1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Chuyên đề số phức

16 114 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,53 MB

Nội dung

Tài liệu toán 12 năm học 2018 S PHC A.TểM TẮT GIÁO KHOA Định nghĩa số phức Xét Hai phần tử : Phép cộng : Phép nhân: Định nghĩa Tập , với phép cộng phép nhân gọi tập số phức Phần tử gọi số phức Tính chất phép cộng Giao hoán: Kết hợp: Tồn phần tử khơng: Mọi sốsố đối: Phép trừ: Tính chất phép nhân Giao hốn: Kết hợp: Tồn phần tử đơn vị: Mọi số khác Giả sử có số nghịch đảo : , để tìm Ta có: Gii h cho ta Vy, Phộp chia: Giảng dạy: nguyễn bảo vương vi - 0946798489 Page | Tài liệu toán 12 năm học 2018 nh lý S phức Hệ thức biểu diễn dạng , , , suy từ định nghĩa phép nhân: Biểu diễn gọi dạng đại số số phức : phần thực Tổng số phức: Hiệu số phức: Tích số phức: , Do đó: : phần ảo Đơn vị ảo Lũy thừa đơn vị ảo : , , , …, quy nạp ta được: , , , , Do đó: Số phức liên hợp: Cho , số phức gọi số phức liên hợp Thật vậy, ( đpcm ) Thật vậy, ( đpcm ) số thực không âm Thật vậy, ( đpcm ) Thật vậy, ( đpcm ) Thật vậy, ( đpcm ) Thật vậy, tức Thật vậy, ( đpcm ) ( đpcm ) , Thật vậy, Do ú Giảng dạy: nguyễn bảo vương , , ( pcm ) - 0946798489 Page | Tài liệu toán 12 năm học 2018 Mụun ca s phc S gọi mơđun số phức Biểu diễn hình học số phức Mỗi số phức biểu diễn điểm hay véc tơ mặt phẳng phức.Ta viết: 10 Tính chất i Gọi Khi đó: ii Gọi biểu diễn hai số phức iii Cho Khi đó: đối xứng với qua ; Khi đó: đối xứng với biểu diễn qua biểu diễn B.PHƯƠNG PHÁP GIẢI TỐN Dạng Các phép tính số phức tốn định tính Phương pháp: Dạng 1: Các phép tính số phức Sử dụng công thức cộng, trừ, nhân, chia lũy thừa số phức Dạng 2: Số phức thuộc tính Tìm phần thực phần ảo: , suy phần thực , phần ảo Biểu diễn hình học số phức: ví dụ minh họa Ví dụ Xác định phần thực phần ảo số phức : z  i   i   i  z   4i 4i 1  i    i  z   i    2i  z Ví dụ Tìm mơđun số phức z, biết rằng:   2i  z  3  8i Tìm số thực b, c để phương trình z  bz  c  nhận số phức z   i làm nghiệm 3 2   Ví dụ Tìm số phức z thỏa mãn:  z  z  z3  z     4i   z  zz  z      Ví dụ  Tìm phần ảo số phức z , biết : z     i  1  2i   1 i  Tìm phần thực phần ảo số phức z     i Vớ d Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 12 năm học 2018 Tỡm phn thc số phức z , biết  z    i  z    2i  Tìm phần ảo số phức z , biết z  3z   2i Ví dụ Tìm số phức z thỏa mãn: z  2i z  3i   iz z  số ảo z  z   2i số ảo z z2 z 1 z  3i  1 Ví dụ Tìm số phức z thỏa mãn: zi zi Ví dụ 8.1.7 Cho số phức z  x  yi; x, y   thỏa mãn z  18  26i Tính T   z   2012  4  z 2012 1i Bài tập tự luận tự luyện Bài 1 Cho số phức z1 , z thỏa mãn z1  z  , z1  z  Tính z1  z 2 Tìm số thực x, y cho : a z  z' , biết rằng: z   2x     3y  1 i , z'   2y  1   3x   i b c  x  2y   i 3   3x  y  x  2i   47  20i x  yi   yi d  xyi 1  2i  3  i 2 x  y  2i 1  2i 3 ( phức ) liên hợp Cho z  cos180  