrMo4 X210Cr13KU X250Cr12KU X35CrMoV05KU X40CrMoV511KU X100CrMoV51KU 10WCr6 107WCr5KU 32CrMo12 12CrMo9, 10 50CrV4 41CrAlMo7 36CrMoV12 SCM432;SCCRM3 SCM 440 SCM440(H) SCM415(H) - Tool steel 02.1/02.2 03.11 BL3 BD3 - - L3 D3 1.2067 1.2080 100Cr6 X210Cr12 03.11 BH13 - 2242 H13 1.2344 X40CrMoV5 Z40CDV5 Y100C6 Z200C12 03.11 02.1/02.2 BA2 - - 2260 2140 A2 - 1.2363 1.2419 X100CrMoV5 Z100CDV5 105WCr6 105WC13 X40CrMoV5 SKD61 X100CrMoV5 105WCr5 SKD12 SKS31 SKS2, SKS3 ̈ 183 ISO ̈ P M *) 184 Coromant Material Classification (CMC) 03.11 03.11 03.11 Country Great Britain Sweden USA Germany SS 2312 2710 - AISI/SAE S1 H21 W.-nr 1.2436 1.2542 1.2581 France Italy Spain Japan DIN X210CrW12 45WCrV7 X30WCrV9 X30WCrV9 3KU X165CrMo V 12 X45GrSi93 55NiCrMoV6 AFNOR Z30WCV9 UNF X210CrW12 45WCrSi8 X30WCrV9 JIS SKD2 SKD5 - UNI X215CrW12 1KU 45WCrV8KU X28W09KU X30WCrV9 3KU X165CrMoW12KU Z45CS9 55NCDV7 X45GrSi8 - F322 F.520.S SUH1 SKT4 Z6C13 Z8C17 Z10C14 Z8C17 Z40CM Z38C13M Z8CA12 Z20C13 Z15CNi6.02 Z10CF17 Z8CD17.01 Z4CND13.4M Z10C13 Z10CAS18 Z80CSN20.02 Z10CAS24 Z52CMN21.09 X6Cr13 X8Cr17 X12Cr13 X8Cr17 X40Cr14 F.3110 F.8401 F3113 F.3401 F.3113 F.3405 SUS403 SUS430 SUS410 SUS430 SUS420J2 F.3427 F.3117 F.311 F.3113 F.320B - SUS431 SUS430F SUS434 SCS5 SUS405 SUS430 SUH4 SUH446 SUH35, SUH36 SUS304 SUS303 SUS304 SUS304L SCS19 SUS301 SUS304LN SUS316 Standard BS BS1 BH21 EN - 03.11 - - 2310 - 1.2601 03.11 02.1/02.2 401S45 - 52 - - HW3 L6 1.4718 1.2713 X160CrMoV12 - Stainless and heat resistant materials 05.11/15.11 403S17 - 2301 403 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 430S15 410S21 430S17 420S45 60 56A 60 56D 2320 2302 2320 2304 430 410 430 - 1.4000 1.4001 1.4016 1.4006 1.4034 X7Cr13 X7Cr14 X8Cr17 X10Cr13 X8Cr17 X46Cr13 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 05.11/15.11 405S17 420S37 431S29 434S17 425C11 403S17 430S15 443S65 349S54 57 60 59 - 2303 2321 2383 2325 2322 - 405 420 431 430F 434 405 430 HNV6 446 EV8 1.4002 1.4021 1.4057 1.4104 1.4113 1.4313 1.4724 1.4742 1.4747 1.4762 1.4871 X22CrNi17 X12CrMoS17 X6CrMo17 X5CrNi13 X10CrA113 X10CrA118 X80CrNiSi20 X10CrA124 X53CrMnNiN 21 05.12/15.12 05.21/15.21 05.21/15.21 304S11 304S31 58E 2352 2332/2333 630 304L 304 1.4542/1.4548 1.4306 1.4350 X5CrNi189 Z7CNU17-04 Z2CN18-10 Z6CN18.09 X6CrAl13 X20Cr13 X16CrNi16 X10CrS17 X8CrMo17 X10CrA112 X8Cr17 