Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 79 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
79
Dung lượng
2,49 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI ====== NGUYỄN THỊ HUÂN NGHIÊNCỨUMỘTSỐMƠHÌNHHỒIQUYVÀỨNGDỤNGTRONGBÀI TỐN DỰBÁO LUẬN VĂN THẠC SĨ MÁY TÍNH HÀ NỘI - 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI ====== NGUYỄN THỊ HN NGHIÊNCỨUMỘTSỐMƠHÌNHHỒIQUYVÀỨNGDỤNGTRONGBÀITOÁNDỰBÁO Chuyên ngành: Khoa học máy tính Mã số: 60 48 01 01 LUẬN VĂN THẠC SĨ MÁY TÍNH Ngƣời hƣớng dẫn khoa học : TS NGUYỄN LONG GIANG HÀ NỘI - 2017 i LỜI CẢM ƠN Luận văn hoàn thành Trường Đại học sư phạm Hà nội II Trước hết, em xin gửi lời cảm ơn chân thành đến thầy giáo, Khoa cơng nghệ thơng tin, Phòng sau đại học Trường Đại học Sư phạm Hà Nội tận tình giảng dạy, truyền đạt kiến thức, kinh nghiệm quý báu suốt thời gian em theo học trường Các kiến thức, kinh nghiệm quýbáu thầy cô giáo không giúp cá nhân em hoàn thiện hệ thống kiến thức học tập mà giúp em ứngdụng kiến thức công tác tại đơn vị Đặc biệt em xin bày tỏ lòng biết ơn chân thành sâu sắc thầy hướng dẫn khoa học TS Nguyễn Long Giang, Viện Công nghệ thông tin - Viện Hàn lâm Khoa học Cơng nghệ Việt Nam nhiệt tình, tâm huyết việc định hướng giúp đỡ em hoàn thành luận văn Em xin bày tỏ tình cảm với gia đình, đồng nghiệp, bạn bè tạo điều kiện để cá nhân em dành thời gian cho khóa học Xin chân thành cảm ơn tập thể lớp cao học K19- KHMT, năm qua ln ln động viên, khích lệ hỗ trợ em trình học tập Trong trình thực Luận văn cố gắng hết mình, song chắn luận văn em thiếu sót Em mong nhận bảo vào đóng góp tận tình thầy để luận văn em hoàn thiện Hà Nội, ngày 10 tháng 11 năm 2017 Học viên Nguyễn Thị Huân ii LỜI CAM ĐOAN Tôi xin cam đoan kết nghiêncứu trình bày luận văn hồn tồn trung thực, tơi, khơng vi phạm điều luật sở hữu trí tuệ pháp luật Việt Nam Nếu sai, tơi hồn tồn chịu trách nhiệm trước pháp luật Học viên Nguyễn Thị Huân iii MỤC LỤC MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiêncứu Nhiệm vụ nghiêncứu Đối tượng phạm vi nghiêncứu Phương pháp nghiêncứu NỘI DUNG Chương TỔNG QUAN VỀ HỒIQUY TUYẾN TÍNH 1.1 Giới thiệu toánhồiquy 1.2 Các mơhìnhhồiquy 1.2.1 Mơhìnhhồiquy tuyến tính 1.2.2 Mơhìnhhồiquy logistic 1.2.3 Mơhình Logarit kép 1.2.4 Mơhình Logarit-tuyến tính hay mơhình tăng trưởng 1.3 Các môhìnhhồiquy tuyến tính 1.3.1 Môhìnhhồiquy đơn giản 10 1.3.2 Môhìnhhồiquy tuyến tính đa biến 14 1.3.3 Môhình ARIMA 17 1.4 Mộtsố đặc tính mơhìnhhồiquy tuyến tính 25 1.5 Kết luận 26 Chương TỔNG QUAN VỀ HỒIQUY PHI TUYẾN TÍNH 27 2.1 Hồiquy đa thức 27 2.2 Mơhìnhhồiquy