1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Current and conductors 2017 mk

35 83 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 338,85 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics Current & Conductors Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations Transmission Lines The Uniform Plane Wave Plane Wave Reflection & Dispersion Guided Waves & Radiation Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary Conditions The Method of Images Semiconductors Applications Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (1) • Current: dQ I= dt • Unit A (ampère) • Current is defined as the motion of positive charges Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (2) • Current: rate of movement of charge crossing a given reference plane (of one coulomb per second) • Current density: J (A/m2) • The increment of current ΔI crossing an incremental surface ΔS normal to the current density: ΔI = JNΔS • If the current density is not perpendicular to the surface: ΔI = J.ΔS • Total current: I = J.dS ∫ S Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (3) ∆Q = ρ v ∆ v = ρ v ∆S ∆L ∆Q = ρ v ∆S ∆x ∆x → ∆I = ρv ∆S ∆Q ∆I = ∆t ∆t = ρv ∆Sv x ∆I = J x ∆S ∆Q = ρ v ∆v z ∆S y x ∆∆xL → J x = ρv vx J = ρv v Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (4) Ex z z=2 Given J = 2ρzaρ + 7zsin2φaφ mA/m2 Find the total current leaving the circular band z=1 I = ∫ J.dS = ∫ J ρ =3 dS S ρ=3 S x J ρ =3 = × za ρ + z sin ϕ aϕ = za ρ + z sin ϕ aϕ dS = ρ dϕ dzaρ = 3dϕ dzaρ z z+dz y dρ dz z φ x φ+dφ Current & Conductors - ρ sites.google.com/site/ncpdhbkhn ρ+dρ ρdφ Current & Current Density (5) Ex z z=2 Given J = 2ρzaρ + 7zsin2φaφ mA/m2 Find the total current leaving the circular band I = ∫ J.dS = ∫ J ρ =3 dS S z=1 ρ=3 S x J ρ =3 = × za ρ + z sin ϕ aϕ y = za ρ + z sin ϕ aϕ → J ρ = dS = 18 zdϕ dz dS = ρ dϕ dzaρ = 3dϕ dzaρ →I =∫ z= z =1 ϕ = 2π ∫ϕ =0 18 zdϕ dz = ∫ z =2 z =1 2π × 18 zdz = 169 mA Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (6) The current leaving a closed surface: I = ∫ S J.dS The total charge in the surface: Qi The law of conservation of charge dQi → I = ∫ J.dS = − S dt • in circuit analysis, I = dQ/dt because this is an entering current • in electromagnetism, I = – dQ/dt because this is a leaving one Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (7) dQi I = ∫ J.dS = − S dt ∫ S J.dS = ∫ (∇.J) dv (div theo.) dQi → ∫ (∇.J ) dv = − V dt V Qi = ∫ ρv dv V d → ∫ (∇.J ) dv = − ∫ ρv dv = V dt V ∂ρv ∫V − ∂t dv ∂ρ v ∂ρ v → (∇.J)∆v = − ∆v → ∇.J = − ∂t ∂t Current & Conductors - sites.google.com/site/ncpdhbkhn 10 Conductor Properties & Boundary Conditions (1) • Given some electrons in the interior of a conductor • They will begin to accelerate away from each other, until they reach the surface of the conductor • Characteristic 1: the charge density inside a conductor is zero, the exterior surface has a surface charge density • Within a conductor: no charge → no current → no electric field intensity (Ohm) • Characteristic 2: the electric field intensity within the conductor is zero Current & Conductors - sites.google.com/site/ncpdhbkhn 21 Conductor Properties & Boundary Conditions (2) D ΔS Δh DN ∫ E.dL = Dt →∫ b a +∫ c b +∫ d c +∫ a d =0 Ewithin conductor = EN E a Δw b Δh Δh d Δw c Et Conductor ∆h  ∆h    → ( Et ∆w ) −  E N , at b + + E   N ,at a =0     ∆h → → Et ∆ w = → Et = → Dt = ε E t = → Dt = Et = →∫ +∫ = DN ∆S ; ∫bottom ∫ S D.dS = Q ∫top top bottom = 0; +∫ sides ∫sides =Q =0 → DN ∆S = Q = ρ S ∆S → DN = ρ S = ε E N Current & Conductors - sites.google.com/site/ncpdhbkhn 22 Conductor Properties & Boundary Conditions (3) D Dt = Et = ΔS Δh DN DN = ε E N = ρ S Dt EN E a Δw b Δh Δh d Δw c Et Conductor x Vxy = − ∫ E.dL = y Characteristics of conductors in static field: The static EFI inside a conductor is zero The static EFI at the surface of a conductor is everywhere directed normal to that surface The conductor surface is an equipotential surface Current & Conductors - sites.google.com/site/ncpdhbkhn 23 Conductor Properties & Boundary Conditions (4) Ex Given V = x2 – 10yz V & P(2, 1, 2) lies on a conductor – free space boundary Find V, E, D, ρS at P, & the