cos 720 i Tính z Xác định phần thực phần ảo số phức : 33 10 1 i  z     i     3i   3i   i 1i  Thực phép tính : 10 A    i   1  i     i  B    i    i13  13   i   i   M  i5  i6  i7   i18 21 N     i     i     i      i  2010 Xác định phần thực phần ảo số phức : a z    3i   2i  b z  c z    i     i   2i  2i  i  1  i   d 4) z   3i Cho z  2x  3x    x  1 y   i với x, y số thực Tìm x, y cho: a z số thực c z   5i b z ảo z  Thực phép tính : 3  i  2  i  A   i 3    i    3i  B    3i    C  i  i   i 2009 D  1  i     i      i  2009 2010 Cho số phức z  (1  2x)(1  x)  (2  x)(2y  1)i Trong x, y số thực Tìm x, y cho a z số thực b z số ảo z  Giảng dạy: nguyễn bảo vương - 0946798489 c z 20 15i Page | Tài liệu toán 12 năm học 2018 10 Tỡm phn thc v phn ảo số phức sau: a z  c z  (1  2i)2 3i (3  i)(1  2i) b z  (2  i)3  (3  2i)3 d z  (1  3i)(2  i)2  (3  2i) 11 Tìm modun số phức z biết: a (1  2z)(3  4i)  29  22i b z  (1  2i)(2  i) (2  3i)2 Bài Tìm phần thực phần ảo số phức : c 1  i 2   i  z   i  1  2i  z  2i  3i  2i (2  3i)2  z  2i  2i d (2  i)(3z  1)  (z  2)(4  5i) Đề thi Cao đẳng năm 2009 Chứng minh z1  z  , z1 z2  z1  z2 số thực  z1z2 Tìm số phức z thỏa mãn z   i  Biết phần ảo nhỏ phần thực đơn vị   Tìm số phức z thỏa mãn z.z   z  z    6i Tìm số phức z thỏa mãn  z  1 z  2i số thực z   Tính z biết: a  3i  1 z   2i  1 b z1  2i  z2 c z  3i   3z  i 1 Tìm số phức z biết : b 3z  2(z)2  a 4z  (3i  1)z  25  21i Bài Xét điểm A, B,C mặt phẳng phức theo thứ tự biểu diễn số 4i  6i ,   i   2i  , i1 3i Chứng minh ABC tam giác vng cân Tìm số phức biểu diễn điểm D cho ABCD hình vng Bài Trong mặt phẳng tọa độ Oxy , cho A B hai điểm biểu diễn nghiệm phức phương trình: z  6z  18  Chứng minh tam giác OAB vuông cân Bài Chứng minh rằng:   i   2010  1  i  2009     3i  2010 số thực 3i   2009 số ảo Bài Cho u, v biểu diễn hai số phức  3i  2i     3u  2v ; 5u  3v biểu diễn số phức nào?     Gọi x biểu diễn số phức  4i Hãy phân tích x qua u, v Bài Gọi A1 , A , A , A biểu diễn hình học số phức z1   3i, z  3  2i, z   i, z   5i Tính độ dài đoạn A1A , A1 A , A1A Tìm số phức có biểu diễn điểm M cho A1 A A M hình bình hành Bài n Tìm phần thực số phức z    i  , n  N thỏa mãn phương trình: log  n    log  n    Tìm phần ảo số phức z , biết iz    3i  z i z Bi 10 Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 12 năm học 2018 Gi z l nghim phương trình z  2z   Tính giá trị biểu thức Q  z 2012   z 2012  Tính z , biết  2z  11+i   z    i    2i Đề thi Đại học Khối A – năm 2011 Bài 11 Tìm số phức z thỏa mãn: z 1 i z  2i  z   i số ảo z  2i z  phần thực z lần phần ảo z  z3 z  z số ảo Đề thi Đại học Khối D ,2010 Bài 12 Tìm số phức z thỏa mãn: z z z 200 0  7i 5i 1 z z  (2  3i)z   9i z  Đề thi Đại học Khối B – năm 2011 Đề thi Đại học Khối D – năm 2011 z  z  z Bài 13 Tìm số phức z thỏa mãn: 2 z  i  z  z  2i   2 z  z 2   z    i   10   z.z  25  z  