cộng thêm (GAMs) 29 2.2.1 Splines trơn 29 2.2.2 Mơhìnhhồiquy địa phương 30 2.3 Vấn đề overfitting regularization 31 2.4 Kết luận 33 Chương ĐÁNH GIÁ HIỆU QUẢ CỦA MƠHÌNHHỒIQUY 33 TRÊN DỮ LIỆU MẪU 33 3.1 Mục đích thí nghiệm 33 3.2 Thu thập liệu 33 iv 3.3 Các tham số thí nghiệm 37 3.4 Công cụ môi trường thử nghiệm 38 3.4.1 Công cụ thử nghiệm 38 3.4.2 Môi trường thử nghiệm 40 3.5 Kết nhận xét 40 3.5.1 Kết sử dụng phương pháp hồiquy tuyến tính 40 3.5.2 Kết sử dụng phương pháp hồiquy ARIMA 43 3.5.3 Kết thí nghiệm mơhìnhhồiquy đa thức 43 3.5.4 Kết thí nghiệm mơhìnhhồiquy sử dụng hàm GAMs 45 3.5.5 Kết sai số phương pháp 46 3.6 Kết luận 46 Chương DỰBÁO CHỈ SỐ CPI VIỆT NAM 49 4.1 Tổng quan dựbáo chuỗi thời gian 49 4.2 Bàitoándựbáosố giá tiêu dùng CPI 50 4.3 Xây dựngtoán tham sốtoán 53 4.3.1 Xây dựngtoán 53 4.3.2 Các tham sốtoán 53 4.4 Công cụ môi trường thử nghiệm 57 4.5 Mơhìnhdựbáo kết 57 4.5.1 Kết ứngdụngmơhìnhhồiquy tuyến tính 57 4.5.2 Kết ứngdụngmơhìnhhồiquy tuyến tính ARIMA 62 4.5.3 Kết ứngdụngmơhìnhhồiquy đa thức 63 4.5.4 Kết ứngdụngmơhìnhhồiquy sử dụng GAMs 64 4.5.5 Kết sai sốứngdụngmơhìnhhồiquy 65 4.6 Kết luận 65 KẾT LUẬN, KHUYẾN NGHỊ 67 Kết luận 67 Khuyến nghị 67 TÀI LIỆU THAM KHẢO 69 v DANH MỤC BẢNG BIỂU Bảng 3.1 Thông tin số file liệu thực nghiệm 34 Bảng 3.2 Tạo file thực nghiệm từ file liệu thu thập 38 Bảng 3.3 Kêt phương pháp hồiquy tuyên tính 41 Bảng 3.4 Mơhìnhhồiquy tuyến tính 42 Bảng 3.5 Kết phương pháp hồiquy ARIMA 43 Bảng 3.6 Kết sử dụng phương pháp hồiquy đa thức 44 Bảng 3.7 Kết sử dụng phương pháp hồiquy sử dụng hàm GAMs 46 Bảng 3.8 Kêt sai số sử dụng phương pháp hồiquy 48 Bảng 4.1 CPI Việt Nam từ tháng năm 1997 đến tháng 12 năm 2016 [8] 55 Bảng 4.2 Tạo file thực nghiệm từ file liệu thực tế CPI 57 Bảng 4.3 Mơhìnhhồiquy tuyến tính 61 Bảng 4.4 Kết phương pháp hồiquy tuyến tính 62 Bảng 4.5 Kết phương pháp hồiquy tuyến tính ARIMA 62 Bảng 4.6 Kết phương pháp hồiquy đa thức 63 Bảng 4.7 Kết phương pháp hồiquy GAMs 64 Bảng 4.8 Kết sai số phương pháp hồiquy 66 vi DANH MỤC HÌNH VẼ Hình 1.1 Biểu diễn tập liệu quảng cáo Hình 1.2 Đồ thị hàm sigmoid g(z) Hình 1.3 Mơhìnhhồiquy tuyến tính đơn biến 10 Hình 1.4 Giá trị R2 13 Hình 1.5 Phương pháp Bcillentine với R , (a) R = 0, (f) R =1 14 Hình 1.6 Mơhình ba chiều, gơm hai biến dựbáo biến phụ thuộc 15 Hình 1.7 Quan hệ tuyến tính X Y 25 Hình 2.1 Đồ thị mơhìnhhồiquy đa thức 27 Hình 2.2 Hồiquy đa thức overfitting 32 Hình 3.1 Giao diện làm việc ngơn ngữ R 40 Hình 4.1 Chuỗi thời gian 51 MỞ ĐẦU Lý chọn đề tài Dựbáo công việc quan trọng, thiếu nhiều lĩnh vực Khi tiến hành dựbáo