1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Uniform plane wave 2014 mk

40 98 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

Nguyễn Công Phương Engineering Electromagnetics The Uniform Plane Wave Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations The Uniform Plane Wave Transmission Lines Plane Wave Reflection & Dispersion Guided Waves & Radiation Uniform plane wave - sites.google.com/site/ncpdhbkhn The Uniform Plane Wave Wave Propagation in Free Space Wave Propagation in Dielectrics The Poynting Vector Skin Effect Wave Polarization Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (1) ∂E ∇ × H = ε0 ∂t ∂H ∇ × E = − µ0 ∂t ∇ E = ∇.H = Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (2) E = Exa x Ex = E ( x, y , z ) cos(ω t + ϕ ) e jωt = cos ω t + j sin ωt → Ex = Re  E ( x, y , z )e j (ω t +ϕ )  = Re  E ( x , y , z )e jϕ e jω t  Exs = E ( x , y , z )e jϕ E s = Exs a x Ex = Re  E xs e jωt    Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (3) Ex Find the time – varying function of the vector field: E s = 100 30oa x + 20 − 50oa y + 40 210oa z V/ m If f = MHz E s = 100e ( j 30o → Es (t ) = 100e = 100e a x + 20 e j 30o − j 50 o a x + 20e j (2π 106 t +30 o ) a y + 40e − j 50o j 210o a y + 40e a x + 20e a z V/ m j 210o ) az e j 2π 106 t j (2π 106 t −50o ) a y + 40e j (2π 10 t + 210 o ) az → E(t ) = 100 cos(2π 106 t + 30o )a x + + 20 cos(2π 106 t − 50o )a y + 40 cos(2π 106 t + 210o )a z Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (3) Ex = E ( x, y, z ) cos(ωt + ϕ ) ∂E x ∂ → = [ E ( x, y, z ) cos(ωt + ϕ ) ] = −ω E ( x, y, z )sin(ωt + ϕ ) ∂t ∂t Re  jω Exs e jω t  = Re jω  E ( x, y, z )e jω t  e jϕ { } = Re  jω E ( x, y, z )e j (ωt +ϕ )  = Re {ω E ( x, y, z) j [ cos(ωt + ϕ ) + j sin(ωt + ϕ )]} = Re {ω E ( x, y, z ) [ j cos(ωt + ϕ ) − sin(ωt + ϕ )]} = −ω E ( x, y, z ) sin(ωt + ϕ ) ∂E x → = Re  jω E xs e jωt    ∂t Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (4) Ex = E ( x, y, z ) cos(ωt + ϕ ) ∂E x = Re  jω E xs e jωt  ↔ jω E xs   ∂t ∂E ∇ × H = ε0 ∂t ∂H ∇ × E = − µ0 ∂t ∇ E = ∇.H = ∇ × H s = jωε 0E s ∇× Es = − jωµ0 H s ∇ E s = ∇.H s = Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (5) ∇ × E s = jà0 H s ì ì E s = ì ( jà H s ) = jà0 ì H s ì H s = jωε E s → ∇ ×∇ × E s = ω µ0ε 0E s ∇ × ∇× E s = ∇ (∇ E s ) − ∇ 2Es ∇ E s = → ∇ (∇.Es ) = → ∇ 2E s = −k 02E s k0 = ω µ0ε (wavenumber) ∇ Exs = −k02 Exs ∂ Exs ∂ Exs ∂ Exs 2 → + + = − k E d E xs xs 2 2 → = − k ∂x ∂y ∂z Exs dz Suppose E does not vary with x or y xs Uniform plane wave - sites.google.com/site/ncpdhbkhn Wave Propagation in Free Space (6) d E xs = −k02 E xs dz → Exs = E x e− jk0 z → Ex ( z, t ) = Ex cos(ωt − k0 z ) E ′x ( z, t ) = E x′ cos(ωt + k z ) k0 = ω µ0ε µ0ε = 2.998 × 108 ≈ × 