2i  z   z  i  z   z2 1   z  2i   z  1 z  i    zi 1    z  i     z 2z  i  1 i 1 i z  z  8z  44 z  z Bài 14 Nếu z1  z2  1, z1z2  1 T  Nếu z1  z2  z3  r T  z1  z số thực  z1z  z1  z2  z2  z3  z3  z1  z1z z số thực z1z  z z3  z z1 z1  z2  z  r với z1  z  z  Số phức w  z 1 số ảo  z  z1 Bài 15 Cho  ,  hai số phức liên hợp thoả mãn  2  R     Tính  Bài 16 Tính z1  z2 , z1  z2 , z1 z2 , z1  2z , 2z1  z biết: z1   6i, z  1  3i z1   3i, z   4i 3 z1    i, z    i z1   2i,z    i 2 3 Bài 17 Cho số phức z1   2i, z  2  3i, z   i Tính : z1  z  z 2 z1z  z z  z z1 Giảng dạy: nguyễn bảo vương - 0946798489 z1 z z Page | Tµi liƯu toán 12 z12 z 22 z23 năm häc 2018 z1 z2 z   z z z1 Bài 18 Tìm số phức z thỏa mãn: z   7i   i z 22  z 23 2  3i  z  5  i z   2i 1  3i z(2  3i)   5i z12  z 22 2i 1  3i z 1 i 2i 2z(1  i)  2iz(1  i)  4i 3  i Hãy tính: ; z; z ;  z  ;  z  z z 2 Bài 20 Gọi A, B,C điểm biểu diễn số phức z1   2i, z   3i , z   4i Bài 19 Cho z  Chứng minh A, B,C ba đỉnh tam giác Tính chu vi tam giác Gọi D điểm biểu diễn số phức z Tìm z để ABCD hình bình hành Gọi E điểm biểu diễn số phức z' Tìm z' cho tam giác AEB vuông cân E Dạng Biểu diễn hình học số phức ứng dụng ví dụ minh họa Ví dụ 1.Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện: z  i  1  i  z Ví dụ 2.2.7 Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện: z   i  z Ví dụ 3.2.7 Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện: z   z   1i Bài tập tự luận tự luyện Bài 1: Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện: z số ảo Bài 2: Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện:  z  z 2 z  i  z  z  2i Bài 3: Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức:   z'   3i z  , z số phức thỏa mãn z   z  i  z  i  z   z   10 Bài 4: Trong mặt phẳng phức, tìm tập hợp điểm biểu diễn số phức: z  i  z   3i z    4i   2 2z   5i  z   3i  z   2i  10 Bài 5: Tìm tập hợp điểm M biểu diễn số phức z thỏa: z   3i số thực z   2i  z  3i  z   i z   3i  z   2i  5  4i  3z  z   i  z   3i  Bài 6: Tìm tập hợp điểm M biểu diễn số phức z thỏa 2z  i z  2i  có phần thực số thực dương z  2i z3i Bài 7: Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện: Phần thực z hai lần phần ảo Phần thực z thuộc đoạn [2;1] Phần thực z thuộc đoạn [2;1] phần ảo z thuộc đoạn [1; 3] z   z  z  i  z  z  2i  z  v phn o ln hn hoc bng Giảng dạy: nguyễn bảo vương - 0946798489 z 2i  Page | Tµi liƯu toán 12 năm học 2018 Dng Cn bc hai số phức phương trình bậc hai Phương pháp: Định nghĩa: Cho số phức Mỗi số phức thỏa Xét số thực (vì có bậc hai ) Nếu có hai bậc hai Đặc biệt : có hai bậc hai Cách tìm bậc hai số phức Với Để tìm bậc hai Từ gọi bậc hai Nếu ( có hai bậc hai là số thực khác 0) có hai bậc hai ta gọi giải hệ này, ta Phương trình bậc hai với hệ số phức Là phương trình có dạng: , a Cách giải: Xét biệt thức số phức bậc hai Nếu phương trình có nghiệm kép: Nếu phương trình có hai nghiệm phân biệt b Định lí viét Gọi hai nghiệm phương trình : Khi đó, ta có hệ thức sau: ví dụ minh họa Ví dụ 1.Trên tập số phức, tìm m để phương trình bậc hai z  mz  i  có tổng bình phương hai nghiệm 4i Ví dụ Giải phương trình sau tập số phức: z2  (2i  1)z   5i  z  2z  17  4z   7i  z  2i 25 5z2  zi Ví dụ Giải phương trình sau tập số phức:   2   25z    z  (2  2i)z2  (5  4i)z  10i  biết phương trình có nghiệm ảo  zi    8  z  1 z  2z3  z  2z    16x  11y 7 x  x  y2    y  11x  16y  1  x2  y2      12  10x    x 1  3 2 5x  y  3x  y     ;     y   12   y 1    1    5x  y  3x  y     78y  20 x  x  y2  Ví dụ Giải hệ phương trình:  ;  y  78x  15  x2  y2     Ví dụ Gii h phng trỡnh: Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 12 năm học 2018 Vớ d Cho s phức z thoả mãn điều kiện 11z10  10iz9  10iz  11  Chứng minh z  1i Bài tập tự luận tự luyện Bài 1: Tìm bậc hai số phức: z   6i z  33  56i z  1  4i z  5  12i Bài 2: Tìm bậc hai số phức sau: 5  i   2i     3i 1 i Bài 3: Giải phương trình sau  : 4z   7i z  1  3i  z   2i   z  2i Đề thi Cao đẳng năm 2009 zi z 200 0 z    2i  z    8i  z  2i    7i z Bài 4: Giải phương trình sau  : z z    5i  z    i   z    4i  z  5i   z    2i  z   5i  z    i  z  63  16i  1  i  z2  1  2i  z   z   2i  1 z   5i  Bài 5: Giải phương trình sau  : z    i  z2    4i  z  10  z    5i  z2    5i  z  40i  z    i  z    9i  z  30i  Bài 6:  z1 Giải phương trình: z     , biết z   4i nghiệm phương trình z 7  Bài 7: Giải phương hệ trình sau  :  Bài 8:  3x  y 3 x  x  y2  Giải hệ phương trình:  ,  y  x  3y   x2  y   z2  z   2i  z1  z   i  1  2     3x   2 xy     7y        xy   Bài 9: Tìm số thực a, b để: 2z3  9z2  14z   (2z  1)(z2  az  b) giải phương trình sau C: 2z3  9z  14z   Tìm số thực a, b để : z  4z  16z  16  (z2  2z  4)(z  az  b) giải phương trình sau C: z  4z  16z  16  Bài 10: Tìm tất cá giá trị thực m để phương trình sau có nghiệm thực: z  (3  i)z  3z  (m  i)  Biết phương trình 1  i  x     i  x   i  khơng có nghiệm thực Tìm giá trị có  Bài 11: Giải hệ sau tập số phức z 1 z1  z  z1z   2i   2  z z z1  z  11  2i    z z Dạng Phương trình quy v bc hai Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 12 năm học 2018 1i Bài tập tự luận tự luyện z2 z1 Bài 1: Giải phương trình sau  : z  z  Bài 2: Giải phương trình: 2z4  7z3  9z  7z   z    i  z  2i  4z4    10i  z   15i   z    10i  z   z    i  z3    3i  z2    i  z    25 5z2   2   25z    Bài 3: Giải phương trình: 4  z     z    82  z2    16  z  1  z2   2   z  3  z  z   z  1 z    10 Bài 4: Gọi z1 ,z , z3 , z nghiệm phức phương trình  z 1  2 2    Tính P  z1  z2  z3  z4   2z  i      Dạng Dạng lượng giác sốphức Phương pháp: Cơng thức De – Moivre: Có thể nói cơng thức De – Moivre công thức thú vị tảng cho loạt công thức quan trọng khác sau phép luỹ thừa, khai số phức, công thức Euler Công thức 1: Công thức : Số phức Với ta có: góc gọi argument z, ký hiệu Ngược với phép luỹ thừa ta có phép khai ví dụ minh họa Ví dụ Viết số phức sau dạng lượng giác Từ viết dạng đại số z 2012   z  2  2i z   2i z   cos  i sin 8   Ví dụ Gọi z1 , z nghiệm phương trình: z     i  z  4i  Tính giá trị biểu thức Q  z12012  z 2012 Ví dụ 3.Tìm số phức z cho z z2 hai số phức liên hợp Ví dụ Giải phương trình cos x  cos 2x  cos 3x  Ví dụ Giải phương trình : cos x  cos 3x  cos 5x  cos 7x  cos 9x  1i Baứi taọp tửù luaọn tửù luyeọn Giảng dạy: nguyễn bảo vương - 0946798489 Page | 10 Tài liệu toán 12 năm học 2018 Bi : 12 Tính A  1  i  12  1  i  1 i  Tìm phần thực phần ảo số phức z     1 i    Đề thi Đại học Khối B – năm 2011 z  z  Cho số phức z1 ,z2 thỏa mãn z1  z2  z1  z2  Tính A        z2   z1  1  3i  Cho số phức z thỏa mãn z  1 i Tìm mơđun số phức z  iz Đề thi Đại học Khối A – năm 2010 Bài : k 1004 2008 Tính giá trị biểu thức S  C02010  3C 22010  32 C42010    1 C2k C2010  31006 C 2010 2010   2010 Rút gọn biểu thức: A  cos x  cos 2x  cos 3x   cos nx B  sin x  sin 2x  sin 3x   sin nx Bài : Tính tích phân    s in5x  J     dx sin x   cos 5x dx cos x I   Bài : Cho dãy số  u n  xác định u1  1, u  0, u n   u n 1  u n n    Chứng minh  u n  bị chặn Bài : Viết số phức sau dạng đại số  1 i  z      3i  2012  z  (1  i)19  3i  40  z1  z  z3   Bài : Cho ba số phức z1 , z , z thoả mãn hệ:  z1 z z3 z  z  z   Tính giá trị biểu thức T  az1  bz  cz với a, b,c   Bài : Viết dạng lượng giác số phức sau:    z  2  cos  i sin  6    z  sin  i cos 7 z  3  3i z  cos    i sin 9 z   sin    i cos 8 z   1  3i    i   i 9 Bài : Viết số phức sau dạng đại số z  (1  i)11 z   3i z  (1  i)10 (  i)5  2i z  z  ( 1  3i)10 Bài : Tìm số phức z dạng lượng giác biết rằng: 5 z  argument   i  z 12  zz  argument   3i  z Giảng dạy: nguyễn bảo vương - 0946798489 (1  3)9 (1  i)5 (1  2i)34 (1  i)20 (  i)22 Page | 11 Tµi liƯu toán 12 z năm học 2018 v argument z 2 i z 1  i    3i   argument 16 12 13  3i Bài 10 : Tìm số nguyên dương n để số phức sau số thực? số ảo? z   13  9i     12  3i  n   17i n   3i 2n  59  11 3i n  3  2i 2n Bài 11 : Tìm số phức z thoả mãn: 1 z hai số phức liên hợp z3 32 z hai số phức liên hợp z2 Dạng Cực trị số phức ví dụ minh họa Ví dụ Cho số phức z thỏa mãn: z   3i  Tìm số phức z có modul nhỏ Ví dụ Cho số phức z thỏa mãn z   4i  Tìm giá trị lớn giá trị nhỏ z Ví dụ 3.6.7 Cho số phức z  im , m  m  m  2i  2 Tìm giá trị nhỏ số thực k cho tồn m để z   k Tìm m để z.z  Ví dụ Tìm số phức z thỏa mãn: z  2i có acgumen acgumen z  cộng với  Tìm giá trị lớn biểu thức T  z   z  i 1i Bài tập tự luận tự luyện Bài 1: Tìm số phức z có mơđun nhỏ thỏa mãn: z   5i z3i  z   4i   log  1  z   4i     1 Bài 2: Cho số phức z thỏa mãn: z   2i  Tìm số phức z có modul nhỏ z   4i  z  2i Tìm số phức z có modul nhỏ Bài 3: Cho số phức z thỏa mãn z  Chứng minh rằng:   z   z  z  Chứng