1. Trang chủ
  2. » Giáo án - Bài giảng

bo de on thi k12

16 333 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 408 KB

Nội dung

Trường THPT Trần Quốc Toản Ôn tập chương I CHƯƠNG I PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG $1 . TỌA ĐỘ CỦA VECTƠ VÀ CỦA ĐIỂM A. KIẾN THỨC CẦN NHỚ : 1/ Tọa độ của vectơ: * Đònh nghóa : → u = (x; y) ⇔ → u = x → i + y → j * Các tính chất : Trong mặt phẳng với hệ tọa độ Oxy ,cho hai vec tơ → u = (x ; y) , ' → u = (x’; y’) ta có: a/ → u + ' → u = (x + x’; y+ y’) b/ k → u = ( kx ; ky ) c/ tích vô hướng → u . ' → u = xx’ + yy’ d/ 2 → u = x 2 + y 2 , do đó | → u | = 22 yx + e/ cos ( → u ; ' → u ) = 2222 '' '' yxyx yyxx ++ + f/ → u ⊥ ' → u ⇔ xx’ + yy’= 0 g/ → u cùng phương với ' → u ⇔ ' ' yy xx = xy’ – x’y = 0 h/ → u = ' → u ⇔      = = ' ' yy xx 2/ Tọa độ của điểm : *Đònh nghóa : M ( x ; y) ⇔OM = ( x ; y ) ⇔ OM = x → i + y → j * Trong hệ tọa độ Oxy ,cho A ( x A ; y A ) , B( x B ; y B ) thì : a/ AB = ( x B - x A ; y B - y A ) b/ AB = 22 )()( ABAB yyxx −+− c/ MA k MB = uuur uuur ⇔        − − = − − = k kyy y k kxx x BA M BA M 1 1 , (k ≠ 1). d/ M là trung điểm đoạn AB ⇔        + = + = 2 2 BA M BA M yy y xx x * Công thức tính diện tích tam giác ABC với : AB uuur = (x 1 ;y 1 ), AC uuur = ( x 2 ;y 2 ) thì S = 2 1 | x 1 y 2 – x 2 y 1 | - 1 - Trường THPT Trần Quốc Toản Ôn tập chương I B. CÁC DẠNG TOÁN THƯỚNG GẶP: Bài 1: Trong mặt phẳng với hệ tọa độ Oxy cho → a = ( 5 ; 3 ) , → b = ( 4 ; 2 ) , → c = ( 2 ; 0) . 1/ Tìm tọa độ của vectơ → u biết → u = 2 → a + 4 → b – 3 → c . 2/ Hãy biểu diển vectơ → c theo các vetơ → a và → b . Bài 2 : Tính góc α giữa các vectơ : 1/ → a = ( 5 ; 1 ) , → b = ( 3 ; 2) 2/ → a = ( 3 ; - 2 ) , → b = ( 2 ; 3 ). Bài 3 : Cho A ( 1 ; 1) , B( 2 ; 3 ) , C ( 5 ; -1) . 1/ Tính AB , BC , CA rồi suy ra tam giác ABC vuông . 2/ Tính diện tích tam giác ABC . Suy ra độ dái dường cao vẽ từ A. Bài 4 : cho → a =( 5 ; 2 ), → b =( 7 ; -3).Xác đònh tọa độ vectơ → u thỏa mãn điều kiện :      = = →→ →→ 30. 38. ub ua II . Tìm tọa độ của một điểm thỏa điều kiện cho trước: • G là trọng tâm tam giác ABC ⇔        ++ = ++ = 3 3 CBA G CBA G yyy y xxx x • ABCD là hình bình hành ⇔ →−→− = BCAD •E là điểm đối xứng của A quaB ⇔ B là trung điểm của đoạn AE • I là tâm của đường trò ngoại tiếp tam giác ABC ⇔ AI = BI = CI. • H là trực tâm của tam giác ABC ⇔      = = →→ →→ 0. 0. ACBH BCAH • A’ làhình chiếu vuông góc của A trên BC ⇔ →−→− ⊥ BCAA' và →− 'BA cùng phương với →− BC BÀI TẬP: 1/ Cho A ( 4 ; 6 ) , B( 1; 4) ,C( 7 ; 2 3 ), D (- 2; 2) a/ Chứng minh rằng A , B, C không thẳng hàng : A , B , D thẳng hàng. b/ Tìm điểm E đối xứng với A qua B. c/ Tìm điểm M sao cho tứ giác ABCM là hình bình hành. d/ Tìm tọộ trọng tâm G của tam giác ABC . 2/ Cho A ( -1 : 3 ) ,B (1 ; 1 ) , C ( 2 ; 4 ) . a/ Xác đònh tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC. b/ Xác đònh tọa độ trọng tâm G, trực tâm H của tam giác ABC .suy ra ba điểm G,H,I thẳng hàng. 3/ Cho hai điểm A( 1; -2 ) và B( 3 ; 4 ) . - 2 - Trường THPT Trần Quốc Toản Ôn tập chương I a/ Tìm điểm A’ đối xứng với A qua trục hoành. b/ Tìm điểm M trên trục hoành sao cho MA +MB nhỏ nhất . c/ Tìm điểm N trên trục tung sao cho NA + Nb nhỏ nhất. d/ Tìm điểm I trên trục tung sao cho | →−→− + IBIA | ngắn nhất. e/ Tìm J trên trục tung sao cho JA –JB dài nhất. 4/Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1;1) . Hãy tìm điểm B trên đường thẳng y =3 và điểm C trên trục hoành sao cho ABC là tam giác đều. 5/Trong mặt phẳng Oxy cho điểm B trên đường thẳng x + 4 = 0 và điểm C trên đường thẳng x–3 =0 a) Xác đònh tọa độ B và C sao cho tam giác OBC vuông cân đỉnh O b) Xác đònh tọa độ B;C sao cho OBC là tam giác đều. $2.