1. Trang chủ
  2. » Giáo Dục - Đào Tạo

03 oxy NC cac bai toan chon loc p3

4 170 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 209,44 KB

Nội dung

Khóa học TỐN 10 – Thầy ĐẶNG VIỆT HÙNG Chun đề : Hình phẳng Oxy (Nâng cao) Tài liệu giảng (Khóa Tốn 10) CÁC TÍNH BÀI TỐN CHỌN LỌC VỀ HÌNH OXY (P3) Thầy Đặng Việt Hùng – www.facebook.com/Lyhung95 VIDEO BÀI GIẢNG LỜI GIẢI CHI TIẾT CÁC BÀI TẬP có website MOON.VN Ví dụ [ĐVH]: Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC vuông cân A với M trung điểm AB, đường thẳng qua A vng góc với MC cắt BC H, biết phương trình đường thẳng  14  AB : x − y + = trung điểm HB K  5;  Tìm toạ độ đỉnh tam giác ABC biết B có  3 hồng độ lớn Ví dụ [ĐVH]: Trong mặt phẳng toạ độ Oxy cho tam giác ABC có tâm đường tròn ngoại tiếp I ( 0; ) thoả mãn AIB = 900 Hình chiếu vng góc đỉnh A đường thẳng BC D (1; ) Biết đường thẳng AC qua điểm E ( 9;9 ) điểm A có hồnh độ dương Tìm toạ độ đỉnh tam giác ABC Ví dụ [ĐVH]: Trong mặt phẳng với hệ toạ độ Oxy cho hình vng ABCD cạnh AD, AB lấy AB , K hình chiếu F CD, đường thẳng AK cắt điểm E , F cho AE = AF = 6 2 đường thẳng BE H  ;  , biết điểm F (1; ) Tìm toạ độ đỉnh C hình vng ABCD 5 5 BÀI TẬP TỰ LUYỆN Câu [ĐVH-1]: Trong mặt phẳng với hệ tọa độ cho tam giác ABC vng B có phân giác AD  15  với D  ;  thuộc BC Gọi E, F điểm thuộc cạnh AB AC cho AE = AF Đường  2  11  thẳng EF cắt BC K Biết điểm F  ;  , E có tung độ dương phương trình đường thẳng  2 AK : x − y + = Tìm toạ độ đỉnh tam giác ABC Lời giải: Gọi I giao điểm AD EF Do tam giác AEF cân A có phân giác AI nên: AI phân giác đồng thời đường cao trung tuyến  KE ⊥ AD Ta có:  ⇒ DE ⊥ AK Do đương thẳng DE qua  AB ⊥ KD  15  D  ;  vng góc với AK Khi ta có phương trình  2 31  31  DE : x + y − = Vì E thuộc DE nên ta gọi E  t ; − 2t    2  15  Dễ thấy DE = DF ⇔  t −  + (15 − 2t ) = 2  Tham gia khóa học TỐN 10 MOON.VN: Tự tin hướng đến kì thi THPT Quốc gia ! Khóa học TỐN 10 – Thầy ĐẶNG VIỆT HÙNG ⇔ ( 2t − 15 ) Chuyên đề : Hình phẳng Oxy (Nâng cao)  17  17  t = ⇒ E  ; −  ( loai )   =4⇔  13  13  t = ⇒ E  ;  ⇒ I ( 6; ) ⇒ AD : x + y − =  2  Khi A = AD ∩ AK ⇒ A ( 5;3) ⇒ AC : x + y − 18 = 0; AB : x + y − 14 = 0; BC : 3x − y − 22 =  20  Do A ( 5;3) ; B ( 8; ) ; C  ; −2  toạ độ điểm cần tìm   Câu [ĐVH-2]: Trong mặt phẳng với hệ tọa độ Oxy cho hình vng ABCD có D(5; 1) Gọi M trung điểm BC N thuộc AC cho AC = 4AN Biết MN: 3x − y − = yM > Tìm tọa độ đỉnh C Lời giải: Gọi I tâm hình vng ABCD ta có: tan NDI = tan MDC = Do NDM = IDC = ICM = 450 tứ giác NDCM tứ giác nội tiếp suy DNM = 900 ⇒ ∆DNM vng cân N Phương trình đường thẳng DN : x + y − = ⇒ N = DN ∩ MN ⇒ N ( 2; ) , gọi M ( t ;3t − ) ta có: MN = ND ⇒ M ( 3;5 ) Dễ thấy KD = −2 KM ( với K trọng tâm tam giác BCD) 5 − xK = −2 ( − xK )  11 11  Khi  ⇒K ;  3 3 1 − y K = −2 ( − y K ) KN 5 5 11 11   5 Lại có: = ⇒ KN = − KC ⇔  − ; −  = −  xC − ; yC −  ⇒ C ( 5;5 ) KC 4 4 3  3 Câu [ĐVH-3]: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vng A có điểm B ( 4;1) I tâm đường tròn nội tiếp, đường thẳng qua C vng góc với CI cắt đường tròn ngoại tiếp tam giác IBC K ( 7;7 ) , biết điểm C thuộc đường thẳng x − y + = Viết phương trình đường tròn nội tiếp tam giác ABC Lời giải: Chứng góc BIC = 135 ⇒ BKC = 45 0 Gọi C ( t ;3t + ) ta có: KB = ( −3; −6 ) ; KC = ( t − 7;3t − ) Khi đó: cos 450 = −3 ( 7t − 17 ) KB.KC = = 2 KB.KC 45 ( t − ) + ( 3t − )  17 t ≤ ⇔ ⇔ 2 2 ( 7t − 17 ) = (10t − 44t + 74 )   17 t ≤ ⇔ t =1  3t − 16t + 13 =  Do C (1;5 ) ⇒ IC : 3x + y − = 0; IB : x + y − = ⇒ I = IB ∩ IC = I ( 2; ) , phương trình BC: x + y − 19 = ⇒ r = d ( I ; BC ) = ⇒ (C ) : ( x − 2) + ( y − 2) = 2 Tham gia khóa học TỐN 10 MOON.VN: Tự tin hướng đến kì thi THPT Quốc gia ! Khóa học TỐN 10 – Thầy ĐẶNG VIỆT HÙNG Chuyên đề : Hình phẳng Oxy (Nâng cao) Vậy A (1;1) ; I ( 2; ) ; B ( 4;1) ; C (1;5) ; ( C ) : ( x − ) + ( y − ) = 2 Câu [ĐVH-4]: Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C1 ) có phương trình x + y = 25 , điểm M (1; −2 ) Đường tròn ( C2 ) có bán kính Tìm tọa độ tâm đường tròn ( C2 ) , cho ( C2 ) cắt ( C1 ) theo dây cung qua M có độ dài nhỏ Đường tròn ( C1 ) Lời giải có tâm I1 ( 0;0 ) , bán kính R1 = Để ( C2 ) cắt ( C1 ) theo dây cung qua M có độ dài nhỏ đường thẳng nối hai tâm qua M Phương trình đường nối tâm qua M (1; −2 ) I1 ( 0;0 ) nên có phương trình d : x + y = Mà I ∈ d ⇒ I ( a; −2a )  a = −1 ⇒ I ( −1; ) 2 Ta có I M = ⇒ ( a − 1) + ( a − 1) = 20 ⇔ ( a − 1) = ⇔   a = ⇒ I ( 3; −6 ) Vậy I ( −1; ) I ( 3; −6 ) Câu [ĐVH-5]: Trong mặt phẳng tọa độ Oxy, cho hình vng OABC có đỉnh A ( 3; ) điểm B có hồnh độ âm Gọi E, F theo thứ tự giao điểm đường tròn ( C ) ngoại tiếp hình vng OABC với trục hồnh trục tung (E F khác gốc tọa độ O) Tìm tọa độ điểm M ( C ) cho tam giác MEF có diện tích lớn Lời giải: Phương trình đường thẳng OA qua O ( 0;0 ) A ( 3; ) có phương trình : OA : x − y = Phương trình