minh: z1  z2  z1  z2   z1  z2  Chứng minh với số phức z , có hai bất đẳng thức sau xảy ra: z   Cho số phức z  thỏa mãn z  z3  Chứng minh: z  z   2 z Bài 4: Tìm số phức z thỏa mãn đồng thời thỏa điều kiện: z  z   3i biểu thức A  z   i  z   3i có giá trị nhỏ Bài 5: Cho hai số phức z1 z Chng minh rng: Giảng dạy: nguyễn bảo vương - 0946798489 Page | 12 Tài liệu toán 12 z1  z2 2  z1z năm học 2018 z1 z 2  z1  z 2   z1  z    z1z2     z1  z2  z1  z  z1  z2  z1  z Bài 6: Cho số phức z thỏa z  Tìm giá trị lớn giá trị nhỏ của: A z  5i z B  z  z   z3  Bài 7: Cho số phức thoả mãn z  Tìm giá trị lớn nhất, giá trị nhỏ của: B   z   z  z2 A  1 z  1 z Bài 8: Cho số phức thoả mãn z   2i  Tìm Giá trị lớn giá trị nhỏ z Bài 9: Cho số phức a, b,c Đặt a  b  m, a  b  n với mn  Chứng mỉnh rằng:   max ac  b , bc  a  mn m2  n2 1ii Bài tập trắc nghiệm tự luyện C P  6 2i Vấn đề PHẦN THỰC – PHẦN ẢO Câu Tìm phần thực phần ảo số phức z   2i D P  6 Câu Kí hiệu a , b phần thực phần ảo số phức z  i 1  i  Khẳng định sau đúng? A Phần thực 3 phần ảo 2i A a  1, b  i B a  1, b  B Phần thực 3 phần ảo 2 C a  1, b  1 D a  1, b  i C Phần thực phần ảo 2i Câu Tính tổng T phần thực phần ảo số phức D Phần thực phần ảo z Câu Cho số phức z  a  bi a; b    Tìm phần thực   2  3i A T  11 B T  11  C T  7  D T  7 phần ảo số phức z A Phần thực a  b phần ảo 2a b Câu B Phần thực a  b phần ảo 2ab C Phần thực a  b phần ảo a b D Phần thực a  b phần ảo ab Câu (ĐỀ CHÍNH THỨC 2016 – 2017) Số phức số ảo? A z  2  3i B z  3i C z  2 D z   i Tìm phần thực phần ảo số phức z   3i  1  i  A Phần thực phần ảo 5i B Phần thực phần ảo 7i C Phần thực phần ảo 5 D Phần thực 2 phần ảo 5i Câu Tìm giá trị tham số thực m để số phức z  m 1  m  1i số ảo Câu Kí hiệu a , b phần thực phần ảo số phức A m   2i Tính P  ab A P  2i Giảng dạy: nguyễn bảo vương B m C m  1 D m  B P  - 0946798489 Page | 13 Tµi liệu toán 12 năm học 2018 Cõu Tỡm cỏc giá trị tham số thực x , y để số phức Câu 16 (ĐỀ CHÍNH THỨC 2016 – 2017) Tìm tất số thực x ; y cho x 1  yi  1  2i z   x  iy    x  iy   số thực A x  y  B x  1 A x  0; y  B x  2; y  2 C x  y  D x  C x  2; y  D x   2; y  Câu 10 Cho số phức z  a  bi Khi z số thực, khẳng Câu 17 Tìm tất x  y  2 y  i  2i định sau ? A b  a b  3a D a  b b  a Vấn đề HAI SỐ PHỨC BẰNG NHAU Câu 11 Cho hai số z1  a  bi a; b    phức z  2017  2018i Biết z1  z , tính tổng S  a  2b A S  1  3;3  x ; y    3;3 z  2 x  3  3 y  1 i khẳng định sau: A x   ; y  B x   ; y  3 C x  3; y  D x  1; y  Câu 13 Biết có cặp số thực  x ; y  thỏa mãn  x  y    x  y i   3i Tính S  x  y Câu B S  14 Tìm tất C S  số B  x ; y    3;3  x ; y   C  x ; y    3;3  x ; y    3;3 D  x ; y    3;3  x ; y    3;3 x; y D x  1; y  1  3;3      thỏa D P  12 Mệnh đề sau sai?   x  y  8 A      xy    x  8x     B   y   x   x   x  1   C         y   y  3 D x  y  xy  8  6i 20 Với x, y hai số thực thỏa mãn x 3  