ĐƯỜNG THẲNG TRONG MẶT PHẲNG 1/ Các đònh nghóa : * Vectơ → n ≠ → 0 được gọi là vectơ pháp tuyến của đường thẳng d nếu → n vuông góc với d * Vectơ → u ≠ → 0 song song với( hoặc nằm trên ) đường thẳng d gọi là vectơ chỉ phương của đường thẳng d Chú ý: Nếu đường thẳng d có một VTPT → n =( A;B) thì nó có một vectơ chỉ phương → u =( B; - A) 2/ Các dạng phương trình đường thẳng: •Phương trình tổng quát của đường thẳng trong mặt phẳng Oxy có dạng : Ax + By + C = 0 , A 2 + B 2 ≠ 0 ( 1 ) Nếu đường thẳng có dạng (1) nó có vectơ pháp tuyến → n = ( A ;B) . • Đường thẳng d đi qua điểm M 0 ( x 0 ; y 0 ) có vectơ pháp tuyến → n = ( A ;B) có phương trình tổng quát là: A(x – x 0 ) + B( y – y 0 ) = 0 • Đường thẳng d đi qua điểm M 0 ( x 0 ; y 0 ) có vectơ chỉ phương → u = ( a ;b) : + có phương trình tham số là:    += += btyy atxx 0 0 + Có phương trình chính tắc là: b yy a xx 00 − = − . •Cho đường thẳng d có phương trình : Ax +By + C = 0 + d’// d ⇔ d’ : Ax +By +C’ = 0 ( C’ ≠ C) + d’’ ⊥ d ⇔ d’’ : Bx –Ay + C’’ = 0 3/ Vò trí tương đối của hai đường thẳng Trong mặt phẳng với hệ tạo độ Oxycho hai đường thẳng : d 1 : A 1 x + B 1 y + C 1 = 0, d 2 : A 2 x + B 2 y + C 2 = 0 . * d 1 cắt d 2 ⇔ D = A 1 B 2 – A 2 B 1 ≠ 0. * d 1 // d 2 ⇔ D = 22 11 BA BA = 0 , D x = 22 11 CB CB ≠ 0 hay Dy= 22 11 AC AC ≠ 0. - 3 - Trường THPT Trần Quốc Toản Ôn tập chương I * d 1 ≡ d 2 ⇔ D = D x = D y = 0 . 4/ Chùm đường thẳng : Hai đường thẳng phân biệt của chùm có phương trình tổng quát là: A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 Lúc đó mỗi đường thẳng thuộc chùm khi và chỉ khi phương trình của nó có dạng : λ ( A 1 x + B 1 y + C 1 ) + µ ( A 2 x + B 2 y + C 2 ) = 0 , ( λ 2 + µ 2 ≠ 0 ). 5/ Góc giữa hai đường thẳng: Giả sử hai đường thẳng d 1 và d 2 lần lượt có phương trình là : A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0. Góc ϕ giữa hai đường thẳng d 1 và d 2 được tính bởi công thức: cos ϕ = 2 2 2 2 2 1 2 1 2121 . || BABA BBAA ++ + 6/ Khoảng cách từ một điểm đến một đường thẳng : Trong mặt phẳng với hệ tọa độ Oxy cho điểm M 0 ( x 0 ; y 0 ) và dường thẳng ∆ có phương trình: Ax + By + C = 0 khi đó d( M 0 , ∆ ) = 22 00 || BA CByAx + ++ Cho (D) : Ax + By + C = 0 và hai điểm M(x M ;y M ) N(x N ;y N ) không nằm trên (D): • M, N nằmvề một phía với (D) ⇔ (Ax M +By M +C)(Ax N +By N +C) > 0 • M, N nằmvề hai phía với (D) ⇔ (Ax M +By M +C)(Ax N +By N +C) < 0 7/ Phương trình các đường phân giác của các góc tạo bởi hai đường thẳng cắt nhau : A 1 x+B 1 y+ C 1 = 0 và A 2 x+B 2 y+ C 2 = 0: 2 2 2 2 222 2 1 2 1 111 BA CyBxA BA CyBxA + ++ ± + ++ B/ CÁC DẠNG BÀI TẬP Dạng 1: Lập phương trình của đường thẳng: Bài 1 : Viết phương trình tham số phương trình , chính tắc rồi suy ra phương trình tổng quát của đường thẳng trong các trường hợp sau: 1/ Qua điểm M(2 ; -5) và nhận vectơ → u =( 4; -3) làm vectơ chỉ phương . 2/ Qua hai điểm A(1 ; - 4 ) và B( -3 ; 5 ) . 3/ Qua điểm N ( 3 ; -2 ) và nhận vectơ → n = ( 5 ; - 2 ) làm vectơ pháp tuyến . Bài 2: Viết Phương trình tham số , phương trình chính tắc của đường thẳng có phương trình tổng quát là: 3x – 2y + 6 = 0 . Bài 3: Trong mặt phẳng tọa độ Oxy cho các điểm A( 5 ; 5) , B( 1 ; 0) , C( 0; 3) . Viết phương trình đường thẳng d trong các trường hợp sau : a) d đi qua A và cách B một khoảng bằng 4. b) d đi qua A và cách đều hai điểm B , C c) d cách đều ba điểm A; B ; C d) d vuông góc với AB tại A. e) d là trung tuyến vẽ từ A của tam giác ABC. - 4 - Trường THPT Trần Quốc Toản Ôn tập chương I Bài 4: Cho tam giác ABC . M ( 1 ; - 2 ) , N ( 8 ; 2 ) , P ( -1 ; 8 ) lần lượt là trung điểm của các cạnh AB , BC , CA . 