X80CrSiNi20 X16Cr26 X53CrMnNiN 21 X2CrNi18 11 X5CrNi18 10 05.21/15.21 05.21/15.21 58M 58E 1.4305 1.4301 X12CrNiS18 X5CrNi189 - 2346 2332 2333 2352 2331 2371 303 304 05.21/15.21 05.21/15.21 05.21/15.21 303S21 304S15 304C12 304S12 304S62 304L 301 304LN 1.4306 1.4310 1.4311 X10CrNiS 18.09 X5CrNi18 10 X2CrNi18 11 X12CrNi17 07 - 05.21/15.21 316S16 58J 2347 316 1.4401 X2CrNi18 X12CrNi17 X2CrNiN 18 10 X5CrNiMo 18 10 Z10CNF 18.09 Z6CN18.09 Z3CN19.10 Z2CrNi18 10 Z12CN17.07 Z2CN18.10 F.3551 F.3541 F.3504 F.3508 F.3551 F.3503 F.3517 - Z6CND17.11 X5CrNiMo17 12 F.3543 05.21/15.21 - - 2375 316LN 1.4429 05.21/15.21 05.21/15.21 316S13 316S13 - 2348 2353 316L 316L 1.4404 1.4435 05.21/15.21 05.21/15.21 316S33 317S12 - 2343/2347 2367 316 317L 1.4436 1.4438 05.51/15.51*) - - - S31500 1.4417 05.51/15.51*) - - 2324 S32900 - 05.52/15.52*) - - 2327 S32304 - 05.52/15.52*) 05.52/15.52*) - - 2328 2377 S31803 - 05.21/15.21 321S12 58B 2337 321 1.4541 05.21/15.21 347S17 58F 2338 347 1.4550 05.21/15.21 320S17 58J 2350 316Ti 1.4571 X2CrNiMoN 18 13 X2CrNiMo 18 12 X2CrNiMo 18 16 X2CrNiMoSi 19 X8CrNiMo 27 X2CrNiN 23 X2CrNiMoN 22 53 X10CrNiTi 18 X10CrNiNb 18 X10CrNiMoTi 18 10 X10CrNi MoNb 18 12 X15CrNiSi 20 12 X12CrNi25 21 05.21/15.21 - - - 318 1.4583 05.21/15.21 309S24 - - 309 1.4828 05.21/15.21 05.22/15.22 05.23/15.23 05.23/15.23 310S24 316S111 - - 2361 2584 2378 310S 17-7PH NO8028 S31254 1.4845 1.4568/1.4504 1.4563 - Duplex stainless steel Z2CND17.13 - - SUS316LN Z2CND17-12 Z2CND17.12 Z6CND18-12-03 Z2CND19.15 X2CrNiMo1712 X2CrNiMo17 12 X8CrNiMo1713 X2CrNiMo18 16 - SCS16 SUS316L SUS317L - - - - - - - - Z2CN23-04AZ - - - Z2CND22-05-03 - - - Z6CNT18.10 X6CrNiTi18 11 Z6CNDNb 17 13B Z15CNS20.12 F.3553 F.3523 F.3552 F.3524 X6CrNiMoTi17 12 F.3535 17 12 X6CrNiMoNb 17 13 - SUH309 Z12CN25 20 Z8CNA17-07 Z1NCDU31-27-03 Z1CNDU20-18-06AZ X6CrNi25 20 X2CrNiMo1712 - SUH310 - Z6CNNb18.10 Z6NDT17.12 X6CrNiNb18 11 F.331 - SUS321 SUS347 - ̈ ISO ➤ M -S Coromant Material Classification (CMC) Great Britain Sweden USA Germany W.