5i   y 1  2i    14i Tính giá trị biểu thức mãn P  x  y A P  C x  1; y    Câu 19 Cho số phức z  x  iy thỏa mãn z  8  6i B x  1; y   mãn 2 x  y i  y 1  2i    7i A x  1; y  1  thỏa Câu 18 Cho hai số phức z1  a  bi a; b    z   4i Câu D S  thực  D S  2016 A P  168 B P  600 C P  31 z '  x   y  1 i Khi z  z ' , chọn khẳng định A S   x, y thực Biết z1  z 22 , tính P  ab B S  4035 C S  2019 Câu 12 Cho hai số phức số A  x ; y   B b  3a C b  5a 205 353 172 94 B P  C P  D P  109 61 61 109 Vấn đề BIỂU DIỄN HÌNH HỌC SỐ PHỨC Câu 15 Cho hai số thực Câu 21 Điểm biểu diễn số phức z   3i có tọa độ là: x, y thỏa mãn x   1  y i  2  i   yi  x Tính giá trị biểu thức P  x  xy  y A P  13 B P Giảng dạy: nguyễn bảo vương C P  11 D P  12 - 0946798489 A 2;3 B 2;3 C 2;3 D 2;3 Câu 22 (ĐỀ CHÍNH THỨC 2016 – 2017) Cho số phức z   2i Điểm điểm biểu diễn số phức w  iz mặt phẳng tọa độ? Page | 14 Tài liệu toán 12 A Q 1;2 năm học 2018 B N 2;1 C M 1;  D P 2;1 Câu 24 Trong mặt phẳng tọa độ (hình vẽ bên), số phức z   4i biểu diễn điểm điểm A, B , C , D ? A Điểm A y A B Câu 27 Trong mặt phẳng tọa độ, điểm M điểm biểu diễn số phức z (như hình vẽ bên) Điểm hình vẽ điểm biểu diễn số phức 2z ? y Q E x M O N P A Điểm N B Điểm Q x -4 B Điểm B C Điểm C O -3 C -4 D D Điểm P Câu 28 Trong mặt phẳng tọa độ cho hai điểm A  4;0     B 0;3 Điểm C thỏa mãn điều kiện OC  OA  OB Khi đó, số phức biểu diễn điểm C là: D Điểm D Câu 25 (ĐỀ CHÍNH THỨC 2016 – 2017) Số phức có điểm biểu diễn mặt phẳng tọa độ điểm M hình vẽ ? C Điểm E y M A z  3  4i B z   3i C z  3  4i D z   3i x O -2 A z   i Câu 29 Gọi A điểm biểu diễn số phức z  1  6i B điểm biểu diễn số phức z '  1  6i Mệnh đề sau đúng? A Hai điểm A B đối xứng với qua trục hoành B z   2i B Hai điểm A B đối xứng qua trục tung C z  2  i C Hai điểm A B đối xứng qua gốc tọa độ O D z1   2i D Hai điểm A B đối xứng qua đường thẳng y  x Câu 26 Giả sử M , N , P , Q cho hình vẽ bên điểm biểu diễn số phức z1 , z , z , z mặt phẳng tọa độ Khẳng định sau đúng? A Điểm M điểm biểu diễn số phức z1   i y N Câu 30 Gọi A điểm biểu diễn số phức z   5i B điểm biểu diễn số phức z '  2  5i Mệnh đề sau đúng? M A Hai điểm A B đối xứng với qua trục hoành x -1 B Hai điểm A B đối xứng qua trục tung O C Hai điểm A B đối xứng qua gốc tọa độ O P B Điểm Q điểm biểu diễn số phức z 1  2i C Điểm N điểm biểu diễn số phức z   i D Điểm P điểm biểu diễn số phức z 1  2i -2 Q D Hai điểm A B đối xứng qua đường thẳng y  x Câu 31 Gọi A điểm biểu diễn số phức z   7i B điểm biểu diễn số phức z '  4  7i Mệnh đề sau đúng? A Hai điểm A B đối xứng với qua trục hoành B Hai điểm A B đối xứng qua trục tung C Hai điểm A B đối xứng qua gốc tọa độ O D.Hai điểm A B đối xứng qua đường thẳng y  x Gi¶ng dạy: nguyễn bảo vương - 0946798489 Page | 15 Tài liệu toán 12 năm học 2018 Cõu 32 Gi A điểm biểu diễn số phức z   2i B Câu 38 Trong mặt phẳng