người ta vào xử lý liệu thu thập khứ để xác định xu hướng vận động tượng tương lai nhờ vào sốmơhình tốn học Dựbáo thống kê phương pháp thống kê dùng để lượng hóa tiên đốn nhân tố ảnh hưởng, mối quan hệ nhân quả, trạng thái hay trình mới, chiều hướng biến động tượng sở phân tích thực trạng đối tượng cách khoa học Dựbáo tốt giúp cho tổ chức cá nhân có định hướng kế hoạch phù hợp Trong kinh doanh hay lĩnh vực y học, dựbáo cần thiết, cung cấp sở khoa học để hoạch định sách kinh doanh phù hợp để có phác đồ điều trị bệnh hợp lý Hiện nay, có nhiều phương pháp dựbáo khác dựbáo hệ chuyên gia, dựbáo phương trình hồi quy, dựbáo chuỗi thời gian… Nhưng dựbáo phương pháp hồiquy tuyến tính ứngdụng rộng rãi nhiều lĩnh vực kinh doanh y học, có sở khoa học rõ ràng mang lại kết với độ xác cao Mơhìnhhồiquy tuyến tính đưa phương pháp ước lượng, kiểm định giả thiết dựbáo Thuật ngữ “hồi quy” nhà nghiêncứu Francis Galton sử dụng lần vào cuối kỷ 19 nghiêncứu có ổn định chiều cao trung bình dân số Từ trở đi, vấn đề hồiquy quan tâm nhiều nghiêncứu sâu Trong đó, mơhìnhhồiquy tuyến tính xem tảng, sở để xây dựng đường hồiquy khác Để hiểu rõ mơhìnhhồiquyứngdụngdựbáo chuỗi thời gian, luận văn lựa chọn đề tài nghiên cứu, tiêu đề: “Nghiên cứusốmơhìnhhồiquyứngdụngtoándự báo” 2 Mục đích nghiêncứu Áp dụngsốmơhìnhhồiquy tuyến tính vào ứngdụngtoándựbáo chuỗi thời gian Nhiệm vụ nghiêncứu Với nội dung nhiệm vụ chủ yếu nghiêncứu vấn đề liên quan đến sốmơhìnhhồiquy tuyến tính, mơhìnhhồiquy phi tuyến ứngdụngmơhình thực tế Đối tƣợng phạm vi nghiêncứu Đối tượng phạm vi nghiêncứu đề tài luận văn sốmơhìnhhồiquy tuyến tính, tuyến tính ARIMA, đa thức, cộng thêm (GAMs) Phƣơng pháp nghiêncứu Phương pháp nghiêncứu sử dụng trình thực luận văn phương pháp nghiêncứu lý thuyết phương pháp thực nghiệm Bố cục luận văn: Kết nghiêncứu đề tài luận văn trình bày 69 trang, bao gồm 11 hình vẽ, đồ thị 16 bảng số liệu, bố cục thành 04 chương nội dung, với phần Mở đầu, Kết luận Tài liệu tham khảo Cụ thể, Chương giới thiệu tổng quan dựbáo chuỗi thời gian, toánhồi quy, mơhìnhhồi quy, mơhìnhhồiquy tuyến tính số đặc tính mơhìnhhồiquy tuyến tính Trên sởnghiêncứu tổng quan đưa kết luận; Chương trình bày sốmơhìnhhồiquy phi tuyến sở hạn chế mơhìnhhồiquy tuyến tính đưa số phương pháp nhằm khắc phục hạn chế đó, tìm hiểu mơhìnhhồiquy đa thức hồiquy cộng thêm (GAMs), đưa kết luận; Chương phân tích hiệu mơhình liệu mẫu, thu thập liệu thiết lập tham số thí nghiệm, đưa kết nhận xét, đánh giá; Chương trình bày tốn ứngdụng “Dự báosố CPI Việt Nam”, giới thiệu tốn, đưa mơhìnhdự báo, tham sốmơ hình, kết nhận xét 57 Bảng 4.2 Tạo file thực nghiệm từ file liệu thực tế CPI Tên liệu CPI_1 CPI_3 Số mẫu Training Testing 179 130 177 128 Số biên CPI_4 176 127 CPI_6 172 123 CPI_10 CPI_13 168 163 119 114 10 13 Bàitoán xây dựng với giá trị p khác gồm p=1, p=3, p=4, p=6, p=10, p=13 Mơhìnhdựbáo xây dựng bốn phương pháp hồiquy tuyến tính, hồiquy tuyến tính ARIMA, hồiquy đa thức hồiquy cộng thêm GAMs Đề tài luận văn tơi tiến hành phân tích đánh giá dựa kết thu mơhìnhhồiquy khác giá trị p khác 4.4 Công cụ môi trƣờng thử nghiệm Công cụ thử nghiệm ngôn ngữ R mô tả mục 3.4 công cụ thử nghiệm Ngôn ngữ R bao gồm Package (gói) cài đặt sẵn, người sử dụng việc thực gọi package cho thực Môi trường tiến hành thử nghiệm máy tính cá nhân cài đặt hệ điều hành Windows PCs có cấu hình xử lý Intel(R) Core (TM) i3, CPU (2.66 GHz), 4.00GB of RAM 4.5 Mơhìnhdựbáo kết 4.5.1 Kết ứngdụngmơhìnhhồiquy tuyến tính Mơhìnhdựbáohồiquy tuyến tính xây dựng file liệu CPI trình bày bảng 4.3 Căn vào kết thực nghiệm thu bảng 4.4 ta rút 58 số nhận xét sau: Các file liệu khác số biến X (thay đổi giá trị p) xuất phát từ file liệu gốc, mơhìnhhồiquy tuyến tính xây dựng cách đơn giản Bảng kết cho thấy số biến tăng lên mơhìnhdựbáo theo chuỗi thời gian phù hợp hơn, sai số giảm dần, số % giải thích biến thiên Y X tăng theo, giá trị R tăng dần Ví dụ p=1 (một biến X) sai số xấp xỉ 0.5 cho tập training 0.6 cho tập testing số phần trăm giải thích mơhình 33.69%, p=13 sai số giảm xuống 0.3 tập training 0.5 tập testing, số phần trăm giải thích mơhình tăng lên 55.96% Tuy nhiên, mơhìnhhồiquy tuyến tính thấy sai số lớn, số phần trăm giải thích mơhình khơng cao (với 13 biến 55,96%) Đối với mơhìnhhồiquy tuyến tính đòi hỏi liệu phải đáp ứng giả thuyết đặt mơ sai số phải tn theo luật phân phối chuẩn, N(0,σ2) quan hệ Y X phải tuyến tính Tuy nhiên, qua kiểm định tập liệu ta thấy có số liệu bị outlier, mà hiệu mơhình tuyến tính chưa cao 61 Bảng 4.3 Mơhìnhhồiquy tuyến tính Tên Sơ liệu biến Mơhìnhdựbáo (X) CPI_1 y = 42.06148 + 0.58194X1 CPI_3 y = 32.08022 + 0.08970 X1 + 0.06901 X2+ 0.52249X3 CPI_4 y = 34.77049 - 0.07185X1 + 0.12187X2 + 0.08793X3 + 0.51653X4 CPI_6 y = 39.78608 - 0.12649X1 + 0.06182X2 - 0.06182X3 + 0.15108X4 + 0.06441X5 + 0.51293X6 CPI_10 10 y = 38.511363 + 0.002583X1 + 0.048939X2 - 0.029636X3 + 0.007626X4 - 0.163336X5 + 0.0966756X6 - 0.080502X7 + 0.159985X8 + 0.054137X9+ 0.518829X10 y = 30.74680 - 0.39834X1 + 0.54482X - 04898X + 0.00537X4 - 0.06745X5 + 0.02602X6 - 0.05549X7 CPI_13 13 - 0.13110X8 + 0.09748X9 - 0.05729X10 + 0.11147X11 - 0.02817X12 + 0.63987X13 62 Bảng 