-nr 1.4864 France Italy Spain Japan DIN X12NiCrSi 36 16 G-X40NiCrSi 38 18 NiCr22Mo9Nb NiCr20Ti NiFe35Cr14MoTi S-NiCr13A16MoNb NiCr19Fe19NbMo NiCu30Al NiCr20TiAk NiCr19Co11MoTi NiCr19Fe19NbMo NiCo15Cr10MoAlTi CoCr20W15Ni CoCr22W14Ni TiAl5Sn2.5 TiAl6V4 TiAl6V4ELI TiAl4Mo4Sn4Si0.5 AFNOR Z12NCS35.16 - UNI - UNF - JIS SUH330 XG50NiCr 39 19 - - SCH15 - GG 10 GG 15 GG 20 GG 25 Ft 10 D Ft 15 D Ft 20 D Ft 25 D GG 30 GG 35 GG 40 Ft 30 D Ft 35 D Ft 40 D GGG 40 GGG 40.3 GGG 35.3 GGG 50 GGG 60 GGG 70 NF A32-201 FCS 400-12 FGS 370-17 FGS 500-7 FGS 600-3 FGS 700-2 Standard 20.11 BS - EN - SS - AISI/SAE 330 20.11 330C11 - - - 1.4865 20.21 20.21 20.21 20.22 20.22 20.22 20.22 20.22 20.22 20.22 20.24 20.32 HR5,203-4 3146-3 HR8 3072-76 Hr401,601 TA14/17 TA10-13/TA28 TA11 - - - 5390A 5666 5660 5391 5383 4676 AMS 5399 AMS 5544 AMS 5397 5537C AMS 5772 AMS R54520 AMS R56400 AMS R56401 - 2.4603 2.4856 2.4630 LW2.4662 LW2 4670 LW2.4668 2.4375 2.4631 2.4973 LW2.4668 LW2 4674 LW2.4964 - 23.22 23.22 23.22 23.22 K Country NC22FeD NC22FeDNB NC20T ZSNCDT42 NC12AD NC19eNB NC20TA NC19KDT NC20K14 KC20WN KC22WN T-A5E T-A6V - Grey cast iron ASTM A48-76 08.1 08.1 08.1 08.1 08.2 Grade 150 Grade 220 Grade 260 01 00 01 10 01 15 01 20 01 25 08.2 08.2 08.2 Grade 300 Grade 350 Grade 400 01 30 01 35 01 40 No 20 B No 25 B No 30 B No 35 B No 40 B No 45 B No 50 B No 55 B 07 17-02 07 17-12 07 17-15 07 27-02 07 32-03 07 37-01 A536-72 60-40-18 80-55-06 100-70-03 Nodular cast iron 09.1 09.1 09.1 09.1 09.2 09.2 2789;1973 SNG 420/12 SNG 370/17 SNG 500/7 SNG 600/3 SNG 700/2 Malleable cast iron ASTM A47-74 A 220-76 2) 07.1 07.1 07.2 07.2 290/6 B 340/12 P 440/7 P 510/4 P 570/3 08 14 08 15 08 52 08 54 08 58 32510 40010 50005 70003 GTS-35 GTS-45 GTS-55 GTS-65 356.1 A413.0 A380.1 A413.1 A413.2 A360.2 GD-AlSi12 GD-AlSi8Cu3 G-AlSi12(Cu) G-AlSi12 G-AlSi10Mg(Cu) MN 32-8 MN 35-10 MP 50-5 MP 60-3 Aluminium alloys, cast 30.21/30.22 LM25 LM24 LM20 LM6 LM9 4244 4247 4250 4260 4261 4253 185 NOTES 186 187 188 ... complete component There are basic types of dies and moulds; pressing dies, casting dies, forging dies, injection moulds and compression moulds Pressing dies are for cold-forming of, for instance,... different types of dies and mould will also be explained First let us take a look at a simplified flowchart to see what the different stages are in the die and mould making process DIE CONSTRUCTION... manufacture a die or mould, many different cutting tools are involved, from deep hole drills to the smallest ball nose endmills In this application guide the whole process of die and mould making will

Ngày đăng: 10/08/2018, 21:22

Tài liệu cùng người dùng

Tài liệu liên quan