108 m/s → k0 = ω c  E x ( z, t ) = E x cos[ω (t − z / c )] →  E ′x ( z, t ) = E ′x cos[ω (t + z / c )] Uniform plane wave - sites.google.com/site/ncpdhbkhn 10 The Poynting Vector (4) Ex = Ex 0e−α z cos(ωt − β z) η = η θη → S z = Ex H y = Ex20 η → Hy = Ex η e−α z cos(ωt − β z − θη ) e−2α z cos(ωt − β z ) cos(ωt − β z − θη ) Ex20 −2α z = e [cos(2ωt − β z − 2θη ) + cos θη ] 2η → S z, av 1 E x20 −2α z ˆ  W/m = e cosθη = Re E s × H s η E s = Ex e − jβ z a x ˆ = Ex e jβ z a = Ex e jθη e j β z a H s y y ηˆ η Uniform plane wave - sites.google.com/site/ncpdhbkhn 26 The Uniform Plane Wave Wave Propagation in Free Space Wave Propagation in Dielectrics The Poynting Vector Skin Effect Wave Polarization Uniform plane wave - sites.google.com/site/ncpdhbkhn 27 Skin Effect (1) σ σ jk = jω µε ′ − j ≈ jω µε ′ − j = j − jωµσ ωε ′ ωε ′ − j = − 90o 1 − 90 = − 45 = −j 2 o o  1  → jk = j  −j  ωµσ = ( j1 + 1) π f µσ = α + jβ 2  → α = β = π f µσ → Ex = Ex0 e−α z cos(ω t − β z ) = Ex 0e − z π f µσ cos(ωt − z π f µσ ) Uniform plane wave - sites.google.com/site/ncpdhbkhn 28 Skin Effect (2) E x = E x 0e − z Ex z =0 π f µσ cos(ω t − z π f µσ ) Dielectrics = Ex cos ω t J x = σ E x = σ E x 0e − z δ= δ Cu = π f µσ π f µσ = z α = Conductor cos(ωt − z π f µσ ) β 0.066 f δ Cu ; 50 Hz = 9.3 mm δ Cu; 10,000 MHz = 6.61 × 10−4 mm Uniform plane wave - sites.google.com/site/ncpdhbkhn 29 Skin Effect (3) α=β= β= δ = π f µσ 2π λ → λ = 2πδ ω vp = β → v p = ωδ Uniform plane wave - sites.google.com/site/ncpdhbkhn 30 Skin Effect (4) Ex Consider an MHz wave propagating in seawater, σ = S/m, ε’r = 81 σ = = 8.9 × 10 ≫1 − 12 ωε ′ (2π × 10 )(81)(8.85 × 10 ) 1 δ= = = 0.25 m − π f µσ (π × 10 )(4π × 10 )(4) λ = 2πδ = 1.6 m v p = ωδ = (2π × 106 )(0.25) = 1.6 × 106 m/s Uniform plane wave - sites.google.com/site/ncpdhbkhn 31 Skin Effect (5) η= µ µ jωµ = = ε ε ′ − jε ′′ σ + jωε ′ →η = σ ≫ ωε ' j = 45 o →η = − z π f µσ Ex = Ex e 45o σδ = σδ + j δ= jωµ σ π f µσ σδ cos(ω t − z π f µσ ) = E x0 e − z /δ cos(ω t − z / δ ) Ex =η Hy → Hy = σδ Ex z π  e − z / δ cos  ωt − −  δ 4  Uniform plane wave - sites.google.com/site/ncpdhbkhn 32 Skin Effect (6) Ex = Ex 0e Hy = Sav − z /δ σδ Ex e cos(ωt − z / δ ) − z /δ z π  cos  ω t − −  δ 4  Conductor L Dielectrics ˆ  = Re  E s × H s S Jx0 z |Jxs| σδ E x20 −2 z / δ π  → Sav = e cos   2 4 = σδ E x20 e −2 z / δ SL, av = ∫ S z , av dS = ∫ x b L1 ∫ 0 σδ Ex20e −2 z / δ b y δ dxdy = σδ bLE x20 z =0 Uniform plane wave - sites.google.com/site/ncpdhbkhn 33 Skin Effect (7) SL, av = σδ bLE x20 J x = σ Ex → SL , av = δ bLJ 2x 4σ I=∫ ∞ b ∫0 x Conductor L Dielectrics Jx0 z J x dydz |Jxs| J x = J x 0e− z / δ cos (ωt − z / δ ) → J xs = J x 0e− z / δ e− jz / δ b = J x e−(1+ j) z / δ → Is = ∫ ∞ b →I = ∫0 J x 0e J x0 bδ −(1+ j ) z / δ dydz = J x 0be π  cos  ωt −  4  −(1+ j ) z / δ y δ ∞ J x 0bδ −δ = 1+ j 1+ j Uniform plane wave - sites.google.com/site/ncpdhbkhn 34 Skin Effect (8) I= J x 0bδ π  cos ωt −    4 I J π  = x cos  ωt −  bδ 4  → SL = ( J ′)2 bLδ → J′= x Conductor L Dielectrics σ J x20 π  = bLδ cos  ωt −  2σ 4  → SL, av = J x 0bLδ 4σ Jx0 z |Jxs| b y δ (if the current is distributed uniformly throughout < z < δ) SL, av = J x 0bLδ 4σ (if the total current is distributed throuthout < z < ∞) Uniform plane wave - sites.google.com/site/ncpdhbkhn 35 Skin Effect (9) L L R= = σ S σ 2π aδ RCu, 1MHz, a =1mm, l =1km 103 = = 41.5 Ω −3 −3 (5.8 × 10 )(2π )(10 )(0.066 × 10 ) Uniform plane wave - sites.google.com/site/ncpdhbkhn 36 The Uniform Plane Wave Wave Propagation in Free Space Wave Propagation in Dielectrics The Poynting Vector Skin Effect Wave Polarization Uniform plane wave - sites.google.com/site/ncpdhbkhn 37 Wave Polarization (1) • In the previous sections, E & H are supposed to lie in fix directions • However, the directions of E & H within the plane perpendicular to az may change as functions of time and position • λ, vp, S, … • The instantaneous orientation of field vectors • Wave polarization: its electric field vector orientation as a function of time, at a fixed point in space • H can be found from E Uniform plane wave - sites.google.com/site/ncpdhbkhn 38 Wave Polarization (2) E s = ( Ex 0a x + E y 0a y )e−α z e− jβ z y Ey0 H s = ( H x 0a x + H y 0a y )e−α z e− j β z E H Sz , av Hy0  E y0 E x0  −α z − jβ z = − ax + ay e e η  η  Hx0 ˆ ] = Re[ Es × H s = Re  Ex Hˆ y (a x × a y ) + E y Hˆ x (a y × a x )  e −2α z  Ex Eˆ x E y Eˆ y  −2α z = Re  + e az  ηˆ ηˆ   1 = Re    E x0 + E y  e−2α z a z W/m2 ηˆ    Uniform plane wave - sites.google.com/site/ncpdhbkhn Ex0 x 39 Wave Polarization (3) E s = ( E x 0a x + E y 0a y )e− j β z → E( z, t ) = Ex cos(ωt − β z )a x + E y cos(ωt − β z + ϕ )a y → E( z, 0) = E x cos( β z )a x + E y cos( β z − ϕ )a y E(z, 0) Ex0 Ey0 a ϕ β Observer location b z Wave travel Uniform plane wave - sites.google.com/site/ncpdhbkhn 40 ... Equations The Uniform Plane Wave Transmission Lines Plane Wave Reflection & Dispersion Guided Waves & Radiation Uniform plane wave - sites.google.com/site/ncpdhbkhn The Uniform Plane Wave Wave Propagation... z / c )] Uniform plane wave - sites.google.com/site/ncpdhbkhn 11 The Uniform Plane Wave Wave Propagation in Free Space Wave Propagation in Dielectrics The Poynting Vector Skin Effect Wave Polarization... 2ωε ′  Uniform plane wave - sites.google.com/site/ncpdhbkhn 21 The Uniform Plane Wave Wave Propagation in Free Space Wave Propagation in Dielectrics The Poynting Vector Skin Effect Wave Polarization

Ngày đăng: 17/05/2018, 15:58

w