4.4 Kết phƣơng pháp hồiquy tuyến tính liệu Phần trăm giải thích Sai số Tên Error_ training Error_ testing đƣợc mơhình (R2) CPI_1 0.4966198 0.6176258 (%) 33.69 CPI_3 0.4556612 0.5779384 38.11 CPI_4 0.4537663 0.5873687 37.8 CPI_6 0.4493444 0.5901539 37.74 CPI_10 0.45311 0.6050755 37.22 CPI_13 0.3222069 0.5019977 55.96 4.5.2 Kết ứngdụngmơhìnhhồiquy tuyến tính ARIMA Bảng 4.5 Kết phƣơng pháp hồiquy tuyến tính ARIMA Phần trăm giải thích Sai số Tên Error_ training Error_ testing đƣợc mơhình (R2) CPI_1 0.4849984 0.604633 (%) 35.24 CPI_3 0.4622355 0.5432776 35.15 CPI_4 0.4719468 0.547128 35.30 CPI_6 0.4664939 0.5404862 77.94 CPI_10 0.4691446 0.5519955 78.51 CPI_13 0.4749673 0.5648065 93.21 liệu Nhìn vào kết bảng 4.5 mơhình ARIMA có kết khả quan hơn, số lỗi nhỏ hệ số R2 cao Ví dụ, tập liệu với p=13 hệ số R2 = 93.21%, lỗi traing 0.4, lỗi testing 0.5 xấp xỉ 0.6 Mơhình ARIMA 63 áp dụng chuỗi thời gian thích hợp so với mơhìnhhồiquy tuyến tính Ví dụ, ta nhìn vào kết bảng 4.4 4.5 với hồiquy tuyến tính cho hệ số R2 56%, với ARIMA cho hệ số R2 cho kết tương đối khả quan, phần lớn cao 70% 4.5.3 Kết ứngdụngmơhìnhhồiquy đa thức Để khắc phục hạn chế mơhìnhhồiquy tuyến tính X Y khơng phụ thuộc tuyến tính hồn tồn, ta sử dụngmơhìnhhồiquy đa thức (Polynomial regression analysis) Kết trình bày bảng 4.6 cho thấy rằng, mơhìnhhồi đa thức xây dựng phức tạp mơhìnhhồiquy tuyến tính hiệu dựbáo tốt Khi số biến nhỏ khác biệt mơhìnhhồiquy đa thức mơhìnhhồiquy tuyến tính khơng đáng kể, số biến tăng lên khác biệt rõ ràng Với số biến 13 với mơhìnhhồiquy đa thức sai số nhỏ, đạt giá trị 0.08992179 training đạt giá trị 2.746146 testing, số phần trăm giải thích mơhình đa thức tăng lên đến 87.71% hồiquy tuyến tính 55.96% Bảng 4.6 Kết phƣơng pháp hồiquy đa thức Phần trăm giải thích đƣợc Sai số Tên liệu Error_ training Error_ testing mơhình (R2) (%) CPI_1 0.4895497 0.6782805 34.64 CPI_3 0.4100608 0.5893925 44.23 CPI_4 0.3831701 0.7445437 47.48 CPI_6 0.335103 0.7120744 53.57 CPI_10 0.2573421 1.522383 64.34 CPI_13 0.08992179 2.746146 87.71 64 4.5.4 Kết ứngdụngmôhìnhhồiquy sử dụng GAMs Kết ứngdụngmơhìnhhồiquy sử dụng GAMs thống kê trình bày bảng 4.7 Bảng 4.7 Kết phƣơng pháp hồiquy GAMs liệu Phần trăm giải thích đƣợc Sai số Tên mơhình (R2) Error_ training Error_ testing CPI_1 0.4709285 0.5533437 37.12 CPI_3 0.3867898 0.5082631 48.50 CPI_4 0.3677924 0.5048102 49.58 CPI_6 0.345703 0.5113036 83.66 CPI_10 0.2119656 0.5057935 85.93 CPI_13 0.190107 0.4183159 97.28 (%) Căn vào kết ứngdụng thu bảng 4.7 ta rút số nhận xét sau: Khi áp dụng phương pháp hồiquy sử dụng GAMs