tọa độ, ba điểm A, B, C điểm biểu diễn số phức z '   3i Mệnh đề sau biểu diễn cho ba số phức z   i , z  1  i 2 đúng? z  a  i a    Tìm a để tam giác ABC vng B A Hai điểm A B đối xứng với qua trục hoành A a  3 B a  2 C a  D a  B Hai điểm A B đối xứng qua trục tung C Hai điểm A B đối xứng qua gốc tọa độ O Câu 39 Cho số phức z1 , z , z có điểm biểu diễn mặt phẳng tọa độ ba đỉnh tam giác có phương trình đường D Hai điểm A B đối xứng qua đường thẳng y  x tròn ngoại tiếp  x  20172   y  20182  Tổng phần thực Câu 33 Trong mặt phẳng tọa độ, điểm biểu diễn số phức z   bi với b   ln nằm đường có phương trình phương trình sau: A x  B y  C y  x D y  x  phần ảo số phức w  z1  z  z bằng: A 1 B C D 3 Câu 40 Cho tam giác ABC có ba đỉnh A, B, C biểu diễn hình học số phức z1   i , z  1  6i , z   i Số phức z có điểm biểu Câu 34 Trong mặt phẳng tọa độ, cho số phức z  a  a i với diễn hình học trọng tâm tam giác ABC Mệnh đề sau a   Khi điểm biểu diễn số phức z nằm trên đường đúng? có phương trình phương trình sau: A Parabol x  y B Parabol y  x A z  B z   2i B Đường thẳng y  x D Parabol y  x C  z   13  12i D z   2i Câu 35 Trong mặt phẳng tọa độ, cho ba điểm A, B, M lần Vấn đề PHÉP CỘNG – PHÉP TRỪ HAI SỐ PHỨC lượt điểm biểu diễn số phức 4, 4i , x  3i Với giá Câu 41 (ĐỀ CHÍNH THỨC 2016 – 2017) Cho hai số phức trị thực x A, B, M thẳng hàng? z1   7i z   3i Tìm số phức z  z1  z A x  B x  1 C x  2 D x  Câu 36 Xét điểm A, B, C mặt phẳng tọa độ theo thứ A z   4i B z   5i C z  2  5i D z  10i tự biểu diễn số phức z1   2i , z   i z  2i Mệnh đề sau đúng? Câu 42 Tìm số phức w  z1  z , biết z1   2i z   3i A Ba điểm A, B, C thẳng hàng A w  3  4i B w  3  8i C w   i D w   8i B Tam giác ABC C Tam giác ABC cân A D Tam giác ABC tam giác vuông cân Câu 37 Gọi A, B, C điểm biểu diễn số phức z1  1  3i ; z  3  2i ; z   i Mệnh đề sau đúng? Câu 43 Cho hai số phức z1   2i z   3i Xác định phần ảo a số phức z  3z1  z A a  11 B a  12 C a  1 D a  12 Câu 44 Cho hai số phức z1   2i z  3  i Tìm điểm A Ba điểm A, B, C thẳng hàng biểu diễn số phức z  z1  z mặt phẳng tọa độ B Tam giác ABC A M 2; 5 B N  4; 3 C Tam giác ABC cân B C P 2;1 D Q 1;7  D Tam giác ABC tam giỏc vuụng cõn Giảng dạy: nguyễn bảo vương - 0946798489 Page | 16 .. .Tài liệu toán 12 năm học 2018 nh lý Số phức Hệ thức biểu diễn dạng , , , suy từ định nghĩa phép nhân: Biểu diễn gọi dạng đại số số phức : phần thực Tổng số phức: Hiệu số phức: Tích số phức: ... Bài 11 : Tìm số phức z thoả mãn: 1 z hai số phức liên hợp z3 32 z hai số phức liên hợp z2 Dạng Cực trị số phức caùc ví dụ minh họa Ví dụ Cho số phức z thỏa mãn: z   3i  Tìm số phức z có modul... Mụun ca s phc Số gọi môđun số phức Biểu diễn hình học số phức Mỗi số phức biểu diễn điểm hay véc tơ mặt phẳng phức. Ta viết: 10 Tính chất i Gọi Khi đó: ii Gọi biểu diễn hai số phức iii Cho Khi

Ngày đăng: 02/06/2018, 14:27

w