1/ Viết phương trình tổng quát của các cạnh của tam giác ABC. 2/ Viết phương trình các đường trung trực của các cạnh của tam giác ABC. Bài 5: Cho đường thẳng (d) có phương trình : 4x – 3y + 5 = 0 . 1/ Lập phương trình tổng quát đường thẳng ( d’) đi qua điểm A (1 ; -2 ) và song song với (d). 2/ Lập phương trình đường thẳng (d’’) đi qua điểm M( 3 ; 1 ) và (d’’) vuông góc với (d). Bài 6 : Cho hai đường thẳng d: 2x + 7y – 8 = 0 và d’ : 3x + 2y + 5 = 0. Viết phương trình đường thẳng đi qua giao điểm của d và d’và thoả mản môït trong các điều kiện sau đây : 1/ Đi qua điểm ( 2 ;- 3) . 2/ Song song với đường thẳng x – 5y + 2 = 0 . 3/ Vuông góc với đường thẳng x- y + 4 = 0 . Bài 7 :Tam giác ABC có A( -1 ; - 3 ) , các đường cao có phương trình : BH: 5x + 3y –25 = 0; CH : 3x + 8y – 12 = 0 .Viết phương trình các cạnh của tam giác ABC và đường cao còn lại. Bài 8 :Trong mặt phẳng tọa độ Oxy cho các điểm M (5 ; 5 ) , N (1 ; 0 ), P( 0 ; 3 ). Viết phương trình đường thẳng d trong mổi trường hợp sau : 1/ d qua M và cách N một khoảng bằng 4. 2/ D qua M vàcách đều hai điểm N, P. Bài 9: Lập phương trình các đường thẳng chứa các cạnh của tam giác ABC biết A( 1; 3) và hai trung tuyến có phương trình là x – 2y + 1 = 0, y – 1 = 0. Bài 10: Lập phương trình các đường thẳng chứa các cạnh của tam giác ABC nếu cho điểm B(-4;-5) và hai đường cao có phương trình là :5x + 3y – 4 = 0 , 3x + 8y +13 = 0. Bài 11 : Cho điểm P( 3; 0) và hai đường thẳng d 1 : 2x – y – 2 = 0 , d 2 :x + y + 3 = 0. Gọi d là đường thẳng qua P cắt d 1 , d 2 lần lượt tại A và B .Viết phương trình của d biết PA = PB. Bài 12 : Lập phương trình các cạnh của tam giác ABC biết C(4 ; -1 ) đường cao và trung tuyến kẻ từ một đỉnh lần lượt có phương trình : 2x – 3y +12 = 0 , 2x + 3y = 0 . Bài 13 : Cho tam giác ABC có M( - 2 ; 2) là trung điểm của cạnh BC cạnh AB có phương trình là x – 2y – 2 = 0,cạnh AC có phương trình là 2x + 5y + 3 = 0 . Xác đònh tọa độ các đỉnh của tam giác ABC. Bài 14 : Cho hai đường thẳng d 1 : x – y = 0 , d 2 :x – 2y – 2 = 0. Tìm điểm A trên d 1 , C trên d 2 và B , D trên trục hoành sao cho ABCD là hình vuông . Dạng 2 : Hình chiếu của một điểm trên đường thẳng 1 / Phương pháp : Xác đònh hình chiếu vuông góc H của điểm M trên đường thẳng d: •Viết phương trình đường thẳng d’ đi qua diểm M và vuông góc với d . • Giải hệ gồm hai phương trình của d và d’ ta có tọa độ của điểm H. 2/ Phương pháp :Xác đònh điểm N đối xứng của điểm M qua d. • Dùng phương pháp trên để tìm hình chiếu vuông góc H của điểm M trên đường thẳng d. •Điểm N đối xứng với M qua d nên H là trung điểm đoạn MN , từ điều kiện đó ta tìm được tọa độ điểm N Bài tập : Bài 1 : Trong mặt phẳng với hệ tọa độ Oxy cho điểm M(-6 ; 4 ) và đường thẳng d: 4x – 5y + 3 = 0. 1/ Tìm tọa độ hình chiếu H của M trên đường thẳng d. 2/ Tìm điểm N đối xứng với điểm M qua d . Bài 2 : Trong mặt phẳng với hệ tọa độ Oxy cho hai đểm A(1 ; 6) , B( -3; -4 ) và đường thẳng d : 2x – y – 1 = 0 . 1/ Chứng minh rằng A , B nằm về cùng một phía đối với đường thẳng d. - 5 - Trường THPT Trần Quốc Toản Ôn tập chương I 2/ Tìm điểm A’ đối xứng với A qua d . 3/ Tìm điểm M trên đường thẳng d sao cho MA + MB bé nhất. Dạng 3 : Các bài toán về vò trí tương đối của hai đường thẳng Bài 1 : Xác đònh a để các đường thẳng sau đây đồng quy: 2x–y+3 = 0 ,x+y+3= 0 , ax + y – 3 = 0 . Bài 2 : Cho hai đường thẳng d: mx –2y – 1 = 0 , d’: 2x – 4y + m = 0 .Với giá trò nào của m thì : 1/ d và d’ cắt nhau. 2/ d // d’. 3/ d trùng với d’. Bài 3: Với giá trò nào của m thì hai đường thẳng sau cắt nhau tại một điểm trên trục hoành d: ( m -1) x + my – 5 = 0 , d’: mx +( 2m – 1) y + 7 = 0. Dạng 4 : Các bài toán Sử dụng công thức tính góc và khoảng cách. Bài 1 : Tính góc giữa các cặp đường thẳng sau : 1/ 4x + 3y +1 = 0 , x+ 7y – 4 = 0 2/ 6x – 8y –15 = 0 , 12x + 9y + 4 = 0 . Bài 2 : Tính khoảng cách từ điểm M ( 3 ; 2) đến các đường thẳng sau đây: 1/ 12x – 5y – 13 = 0 , 2/ 3x – 4y –16 = 0 , 3/ x + 2y +8 = 0 . Bài 3: Cho đường thẳng d: 3x – 2y +1 = 0 và điểm A(1;2) . Lập phương trình đường thẳng ∆ đi qua A và hợp với d một góc 45 0 . Bài 4 : Cho tam giác ABC cân đỉnh A . Cho biết BC: 2x – 3y –5 = 0 , AB :x + y + 1 = 0. Lập phương trình cạnh AC biết rằng nó đi qua điểm M(1;1). Bài 5: Lập phương trình đường thẳng đi qua điểm M( 2;7 ) và cách điểm A(1;2) một khoảng bằng1. Bài 6 : Lập phương trình đường thẳng đi qua điểm P( 2 : -1) sao cho đường thẳng đó cùng với hai đường thẳng : (d 1 ):2x – y + 5 = 0 , (d 2 ) : 3x + 6y – 1 = 0 tạo ra một tam giác cân có đỉnh là giao điểm của (d 1 ) và (d 2 ) . Bài 7 : Lập phương trình các cạnh của tam giác ABC biết B( 2 ;- 1 ),đường cao qua đỉnh A có phương trình 3x – 4y +27 = 0 và phân giác trong của góc C có phương trình x + 2y – 5 = 0. Bài 8: Viết phương trình đường thẳng song song với d:3x –4y +1=0 và cách d một khoảng bằng 1 CÁC BÀI TẬP TRONG CÁC ĐỀ THI 1/ Trong mặt phẳng Oxy một tam giác có phương trình hai cạnh 5x-2y + 6 =0 và 4x +7y – 21 =0. Viết phương trình cạnh thứ ba biết trực tâm của tam giác trùng với góc tọa độ . 2/ Lập phương trình các cạnh của hình vuông có một đỉnh là (-4; 5)và một đường chéo có phương trình là 7x- y +8 = 0 3/ Chgo tam giác ABC ,cạnh BC có trng điểm M(0; 4) còn hai cạnh kia có phương trình : 2x + y – 11 =0 và x + 4y – 2 =0 a. Xác đònh tọa độ điểm A. b. Gọi C là điểm trên đường thẳng x – 4y – 2 = 0 , N là trtrung điểm AC . Tìm N rồi suy ra tọa độ của B , C. 4/ Cho tam giác ABC có M(-2 ;2) là trung điểm của BC , cạnh AB có phương trình x –2y–2=0 cạnh AC có phương trình 2x + 5y + 3 =0. Xác đònh tọa độ các đỉnh của tam giácABC. 5/ Cho A(-1; 2)và B(3;4).Tìm điểm Ctrên đường thẳng x –2y +1=0 sao cho tam giác ABC vuông tại C . 6/ Cho tam giác ABC có đỉnh B(3;5),đường cao vẽ từ A có phương trình 2x –5y +3 = 0 ,trung tuyến vẽ từ C có phương trình x + y – 5 =0 a. Tìm tọa độ điểm A. b. Viết phương trình các cạnh của tam giác ABC. 7/ Cho tam giác ABC có trọng tâm G(-2;1)và có các cạnh AB:4x+y 15 = 0 và AC :2x+5y +3 = 0. - 6 - Trường THPT Trần Quốc Toản Ôn tập chương I a. Tìm tọa độ A và trung điểm M của cạnh BC b. Tìm tọa độ điểm B và viết phưng trình đường thẳng BC. 8/ Cho A(1;1), B(-1;3)và đường thẳng d:x+y+4 =0. a. Tìm điểm C trên d cách đều hai điểm A,B. b. Với C vừa tìm được .Tìm D sao cho ABCD là hình bình hành .tính diện tích hình bình hành. 9/ Cho tam giác ABC có đỉnh A(-1;-3) a. Biết đường cao BH:5x+3y –35=0, đường cao CK:3x+8y – 12 =0 .Tìm B,C. b. Biết trung trực của cạnh AB có phương trình x+2y –4=0 và trọng tâm G(4;-2).Tìm B,C. 10/ Lập phương trình các cạnh của tam giác ABC biết đỉnh C(4;-1) đường cao và trung tuyến vẽ từ một đỉnh có phương trình 2x-3y +12 =0,2x+3y =0. 