cho kết tốt với sai số nhỏ, số phần trăm giải thích độ biến thiên biến phụ thuộc biến độc lập (hệ số xác định R2) cao đa số 70% Từ kết ta thấy kết dựbáo xác ứngdụng GAMs với phương pháp loại bỏ hoàn toàn giả thuyết đặt mơhìnhhồiquy tuyến tính Qua bảng kết cho thấy độ xác mơhìnhdựbáo tăng lên theo số lượng biến độc lập, biến sai số 0.3867898 phần trăm giải thích mơhình 48%, số biến tăng lên 13 sai số 0.190107 phần trăm giải thích 97.28% 65 4.5.5 Kết sai sốứngdụngmơhìnhhồiquy Dựa vào kết bảng 4.8 cho sai sốmơhìnhhồiquy tập liệu thực tế CPI ta có nhận xét sau: - Khi áp dụng phương pháp hồiquy sử dụng hàm GAMs cho kết tốt với sai số nhỏ so với mơhình tuyến tính, ARIMA đa thức Phương pháp ARIMA áp dụng tập liệu cho sai số lớn so với phương pháp lại - Qua kết trình bày bảng 4.8 cho thấy độ xác mơhìnhdựbáo tăng lên theo số lượng biến độc lập, số biến độc lập lớn sai sốmơhình nhỏ (ví dụ ta áp phương pháp GAMs với liệu biến cho lỗi training 0.4709285 với 13 biến lỗi training 0.190107) 4.6 Kết luận Qua nghiêncứuứngdụng phương pháp hồiquy vào toán thực tế dựbáosố CPI Việt Nam, kết cho thấy mơhình đưa sát với liệu thu thập được, việc đánh giá so sánh ưu nhược điểm mơhình trình bày mục 4.3 Tuy nhiên, đề tài nghiêncứu luận văn xây dựngmơhìnhdựbáo dựa giá trị số giá tiêu dùng tháng năm dựa phương pháp hồi quy, thực tế có nhiều yếu tố tác động đến dựbáosố giá tiêu dùng tháng Do vậy, để hoàn thiện nghiêncứumở rộng sang thống kê yếu tố ảnh hưởng đến số giá tiêu dùng tỷ giá, giá mặt hàng thiết yếu, mức cung ứng tiền tệ, mức dư cầu, để đem lại tính ứngdụng lớn vào thực tiễn, hướng mở đề tài luận văn tương lai 66 Bảng 4.8 Kết sai số phƣơng pháp hồiquy Tên file liệu Phƣơng pháp hồiquy Phƣơng pháp hồiquy Phƣơng pháp hồiquy Phƣơng pháp hồiquy Tuyến tính ARIMA Đa thức GAMs Error_ Error_ Error_ Error_ Error_ Error_ Error_ Error_ training testing training testing training testing training testing CPI_1 0.4966198 0.6176258 0.4849984 0.604633 0.4895497 0.6782805 0.4709285 0.5533437 CPI_3 0.4556612 0.5779384 0.4622355 0.5432776 0.4100608 0.5893925 0.3867898 0.5082631 CPI_4 0.4537663 0.5873687 0.4634093 0.547128 0.3831701 0.7445437 0.3677924 0.5048102 CPI_6 0.4493444 0.5901539 0.4664939 0.5404862 0.335103 0.7120744 0.3665745 0.5276561 CPI_10 0.45311 0.6050755 0.4691446 0.5568463 0.2573421 1.522383 0.3071878 0.5057935 CPI_13 0.3222069 0.5019977 0.4749673 0.604633 0.08992179 2.746146 0.190107 0.4586704 67 KẾT LUẬN, KHUYẾN NGHỊ Kết luận Qua trình thực nghiêncứu đề tài luận văn nắm tổng quan mơhìnhhồi quy: tuyến tính, tuyến tính ARIMA, đa thức, cộng thêm (GAMs) ứngdụngmơhìnhdự đốn số giá tiêu dùng CPI Việt Nam Đã cài đặt thử nghiệm thành cơng mơhìnhhồiquynghiêncứu (tuyến tính, tuyến tính ARIMA, đa thức, cộng thêm (GAMs)) tập liệu đa biến, đồng thời so sánh kết phương pháp với Qua thực nghiệm, rút với phương pháp có ưu, nhược điểm khác phù hợp với tập liệu thống kê Tuy nhiên, nói phương pháp hồiquy cộng thêm (GAMs) hiệu Đã ứngdụng phương pháp hồiquy vào toán thực tế - dựbáo chuỗi thời gian, dự đốn số giá tiêu dùng CPI Việt Nam, kết mang lại hiệu tốt Khuyến nghị Mặc dù luận văn đạt mục tiêu đề số điểm hạn chế sau: Thứ nhất, phạm vi ứngdụng luận văn không rộng Mặc dù luận văn nghiêncứuứngdụngtoán thực tế, chưa mở rộng sang lĩnh vực khác y học, xã hội học Thứ hai, vấn đề điều kiện thời gian nghiêncứu nên liệu phục vụ thực nghiệm chưa phong phú cỡ mẫu chưa lớn, kết thu chưa đánh giá hết hiệu mơhình Để hồn thiện nghiêncứu tăng khả ứngdụng đề tài vào thực tiễn cần có nghiêncứu bổ sung, mở rộng sang hướng thống kê yếu tố ảnh hưởng đến số giá tiêu dùng tỷ giá, giá mặt hàng thiết 68 yếu, mức cung ứng tiền tệ, mức dư cầu,… nâng cao ý nghĩa thực tiễn đề tài luận văn nghiêncứu 69 TÀI LIỆU THAM KHẢO [1] Nguyễn TrọngHồi (2001), Mơhình hố dựbáo chuỗi thời gian kinh doanh kinh tế, Nhà xuất Đại học Quốc gia TPHCM [2] Tổng Cục Thống kê Việt Nam https://www.gso.gov.vn [3] Damodar N Gujarati, Basic Econometrics, Third Edition, McGrawHill(1995), p16 [4] Douglas C Montgomery, Elizabeth A Peck, G Geoffrey Vining, Linear Regression Analysis [5] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2014), Statistical learning with R, Springer New York Heidelberg Dordrecht London [6] Salvador and Chan (2003) Learning states and rules for time-series anomaly detection, Department of Computer Science, Florida Institute of Technology Melbourne [7] Simon J Sheather, A Modern Approach to Regression with R [8] Xin Yan and Xiao Gang Su, Liner Regression Analysis theory and computing [9] https://archive.ics.uci.edu/ml/datasets.html ... tài nghiên cứu, tiêu đề: Nghiên cứu số mơ hình hồi quy ứng dụng tốn dự báo 2 Mục đích nghiên cứu Áp dụng số mơ hình hồi quy tuyến tính vào ứng dụng toán dự báo chuỗi thời gian Nhiệm vụ nghiên. .. bình dân số Từ trở đi, vấn đề hồi quy quan tâm nhiều nghiên cứu sâu Trong đó, mơ hình hồi quy tuyến tính xem tảng, sở để xây dựng đường hồi quy khác Để hiểu rõ mơ hình hồi quy ứng dụng dự báo chuỗi... ARIMA 62 4.5.3 Kết ứng dụng mô hình hồi quy đa thức 63 4.5.4 Kết ứng dụng mô hình hồi quy sử dụng GAMs 64 4.5.5 Kết sai số ứng dụng mơ hình hồi quy 65 4.6 Kết luận