AB qua A vng góc OA là: AB : x + y − 25 =  25 − 3t  2 Gọ i B  t ;  ta có: AB = AO = + =   t =  − 3t  ↔ ( t − 3) +   = 25 ↔ t = −1 → B ( −1;7 )    Có OA = CB → C ( −4;3)  −1  Tâm đường tròn ngoại tiếp hình vng ABCD : I  ;   2 2 1  7 25  Phương trình đường tròn ( C ) ngoại tiếp hình vng OABC là: ( C ) :  x +  +  y −  = 2  2  Vì tam giác OEF vng O nên EF đường kính ( C ) Gọi M ( x; y ) ∈ ( C ) , kẻ MH ⊥ EF , tam giác vng MHI có MH ≤ MI = R = EF EF 25 ⋅ MH ⋅ EF ≤ = Suy tam giác MEF đạt diện tích lớn H ≡ I → MI ⊥ EF Phương trình đường thẳng MI qua I vng góc EF MI : x + y − 24 = Diện tích tam giác MEF tính theo cơng thức: S ∆MEF = Tham gia khóa học TỐN 10 MOON.VN: Tự tin hướng đến kì thi THPT Quốc gia ! Khóa học TỐN 10 – Thầy ĐẶNG VIỆT HÙNG Chun đề : Hình phẳng Oxy (Nâng cao)  x + y − 24 =  M ( 3;3)  2 Tọa độ điểm M nghiệm hệ:  1  7 25 →   x +  +  y −  =  M ( −4; )     Vậy có hai điểm M ( 3;3) M ( −4; ) thỏa mãn yêu cầu đề Câu [ĐVH-6]: Cho ( C ) : x + ( y − 1) = Tìm tọa độ điểm M thuộc đường thẳng d : y − = cho tiếp tuyến ( C ) kẻ từ M cắt trục hoành hai điểm phân biệt A, B bán kính đường tròn ngoại tiếp tam giác MAB Lời giải: Do ( C ) : I ( 0;1) ; R = 1; d ( I ; Ox ) = ⇒ (C) tiếp xúc với AB Đặt AD = a; DB = b, ME = c ; S = S ABC ta có: p = a + b + c; AB = a + b; MA = a + c; MB = b + c Khi đó: S = ( a + b )( b + c )( c + a ) = 4.R Theo hệ thức Herong: S = Do ( a + b + c ) r = d ( M ; AB ) ( a + b ) ( a + b + c ) abc ( a + b )( b + c )( c + a ) = a + b + c = 16 ( a + b ) = ( a + b + c ) abc a+b   ( b + c )( c + a ) = 24 c = 3 ( a + b ) + 4ab = 96   ⇔ abc = ( a + b + c ) ⇔ ( 3a + b )( a + 3b ) = 96 ⇒  ⇒ a+b = ab =     a + b + c = ( a + b ) ab a + b = ( a + b )   2  M ( 2;3) ⇒ c = ⇒ MI = + = Gọi M ( t ;3) ⇒ MI = t + 2 = ⇔ t = ±2 ⇒   M ( −2;3) Câu [ĐVH-7]: Cho tam giác ABC có đường tròn ngoại tiếp ( C ) : ( x − ) + y = 10 , A (1;1) , trọng tâm  11  G  ; −  Tìm tọa độ B C ( yC > )  3 Lời giải: Đường tròn (C) có tâm I ( 4; ) ; R = 10 Gọi M trung điểm BC, tam giác IBC cân nên IM ⊥ BC  11    xM − =  xM −     Ta có: AM = 3GM ⇒  ⇒ M ( 5; −1)  y −1 = 3 y +   M   M 3  Phương trình đường thẳng BC: x − y − = Gọi C ( t ; t − ) ⇒ IA = IC = 10 ⇔ ( t − ) + ( t − ) = 10 2 t = ⇒ C ( 7;1) ⇒ B ( 3; −3) ⇔ Đ/s: B ( 3; −3) , C ( 7;1) t = ⇒ C ( 3; −3) ( loai ) Tham gia khóa học TỐN 10 MOON.VN: Tự tin hướng đến kì thi THPT Quốc gia !

Ngày đăng: 28/05/2018, 10:20

TỪ KHÓA LIÊN QUAN

w