11/Lập phương trình các cạnh của tam giác ABC nếu biết A(1;3) và hai trung tuyến có phương trình x- 2y+1 =0, y -1=0 . 12/ Cho tam giác ABC có A(2;-1) và phương trình hai phân giác trong của góc B và C lần lượt là d:x – 2y+1=0 , d ’ :x+y+3 = 0. Tìm phương trình cạnh BC. 13/ Cho tam giác ABC có A(2;-3) ,B(3;-2)trọng tâm G của tam giác nằm trên đường thẳng 3x –y – 8 =0,diện tích tam giác ABC bằng 3/ 2.Tìm C. 14 / Cho tam giác cân ABC có phương trình cạnh đáy AB:2x –3y+5=0cạnh bên AC:x+y+1=0. Tìm phương trình cạnh bên BC biết nó đi qua điểm D(1;1). 15/ Cho hình chử nhật ABCD có tâm I(1/ 2;0),phương trình đường thẳng AB là x –2y+2=0,AB=2AD . Tìm tọa độ các đỉnh A,B,C,D biết A có hoành độ âm. 16/ Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d 1 :x-y=0,d 2 :2x+y+1=0.Tìm tọa độ các đỉnh của hình vuông ABCD biết A thuộc d 1 , C thuộc d 2 và cả hai đỉnh B,D thuộc trục hoành. 17/ Cho A(2;-3) , B(3;-2) .Trọng tâm G của tam giác nằm trên đường thẳng d: 3x – y -8 = 0, diện tích tam giác ABC bằng 3/2 . Tìm C. 18/ Lập phương trình các cạnh của tam giác ABC biết đỉnh C(4;-1) đường cao và trung tuyến ke û từ một đỉnh có phương trình 2x -3y +12 = 0 và 2x + 3y = 0. 20/ Lập phương trình các cạnh của tam giác ABC nếu biết A(1;3) và hai đường trung tuyến có phương trình là x -2y+1= 0 và y-1 =0. 21/ Cho tam giác ABC biết C(4;3) phân giác trong (AD):x+2y-5=0, trung tuyến (AE) 4x+13y-10 = 0. Lập phương trình ba cạnh. 22/ Cho tam giác ABC biết A(2;-1) và phương trình hai đường phân giác trong của góc B và C lần lượt là d: x-2y+1=0 và x+y+3=0 .Tìm phương trình của đường thẳng chứa cạnh BC. 23/ Cho tam giác ABC có đỉnh A(-1;3) , đường cao BH nằm trên đường thẳng y= x , phân giác trong góc C nằm trên đường thẳng x+3y+2=0 . Viết phương trình cạnh BC . 24/ Cho tam giác ABC vuông ở A , phương trình BC là 3x y 3 0− − = , các đỉnh A và B thuộc trục hòanh và bán kính đường tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC. - 7 - Trường THPT Trần Quốc Toản Ôn tập chương I $3 . ĐƯỜNG TRÒN A . LÝ THUYẾT CẦN NHỚ I .Phương trình đường tròn : * Đường tròn ( C ) có tâm I ( a; b) ,bán kính R có phương trình là : (x – a ) 2 + ( y – b) 2 = R 2 * Phương trình : x 2 + y 2 –2ax – 2by + c = 0 , a 2 + b 2 – c > 0 là phương trình của một đường tròn có tâm I ( a ; b ) ,bán kính R = cba −+ 22 II. Phương tích của một điểm đối với đường tròn . Cho đường tròn ( C ) có phươngtrình : F ( x ; y ) = x 2 +y 2 – 2ax – 2by + c = 0 vá điểm M 0 (x 0 ;y 0 ) P M / (C ) = F (x 0 ; y 0 ) = x 0 2 +y 0 2 –2ax – 2by + c . III. Trục đẳng phương của hai đường tròn : Cho hai đường tròn không đồng tâm ( C 1 ) : x 2 + y 2 – 2a 1 x – 2b 1 y + c 1 = 0 , ( C 2 ) : x 2 + y 2 – 2a 2 x - 2b 2 y + c 2 = 0 . Trục đẳng phương của hai đường tròn ( C 1 ) , ( C 2 ) có phương trình là : 2( a 1 - a 2 ) x + 2( b 1 - b 2 ) y – c 1 + c 2 = 0 . IV. Tiếp tuyến của đường tròn 1/Dạng 1: Cho đường tròn ( C ) : ( x – a ) 2 + ( y –b) 2 = R 2 . Tâm I ( a ;b) , bán kính R. Tiếp tuyến với ( C ) tại điểm M 0 ( x 0 ; y 0 ) ∈ ( C ) có phương trình : (x 0 – a) (x – a ) + ( y 0 – b)( y – b) = R 2 Chú ý: Tiếp tuyến với ( C ) tại M 0 nhận vectơ M 0 I làm vectơ pháp tuyến từ đó suy ra phương trình tiếp tuyến với ( C ) tại M 0 . 2/ Dạng 2: Viết phương trình tiếp tuyến với ( C ) biết hệ số góc của tiếp tuyến bằng k. * Đường thẳng ∆ có hệ số góc k có phương trình : y = kx + m * ∆ tiếp xúc với ( C ) ⇔ d( I , ∆ ) = R.Từ điều kiện này ta tìm được m. 3/ Dạng 3: Viết phương trình tiếp tuyến với ( C ) đi qua M( x M ; y M ). * Đường thẳng ∆ qua M có phương trình : A ( x – x M ) + B ( y – y M ) = 0. * ∆ tiếp xúc với ( C ) ⇔ d( I , ∆ ) = R.Từ điều kiện này ta tìm được A và B. B. CÁC DẠNG BÀI TẬP Bài 1 :Xác đònh tâm và bán kính của các đường tròn sau : 1/ x 2 + y 2 – 2x + 4y + 2 = 0 . - 8 - Trường THPT Trần Quốc Toản Ôn tập chương I 2/ 2x 2 + 2y 2 + 4x - 8y - 2 = 0 . 3/ x 2 + y 2 – 6x – 16 = 0 . 4/ x 2 + y 2 - 8y - 9 = 0 . Bài 2 :Lập phương trình đường tròn ( T ) trong các trường hợp sau: 1/ ( T ) có tâm I ( 2 ; - 1) và có bán kính R = 3 . 2/ ( T ) có đường kính AB với A ( 1 ; 2 ) , B( - 5 ; 4 ) . 3/ ( T ) có tâm I ( 3 ; - 1 ) và tiếp xúc với đường thẳng ∆ : 4x –3y + 5 = 0 . 4/ ( T ) đi qua ba điểm A ( - 1 ; - 5 ), B ( 5 ; - 3 ) , C ( 3 ; -1 ). 5/ ( T )tiếp xúc với hai trục tọa độ và có tâm nằm trên đường thẳng ∆ :2x – y – 8 = 0. 6/ ( T ) qua hai điểm A(1;2 ),B(3; ) và tiếp xúc với đường thẳng ∆ có phương trình : 3x +y–3 = 0 Bài 3 : Cho đường tròn ( C ) có phương trình x 2 + y 2 + 4x + 4y – 17 = 0 .Lập phương trình tiếp tuyến d với ( C ) : 1/ Tại điểm M ( 2 ; 1 ) . 2/ Biết d song song với ∆ : 3x – 4y – 2004 = 0. 3/ Biết d đi qua điểm A ( 2 ; 6 ) . Bài 4: Cho đường tròn ( T ) có phương trình : x 2 + y 2 – 4x – 2y = 0 . 1/ Tính phương tích của điểm M ( 5 ; -2) đối với đường tròn ( T ). 2/Viết phương trình tiếp tuyến với (T)vuông góc với đường thẳng ∆ :2x – 3y + 1= 0. 3/ Viết phương trình tiếp tuyến với ( T ) kẻ từ N (– 2 ; 6 ). Bài 5 : Cho hai đương tròn ( C 1 ) và ( C 2 ) lần lượt có phương trình là : x 2 + y 2 + 4x + 4y –13 = 0 , x 2 + y 2 - 2x + 8 y + 5 = 0 .Viết phương trình trục đẳng phương của hai đường tròn đó . Bài 6 : Cho ( C m ) có phương trình : x 2 + y 2 – 2mx – 4my + 2m 2 – 1 = 0. 1/ Tìm các giá trò của m sao cho (C m ) là đường tròn. 2/ Tìm tập hợp tâm I của ( C m ) . Bài 7 : Cho đường tròn (T) có phương trình : x 2 + y 2 – 2x + 4y – 20 = 0. a) Viết phương trình tiếp tuyế của (T) tại các điểm A(4 ;2) , B(-3 ; -5) . b) Viết phương trình tiếp tuyế của (T) đi qua C( 6 ; 5) . c) Viết phương trình tiếp tuyến chung của (T) và (T’) có pt : x 2 +y 2 -10x + 9 = 0 d) Với giá trò nào của m thì (T) tiếp xúc với đường tròn (T’’) có pt: x 2 + y 2 – 2my = 0. CÁC BÀI TẬP TRONG CÁC ĐỀ THI 1/ Lập phương trình đường tròn ngoại tiếp tam giác có ba đỉnh A(1;1),B(-1;2),C(0; -1) 2/ Lập phương trình đường tròn ngoại tiếp tam giác có ba cạnh nằm trên ba đường thẳng : (d 1 ) : 5 2 5 −= x y , (d 2 ) : y = x+2 , (d 3 ): y = 8 – x 3/ Lập phương trình đường tròn nội tiếp tam giác có ba đỉnh A(-1;7),B(4;-3)C(-4;1). 4/ Lập phương trình đường tròn đi qua các điểm A( -1;1) , B(1;-3) và có tâm nằm trên đường thẳng (d) :2x – y + 1 = 0 5/ Lập phương trình đường tròn đi qua điểm A(-1;-2) và tiếp xúc với đường thẳng (d) : 7x-y-5= 0 tại điểm M(1;2) 6/ Lập phương trình đường tròn có tâm nằm trên đường thẳng (d 1 ) : 2x +y = 0 và tiếp xúc với đường thẳng (d 2 ): x -7y+10 = 0 tại điểm M(4;2). - 9 - Trường THPT Trần Quốc Toản Ôn tập chương I 7/ Viết phương trình đường tròn có tâm nằm trên đường thẳng (d 1 ) : 4x + 3y – 2 = 0 và tiếp xúc với hai đường thẳng (d 2 ) : x +y+4 = 0 ,(d 3 ) :7x – y+4 = 0 8/ Viết phương trình đường tròn qua A( 2;-1) và tiếp xúc với hai trục toạ độ . 9/ Cho hai đường tròn (C 1 ): x 2 +y 2 -10x = 0 , (C 2 ): x 2 +y 2 +4x – 2y – 20 = 0 a. Viết phương trình đường tròn qua giao điểm của (C 1 ) ,(C 2 ) và có tâm (d):x+6y – 6 = 0. b. Viết phương trình tiếp tuyến chung của hai đường tròn (C 1 ) ,(C 2 ) 10/ Cho (C): (x – 1) 2 + (y – 2) 2 = 4 và đường thẳng (d) : x – y – 1 = 0 . Viết phương trình đường tròn ( C’) đối xứng với ( C) qua (d) 11/ Cho hai đường tròn (C 1 ) : x 2 +y 2 – 4x – 5 = 0 , (C 2 ): x 2 +y 2 – 6x +8y +16 = 0 . Viết phương trình tiếp tuyến chung của hai đường tròn . 12/ Cho hai đường tròn : (C 1 ) : x 2 +y 2 – 4x +2y –4 = 0 , (C 2 ): x 2 +y 2 – 10x – 6y +30 = 0 có tâm I, J. a. Chứng minh rằng (C 1 ) và (C 2 ) tiếp xúc ngoài với nhau , tìm tọa độ tíêp điểm H. b. Gọi (d) là một tiếp tuyến chung của (C 1 ) và (C 2 ) không qua H .Tìm tọa độ giao điểm K của (d) với IJ .Viết phương trình đường tròn (C) đi qua K và tiếp xúc với (C 1 ) và (C 2 ) tại H. 13/ Cho điểm M(6;2) và đường tròn (C) :x 2 +y 2 – 2x – 4y = 0 . Viết phương trình đường thẳng (d) đi qua M và cắt (C ) tại hai điểm A,B sao cho AB = 10 . 14/Cho đường tròn (C ) : x 2 +y 2 – 2x – 6y – 9 = 0 và điểm M(2;4) . a. Chứng tỏ rằng M nằm trong đường tròn. b. Viết phương trình đường thẳng qua M cắt (C ) tại hai điểm phân biệt A và B sao cho M là trung điểm của đoạn AB. c. Viết phương trình đường tròn (C’) đối xứng với (C ) qua AB. 15 / Cho ba đường thẳng (d1) : 3x +4y -6 = 0, (d2):4x +3y -1 = 0 , (d3) : y = 0 .(d1) ∩ (d2) = A, (d 2 ) ∩ (d 3 ) =B , (d 3 ) ∩ (d 1 ) = C. a. Viết phơng trình phần giác trong của góc BAC . b. Tính diện tích tam giác ABC . c. Viết phương trình đường tròn nội tiếp tam giác ABC . 16/ Cho đường tròn (C) :x 2 + y 2 -8x -6y = 0 và điểm A(14;8) . Qua A kẻ các tiếp tuyên AM,AN với (C) . Lập phương trình đường thẳng MN . 17/ Cho (Cm) : x 2 +y 2 +2(m – 1)x – 2(m – 2 )y +m2 -8m +13 = 0. a.Xác đònh m để (Cm) là đường tròn . b. Tìm quỹ tích tâm I của (C m ) . 18/ Cho (C) : x 2 + y 2 +2x – 4y – 20 = 0 và A(3 ; 0) .Viết phương trình đường thẳng (d) đi qua A và cắt (C) theo một dây cung có độ dài nhỏ nhất. 19/ Cho hai đường tròn (C1) :x 2 + y 2 – 2x – 9y – 2= 0 v (C2) : x 2 + y 2 – 8x – 9y +16 = 0. a. Chứng minh rằng (C 1 ) và (C 2 ) tiếp xúc nhau . b. Viết phương trình các tiếp tuyến chung của hai đường tròn đó . 20/ Viết phương trình các tiếp tuyến chung của các cặp đường tròn sau : a. (C 1 ): x 2 + y 2 -10x = 0 , (C 2 ): x 2 + y 2 +4x -2y -20 = 0 b. (C 1 ): x 2 + y 2 - 4x - 5 = 0 , (C 2 ): x 2 + y 2 - 6x +8y +16 = 0 - 10 - [...]... tiêu điểm dưới một góc vuông Bài 5: Trong mặt phẳng với hệ tọa độ Oxy cho hypebol ( H ) : 16x2 –9y2 = 144 1/ Tìm tiêu điểm tiêu cự , tâm sai của ( H ) 2/ Tìm các điểm M trên ( E ) sao cho 3F1M = F2M Bài 6 : Trong mặt phẳng với hệ tọa độ Oxy cho hypebol ( H ) : x2 – 4y2 = 16 Viết phương trình tiếp tuyến với ( H ) : 1/ tại điểm M ( 2 5 ; 1) 2/ Biết tiếp tuyến song song với đường thẳng : 2x – y + 12 =... với đường thẳng 5x – 4y +16 = 0 4 Bài 3 : Trong mặt phẳng với hệ tọa độ Oxy chohypebol ( H ) :4x2 – 25y2 = 100 1/ Tìm các điểm trên (H) có hoành độ bằng 6 và tính khoảng cách giửa hai điểm đó 2/ Tìm những điểm M trên ( H ) sao cho bán kính qua tiêu điểm bên trái bằng hai lần bán kính qua tiêu điểm bên phải Bài 4 : Trong mặt phẳng với hệ tọa độ Oxy cho hypebol: 9x2 – 16y2 = 144 1/ Xác đònh tọa độ các... điểm M(2 ; - 1 ) Bài 7: Cho hypebol ( H ) : 9x2 – 16y2 = 144.viết phương trình tiếp tuyến với ( H ): 1/ Tại điểm M( 5 ; 9 ) 4 2/ Biết tiếp tuyến vuông góc với đường thẳng 4x + 5y – 3 = 0 Bài 8 :Viết phương trình chính tắc của hypebol ( H ) biết rằng (H) nhận các đường thẳng: 3x – 2y –14= 0 và x + 6y – 8 = 0 làm tiếp tuyến x2 y2 − =1 Bài 9: Trong mặt phẳng Oxy cho hypebol (H) 4 1 1/ Tìm tiêu điểm và... trong đó a,b là hai số thay đổi Bài 14 : Cho (E) : + 9 4 1/ Xác đònh tọa độ giao điểm I của AN và BM 2/ Chứng minh rằng điều kiện cần và đủ để đường thẳng MN tiếp xúc với (E) là ab = 4 Bài 15 : trong mặt phẳng tọa độ cho hai elíp (E1) : x2 y2 x2 y2 + = 1 và (E2): + =1 16 1 9 4 1/ Viết phương trình đường tròn đi qua giao điểm của hai elíp 2/ Viết phương trình tiếp tuyến chung của hai elíp HYPEBOL... c > 0 ) (H) = { M \ MF − MF = 2a < 2c = F F } 1 2 12 2/ Phương trình chính tắc của hypebol: ( H ) = { M \ MF − MF = 2a < 2c = F F } 1 2 12 2 2 x2 y2 với F1(- c ; 0 ) , F2( c ; 0 ) có phương trình : 2 − 2 = 1 ( 1 ) a b ,trong đó b = c – a2 phường trình (1) gọi là phương trình chính tắc của ( H ) 3/Đặc điểm của hypebol x2 y2 (H) : 2 − 2 = 1 ( 1 ) ( b2 = c2 – a2 ) a b • • • • • • Tâm đối xứng O , trục... TẬP: Bài 1 : Tìm tiêu điểm , tọa độ các đỉnh , tiêu cự , độ dài các trục và tâm sai , phương trình các đường chuẩn của hypebol (H) cho bởi các phương trình sau : 1/ 16x2 – 25y2 = 400 ; 2/ 16x2 – 9y2 = 144 ; 3/ 4x2 – 9y2 = 25 Bài 2 : Lập phương trình chính tắc của hypebol ( H ) trong các trường hợp sau : 1/ (H) có tiêu cự bằng 10 ; trục thực là 2 10 2/ (H) có trục thực bằng 12 , tâm sai bằng 5/3, 3/... cận là một hằng số 2 2 Bài 11: Cho Hypebol (H): x − 4 y = 4 10 4 1 Viết phương trình tiếp tuyến với (H) tại A( ; ) 3 3 - 14 - Trường THPT Trần Quốc Toản Ôn tập chương I 2 Viết phương trình tiếp tuyến với (H) biết nó vuông góc với đường thẳng : ∆ : x − y − 2 = 0 3 Viết phương trình tiếp tuyến với (H) kẻ từ M(2;-1) x 2 y2 Bài 12: Cho Hypebol (H): 2 − 2 = 1 trong mặt phẳng Oxy a b Tìm a,b để (H) tiếp... 2 ( x + 1) Bài 2 : VIết phương trình các parabol có đỉnh trùng với O biết : a Ox là trục đối xứng , khoảng cách từ tiêu điểm đén đường chuẩn bằng 2 b Ox là trục đối xứng ,quadiểm A ( 2 ; − 2 2 ) c Tiêu điểm F ( 0 ; − 3 ) ,đường chuẩn 3 y −3 =0 d.Trục đối xứng Ox và qua điểm M( 9; 6 ) Bài 3 : Cho parabol (P) : y2 = 16x lập phương trình tiếp tuyến của parabol : a Tại điểm M( 2 ; − 4 2 ) b Biết tiếp... parabol : a Tại điểm M( 2 ; − 4 2 ) b Biết tiếp tuyến đó vuông góc với đường thẳng (d) :3x – 2y + 6 = 0 c Biết tiếp tuyến đó đi qua điểm N ( - 1; 0 ) d Biết tiếp tuyến đó song song với đường thẳng : x + 2y – 5 = 0 Bài 4: Cho pa rabol (P): y2 = 2x a Xác đònh tiêu điểm và đường chuẩn của (P).Vẽ (P) b Cho đường thẳng (D) :x – 2y + 6 = 0 Tính khoảng cách ngắn nhất giữa (D) và (P) - 15 - Trường THPT Trần... parabol: y 2 = 12 x 8 6 Bài 7: Cho A(3;0) và (P): y = x2 1 Cho M ∈ ( P ) và x M = a Tính AM Tìm a để AM ngắn nhất 2 Chứng minh nếu AM ngắn nhất thì AM vuông góc tiếp tuyến tại M của (P) Bài 8: Cho (P):y2= 2x và cho A(2;-2); B(8;4) Giả sử M là điểm di động trên cung nhỏ AB của (P) Xác đònh tọa độ của M sao cho tam giác AMB có diện tích lớn nhất Bài 9 : Trong mặt phẳng tọa độ Oxy cho đường cho parabol . TRONG MẶT PHẲNG 1/ Các đònh nghóa : * Vectơ → n ≠ → 0 được gọi là vectơ pháp tuyến của đường thẳng d nếu → n vuông góc với d * Vectơ → u ≠ → 0 song song. qua giao điểm của d và d’và thoả mản môït trong các điều kiện sau đây : 1/ Đi qua điểm ( 2 ;- 3) . 2/ Song song với đường thẳng x – 5y + 2 = 0 . 3/ Vuông

Ngày đăng: 05/08/2013, 01:25

Xem thêm

HÌNH ẢNH LIÊN QUAN

• ABCD làhình bình hành ⇔ −→ −→ = BCAD - bo de on thi k12
l àhình bình hành ⇔ −→ −→ = BCAD (Trang 2)

TỪ KHÓA LIÊN QUAN

w