5.3 Partitionfunctionandthermodynamicfunctionsofidealgases 5.3.1 Partitionfunctionofidealgases The partitionfunctionof an identical system: (1) For the system of non-interacting particles H=H1+H2+…+HN (2) (3) From (1)(2) and (3), to infer = = (4) 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases 5.3.1 Partitionfunctionofidealgases As we know, partitionfunctionof the ith particle: (5) (4) And (5) => Z =Z1Z2 ZN = (6) We have: Hi =E =U(qi)+K(pi) = (7) 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases 5.3.1 Partitionfunctionofidealgases Setting (8) (9) To replace (8) and (9) into (7), we have: (10) Considering the idealgases including N identical particles freely move in the container of volume V: = 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases 5.3.1 Partitionfunctionofidealgases We thus have an integral of the form: This is a standard integral, whose solution can be found in mathematical handbooks Specifically: With: x=p; a=; n=1 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases = =(2m 5.3.1 Partitionfunctionofidealgases (10) The particles ofideal gas can move well inside the volumetric flask, but they can not move beyond the limits of the flask: U(x,y,z)=0 ; =>==V (12) From (6), (10), (11) and (12), we have: Z= 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases • 5.3.2 The thermodynamic potentials Free energy =( + N) =( + ) Where lnN! NlnN −N= N(lnN −lne) = N ( by STIRLING formula) F =( ) 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases • 5.3.2 The thermodynamic potentials Pressure = = N.() = 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases •F=( ) 5.3.2 The thermodynamic potentials Entropy = =(+T =( +) S =( +) 5.3 Partitionfunctionandthermodynamicfunctionsofidealgases • Internal energy 5.3.2 The thermodynamic potentials E =( - + +) =( - -1 - - ln()+ +) E= ... ) 5. 3 Partition function and thermodynamic functions of ideal gases • 5. 3. 2 The thermodynamic potentials Pressure = = N.() = 5. 3 Partition function and thermodynamic functions of ideal gases. . .5. 3 Partition function and thermodynamic functions of ideal gases 5. 3. 1 Partition function of ideal gases As we know, partition function of the ith particle: (5) (4) And (5) => Z... ideal gases including N identical particles freely move in the container of volume V: = 5. 3 Partition function and thermodynamic functions of ideal gases 5. 3. 1 Partition function of ideal gases