equation of the conductor surface VP = 2 − 10 × × = −16 V → −16 = x − 10 yz E = −∇V = −∇( x − 10 yz ) = −2 xa x + 10 za y + 10 ya z V/m ( → E P = −2 xa x + 10 za y + 10 ya z ) x =2, y =1, z =2 = −40a x + 20a y + 10a z V/m D P = ε E P = 8.854 × 10−12 ( −40a x + 20a y + 10a z ) nC/ m2 ρ S , P = DN DN , P = DP = 8.854 × 10 −12 40 + 202 + 102 = 406 pC/m → ρ S , P = 406 pC/m Current & Conductors - sites.google.com/site/ncpdhbkhn 24 Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary Conditions The Method of Images Semiconductors Applications Current & Conductors - sites.google.com/site/ncpdhbkhn 25 The Method of Images (1) +Q +Q Equipotential surface, V = Equipotential surface, V = –Q • Dipole: the plane between the charges is zero potential • That plane can be represented by a vanishingly thin conducting plane, infinite in extent • → the dipole can be substituted for a system of a charge and a conducting plane, & then the fields above the conducting plane obtain equivalence Current & Conductors - sites.google.com/site/ncpdhbkhn 26 The Method of Images (2) +Q +Q Equipotential surface, V = Equipotential surface, V = –Q +Q +Q Equipotential surface, V = Equipotential surface, V = –Q Current & Conductors - sites.google.com/site/ncpdhbkhn 27 The Method of Images (3) Ex ρL ρL +1 –5 Equipotential surface, V = Coulomb’ s law Gauss’ law Laplace’s equation &E=– V +1 –5 ? Equipotential surface, V = –1 Current & Conductors - sites.google.com/site/ncpdhbkhn +5 – ρL 28 The Method of Images (4) Ex Given Q at (0, 0, d) Find the potential & EFI at P ? V+ Q = V− Q = P(x, y, z) Q 4πε0 R1 = Q d Q 4πε x + y + ( z − d )2 −Q −Q = 4πε R2 4πε x + y + ( z + d )2 Equipotential surface, V = R1 Q d  Q  1   V= − 2 2 4πε0  x + y + ( z − d )2 x + y + ( z + d )   P(x, y, z) R2 d –Q  y  z+d z−d   Q  x x  y  E = −∇V = −  −  a x +  −  a y +  −  a z  4πε  R2 R1  R1    R2 R1   R2 Current & Conductors - sites.google.com/site/ncpdhbkhn 29 y The Method of Images (5) Ex nC Find the potential at P ? R1 = 12 + 12 = 1.41 R2 = 32 + 12 = 3.16 y –5 nC R3 = + = 4.24 2 R4 = + = 3.16 2 × 10−9  1 1  VP = − + −   = 14.03 V 4πε0  R1 R2 R3 R4  Current & Conductors - sites.google.com/site/ncpdhbkhn P R2 R3 x nC R1 P x R4 –5 nC nC 30 z The Method of Images (6) Ex Q A point charge Q at a distance d from a center of a grounded conducting sphere of radius a Find the image charge? y Problem: find q & b x R1 = (d − R cosθ )2 + ( R sin θ )2 = R + d − 2Rd cosθ z R2 = ( R cos θ − b)2 + ( R sin θ )2 = R + b2 − Rb cosθ VP = Q q Q mQ Q − = − = 4πε R1 4πε R2 4πε R1 4πε R2 4πε R = a → VP = → m − =0 R1 R2  m  −   R1 R2  d a a  m = → q = − Q  d d → a b =  d Current & Conductors - sites.google.com/site/ncpdhbkhn Q P R2 q b R1 θ R a x 31 c Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary Conditions The Method of Images Semiconductors Applications Current & Conductors - sites.google.com/site/ncpdhbkhn 32 Semiconductors • Germani, silicon J • Conductivity of conductors: E σ = – ρe μe • Conductivity of semiconductors: σ = – ρe μe + ρh μh • h: hole J E • At 300K: – – – – – – – – – – – – – – μe, Germani: 0.36 m2/Vs; μh, Germani: 0.17 m2/Vs – μe, Silicon: 0.12 m2/Vs; μh, Silicon: 0.025 m2/Vs Current & Conductors - sites.google.com/site/ncpdhbkhn 33 Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary Conditions The Method of Images Semiconductors Applications Current & Conductors - sites.google.com/site/ncpdhbkhn 34 Applications – Faraday’s Cage https://lifeonthebluehighways.com/2013/04/20/faradays-cage/ Current & Conductors - sites.google.com/site/ncpdhbkhn 35 ... Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary Conditions The Method of Images Semiconductors... Applications Current & Conductors - sites.google.com/site/ncpdhbkhn Current & Current Density (1) • Current: dQ I= dt • Unit A (ampère) • Current is defined as the motion of positive charges Current & Conductors. .. m     = r m/ s r ρv  r   r  r Current & Conductors - sites.google.com/site/ncpdhbkhn 11 Current & Conductors Current & Current Density Metallic Conductors Conductor Properties & Boundary

Ngày đăng: 17/05/2018, 15:58

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN