1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Energy 2017 mk

58 101 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 58
Dung lượng 289,94 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics Energy and Potential Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations Transmission Lines The Uniform Plane Wave Plane Wave Reflection & Dispersion Guided Waves & Radiation Engineering Electromagnetics - sites.google.com/site/ncpdhbkhn Energy & Potential Moving a Point Charge in an Electric Field The Line Integral Potential Difference & Potential The Potential Field of a Point Charge The Potential Field of a System of Charges Potential Gradient The Dipole Energy Density in the Electrostatic Field Energy & Potential - sites.google.com/site/ncpdhbkhn Moving a Point Charge in an Electric Field (1) • Moving a charge Q a distance dL in an E, the force on Q arising from the electric field: F E = QE • The component in the direction dL: FEL = F.aL = QE.aL • aL: a unit vector in the direction of dL • → the force must be applied: Feff = – QE.aL • The expenditure of energy: dW = – QE.aLdL = – QE.dL Energy & Potential - sites.google.com/site/ncpdhbkhn Moving a Point Charge in an Electric Field (2) • The expenditure of energy required to move Q in E: dW = – QE.dL • dW = if: – Q = 0, E = 0, dL = 0, or – E is perpendicular to dL • The work needed to move the charge a finite distance: W = −Q ∫ final init E.dL Energy & Potential - sites.google.com/site/ncpdhbkhn Energy & Potential Moving a Point Charge in an Electric Field The Line Integral Potential Difference & Potential The Potential Field of a Point Charge The Potential Field of a System of Charges Potential Gradient The Dipole Energy Density in the Electrostatic Field Energy & Potential - sites.google.com/site/ncpdhbkhn EL6 The Line Integral (1) A ΔL6 EL5 EL4 EL3 EL2 EL1 W = dW1 + dW2 + + dW6 B ΔL1 E ΔL2 E ΔL3 E ΔL4 E W = −Q ∫ = −QEL1.∆L1 − QEL ∆L2 − − QEL ∆L6 = −QE1.∆L1 − QE2 ∆L2 − − QE6 ∆L final init ΔL5 E E E LdL = −QE.L BA (uniform E) E1 = E2 = = E6 = E → W = −QE.(∆L1 + ∆L + + ∆L6 ) → W = −QE.L BA ∆L1 + ∆L2 + + ∆L = L BA Energy & Potential - sites.google.com/site/ncpdhbkhn (uniform E) EL6 The Line Integral (2) W = −Q ∫ final init W = −Q ∫ final init E L dL = −QE.L BA ΔL6 EL5 (uniform E) EL4 EL3 EL2 E.dL EL1 Uniform E A B ΔL1 ΔL2 E ΔL3 E ΔL4 E ΔL5 E E E A → W = −QE.∫ dL = −QE.L BA B Energy & Potential - sites.google.com/site/ncpdhbkhn The Line Integral (3) Ex Given E = yax + xay + zaz V/m Find the work needed in carrying C from B(1; 0; 1) to A(0.8; 0.6; 1) along: a)the shorter arc of the circle x2 + y2 = 1, z = 1; b)the straight-line path from B to A A W = −Q∫ E.dL B dL = dxa x + dya y + dza z A → W = −2 ∫ ( ya x + xa y + za z ).( dxa x + dya y + dza z ) = −2 ∫ B x =0.8 x =1 = −2 ∫ x = 0.8 x =1 ydx − ∫ y =0.6 y =0 xdy − ∫ zdz 1 − x dx − ∫ y =0.6 y =0 0.8 − y dy − 0.6 = −  x − x + sin −1 x  −  y − y + sin −1 y  = −0.96 J  1  0 Energy & Potential - sites.google.com/site/ncpdhbkhn The Line Integral (4) Ex Given E = yax + xay + zaz V/m Find the work needed in carrying C from B(1; 0; 1) to A(0.8; 0.6; 1) along: a)the shorter arc of the circle x2 + y2 = 1, z = 1; b)the straight-line path from B to A A W = −Q ∫ E.dL B dL = dxa x + dya y + dza z A → W = −2 ∫ ( ya x + xa y + za z ).( dxa x + dya y + dza z ) B = −2 ∫ x =0.8 x =1 ydx − ∫ y =0.6 y =0 xdy − ∫ zdz y A − yB y − yB = ( x − xB ) → y = −3( x − 1) xA − xB → W = 6∫ x = 0.8 x =1 ( x − 1)dx − ∫ y =0.6 y =0 y   −  dy − = −0.96 J   Energy & Potential - sites.google.com/site/ncpdhbkhn 10 The Dipole (2) E= Qd (2cos θ a r + sin θ aθ ) 4πε r z 0.4 Qd cos θ V = 4πε r 0.6 0.8 Energy & Potential - sites.google.com/site/ncpdhbkhn 44 The Dipole (3) z The dipole moment p = Qd +Q d.ar = d cos θ d d Qd cos θ V = 4πε r P θ ar R1 r R2 y x –Q p.a r r −r' →V = = p 2 4πε r r −r' 4πε r − r ' r : locates P r’: locates the dipole center Energy & Potential - sites.google.com/site/ncpdhbkhn 45 Energy & Potential Moving a Point Charge in an Electric Field The Line Integral Potential Difference & Potential The Potential Field of a Point Charge The Potential Field of a System of Charges Potential Gradient The Dipole Energy Density in the Electrostatic Field Energy & Potential - sites.google.com/site/ncpdhbkhn 46 Energy Density in the Electrostatic Field (1) • Carrying a positive charge (1) from infinity into the field of another fixed positive charge (2) needs work • If the charge is held near the charge 2, it has a potential energy • If then the charge is released, it will accelerate away from the charge 2, acquiring kinetic energy • Problem: find the potential energy present in a system of charges Energy & Potential - sites.google.com/site/ncpdhbkhn 47 Energy Density in the Electrostatic Field (2) • • • • • • (Work to position Q2) = Q2V2, V2, 1: the potential at Q2 due to Q1 An additional charge Q3: (Work to position Q3) = Q3V3, + Q3V3, (Work to position Q4) = Q4V4, + Q4V4, + Q4V4, Total positioning work = potential energy of field = = WE = Q2V2, + Q3V3, + Q3V3, + Q4V4, + Q4V4, + Q4V4, + … Energy & Potential - sites.google.com/site/ncpdhbkhn + 48 Energy Density in the Electrostatic Field (3) WE = Q2V2, + Q3V3, + Q3V3, + Q4V4, 1+ Q4V4, + Q4V4, + … Q1 Q3V3,1 = Q3 Q3 4πε R13 → Q3V3,1 = Q1 = Q1V1,3 4πε R31 R13 = R31 WE = Q1V1, + Q1V1, + Q2V2, + Q1V1, 4+ Q2V2, + Q3V3, +… +W E = Q2V2, + Q3V3, + Q3V3, + Q4V4, 1+ Q4V4, + Q4V4, + … 2WE = Q1 (V1,2 + V1,3 + V1,4 + ) + + Q2 (V2,1 + V2,3 + V2,4 + ) + + Q3 (V3,1 + V3,2 + V3,4 + ) + + Energy & Potential - sites.google.com/site/ncpdhbkhn 49 Energy Density in the Electrostatic Field (4) 2WE = Q1 (V1,2 + V1,3 + V1,4 + ) + Q2 (V2,1 + V2,3 + V2,4 + ) + + Q2 (V3,1 + V3,2 + V3,4 + ) + V1,2 + V1,3 + V1,4 + = V1 V2,1 + V2,3 + V2,4 + = V2 V3,1 + V3,2 + V3,4 + = V3 1 N → WE = (Q1V1 + Q2V2 + Q3V3 + ) = ∑ QkVk 2 k =1 → WE = ∫ ρ vVdv V Qk = ρv dv Energy & Potential - sites.google.com/site/ncpdhbkhn 50 Energy Density in the Electrostatic Field (5) WE = ∫ ρ vVdv V Maxwell’s 1st equation: ∇.D = ρ v → WE = ∫ (∇.D)Vdv V ∇.(VD) ≡ V (∇.D) + D.(∇V ) → WE = ∫ [∇.(VD) − D.(∇V ) ] dv V Energy & Potential - sites.google.com/site/ncpdhbkhn 51 Energy Density in the Electrostatic Field (6) WE = ∫ [∇.(VD) − D.(∇V ) ] dv V 1 = ∫ ∇.(VD)dv − ∫ D.(∇V ) dv V V ∇.(VD) dv ∫ V Div theorem: ∫ D.dS = ∫ ∇.Ddv S V 1 → ∫ ∇.(VD)dv = ∫ (VD).dS V S 1 → WE = ∫ (VD).dS − ∫ D.(∇V )dv S V Energy & Potential - sites.google.com/site/ncpdhbkhn 52 Energy Density in the Electrostatic Field (7) WE = V= Q : 4πε r Q D= a : r 4π r dS ∫ S (VD).dS − ∫V D.(∇V )dv with 1/r with 1/r2 → ∫ S (VD).dS = : increases with r2 → WE = − ∫ D.(∇V ) dv 1 V → WE = ∫ D.Edv = ∫ ε E dv V V 2 E = −∇V (pot grad) Energy & Potential - sites.google.com/site/ncpdhbkhn 53 Ex Energy Density in the Electrostatic Field (8) Given a coaxial cable, the surface charge density of the outer surface of the inner cylinder is ρS Find its potential energy? ρ=a ρ=b Method 1: WE = ∫ ε E dv V Dρ = aρ S ρ (a < ρ < b) → E = aρS ε0ρ z = L ϕ = 2π ρ =b  a ρ S  → WE = ∫ ∫ ε0   dv ∫ ϕ ρ z = = = a  ε0ρ  dv = ρ d ρ dϕ dz z = L ϕ = 2π ρ = b a ρ S2 π La ρ S2 b → WE = ∫ ∫ ε 2 ρ d ρ dϕ dz = ln ∫ z = = = a ϕ ρ ε0 ρ ε0 a Energy & Potential - sites.google.com/site/ncpdhbkhn 54 Ex Energy Density in the Electrostatic Field (9) Given a coaxial cable, the surface charge density of the outer surface of the inner cylinder is ρS Find its potential energy? ρ=b WE = ∫ ρvVdv V Method 2: V AB = − ∫ ρ=a final E.dL a → Va = − ∫ Eρ d ρ b a ρS Vb = Eρ = ε0ρ a aρ aρ S b S ln → Va = − ∫ dρ = a ρS b b ε ρ ε a → WE = ∫ ρ v ln dv V a ε0 WE = ∫ ρ vVdv V init Energy & Potential - sites.google.com/site/ncpdhbkhn 55 Ex Energy Density in the Electrostatic Field (10) Given a coaxial cable, the surface charge density of the outer surface of the inner cylinder is ρS Find its potential energy? ρ=a ρ=b Method 2: WE = ∫ ρvVdv V a ρS b = ∫ ρv ln dv v a ε0 ρS t t ρv = , a − ≤ ρ ≤ a + , t ≪ a t 2 z = L ϕ = 2π ρ =a +t / ρS ρ S b → WE = ∫ ∫ a ln ρ d ρ d ϕ dz ∫ z =0 ϕ =0 ρ = a −t / t ε a π La ρ S2 b = ln ε0 a Energy & Potential - sites.google.com/site/ncpdhbkhn 56 Ex Energy Density in the Electrostatic Field (11) A metallic sphere of radius 10cm has a surface charge density of 10nC/m2 Calculate the electric energy stored in the system Method 1: WE = ∫ ε E dv V 2 ρ R ρ R 2 S S D d S = Q → D (4 π r ) = ρ (4 π R ) → D = → E = total ∫S S ε 0r r2  ρS R  → WE = ∫ ε  dv  2 V  ε 0r  ∞ π 2π (0.1)2 × 10−18 = ∫ ∫ ∫ r sin θ drdθ dϕ r =0.1 θ = ϕ = ε 0r = 71.06 nJ Energy & Potential - sites.google.com/site/ncpdhbkhn 57 Ex Energy Density in the Electrostatic Field (12) A metallic sphere of radius 10cm has a surface charge density of 10nC/m2 Calculate the electric energy stored in the system Method 2: ? Energy & Potential - sites.google.com/site/ncpdhbkhn 58 ... potential energy • If then the charge is released, it will accelerate away from the charge 2, acquiring kinetic energy • Problem: find the potential energy present in a system of charges Energy. .. System of Charges Potential Gradient The Dipole Energy Density in the Electrostatic Field Energy & Potential - sites.google.com/site/ncpdhbkhn 46 Energy Density in the Electrostatic Field (1) •... The expenditure of energy: dW = – QE.aLdL = – QE.dL Energy & Potential - sites.google.com/site/ncpdhbkhn Moving a Point Charge in an Electric Field (2) • The expenditure of energy required to

Ngày đăng: 17/05/2018, 15:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN