Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
265,96 KB
Nội dung
PHƯƠNG PHÁP CASIO – VINACAL BÀI 25 TÍNH NHANH KHOẢNG CÁCH TRONG KHÔNG GIAN I) KIẾN THỨC NỀN TẢNG Khoảng cách từ điểm đến mặt phẳng Cho điểm M x0 ; y0 ; z0 mặt phẳng P : Ax By Cz D khoảng cách từ điểm M đến mặt phẳng P tính theo công thức d M ; P Ax0 By0 Cz0 D A2 B C 2 Khoảng cách từ điểm đến đường thẳng x xN y y N z z N Cho điểm M x0 ; y0 ; z0 đường thẳng d : khoảng cách a b c MN ; u từ điểm M đến đường thẳng d tính theo cơng thức d M ; d u Trong u a; b; c vecto phương d N xN ; y N ; z N điểm thuộc d Khoảng cách đường thẳng chéo x xM y y M z z M Cho hai đường thẳng chéo d : a b c x xM ' y yM ' z zM ' khoảng cách đường chéo tính d ': a' b' c' MN ud ; ud ' theo công thức d d ; d ' ud ; ud ' Trong u a; b; c vecto phương d M xM ; yM ; zM điểm thuộc d u a '; b '; c ' vecto phương d M ' xM ' ; yM ' ; zM ' điểm thuộc d ' Lệnh Caso Lệnh đăng nhập môi trường vecto MODE Nhập thông số vecto MODE 1 Tính tích vơ hướng vecto : vectoA SHIFT vectoB Tính tích có hướng hai vecto : vectoA x vectoB Lệnh giá trị tuyệt đối SHIFT HYP Lệnh tính độ lớn vecto SHIFT HYP Lệnh dò nghiệm bất phương trình MODE Lệnh dò nghiệm phương trình SHIFT SOLVE II) VÍ DỤ MINH HỌA VD1-[Đề minh họa Bộ GD-ĐT lần năm 2017] Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : 3x y z điểm A 1; 2;3 Tính khoảng cách từ điểm A đến mặt phẳng P Trang 1/14 A d 5 D d 29 GIẢI Ta nhớ cơng thức tính khoảng cách từ điểm M đến mặt phẳng P : B d d M ; P 29 C d Ax0 By0 Cz0 D A2 B C Áp dụng cho điểm A 1; 2;3 P : 3x y z ta sử dụng máy tính để bấm ln : 29 d M ; P 29 29 aqc3O1+4O(p2)+2O3+4Rs3d +4d+2d= Đáp số xác C VD2-[Thi Học sinh giỏi tỉnh Phú Thọ năm 2017] Tìm m để khoảng cách từ A 1; 2;3 đến mặt phẳng P : x y z m A m C m 20 GIẢI D m 45 Thiết lập phương trình khoảng cách : d A; P B m 18 26 1.1 3.2 4.4 m 12 22 32 26 1.1 3.2 4.4 m 26 12 22 32 (việc ta làm đầu) Để tính khoảng cách Casio ta nhập vế trái phương trình vào sử dụng chức SHIFT SOLVE w1aqc1O1+3O2+4O3+Q)Rs1 d+3d+4d$$ps26qr1= Ta thu kết m Đáp số xác A VD3-[Thi thử Sở GD-ĐT tỉnh Hà Tĩnh năm 2017] x y 1 z mặt phẳng P : x y z M điểm có hồnh độ âm thuộc d cho khoảng cách từ M Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : đến P Tọa độ điểm M : A M 2;3;1 B M 1;5; 7 C M 2; 5; 8 D M 1; 3; 5 GIẢI Trang 2/14 Ta biêt điểm M thuộc d nên có tọa độ M 1 t; 1 2t; 2 3t x t (biết điều sau chuyển d dạng tham số d : y 1 2t z 2 3t Thiết lập phương trình khoảng cách : t 1 2t 2 3t d M ; P 2 2 2 Nghĩ tới ta sử dụng Casio để tính Ta bấm ngắn gọn sau qcQ)+2(p1+2Q))p2(p2+3Q ))+3R3$p2qrp5= Khi t 1 x 1; y 3 Đáp số xác D VD4-[Đề minh họa Bộ GD-ĐT năm 2017] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu S có tâm I 2;1;1; mặt phẳng P : x y z Biết mặt phẳng P cắt mặt cấu S theo giao tuyến đường tròn bán kính Viết phương trình mặt cầu S 2 2 2 2 2 2 A x y 1 z 1 B x y 1 z 1 10 C x y 1 z 1 D x y 1 z 1 10 2 Mặt cầu x a y b z c GIẢI R có tâm I a; b; c Vì mặt cầu S có tâm I 2;1;1 nên đáp án C D Ta hiểu : Mặt phẳng P cắt mặt cầu S theo giao tuyến đường tròn bán kính r thỏa mãn tính chất R h r với h khoảng cách từ tâm I tới mặt phẳng Tính tâm R Casio (aqc2O2+1O1+2O1+2Rs2d+1 d+2d$$)d+1d= R 10 Đáp số xác D VD5-[Thi thử chuyên Khoa học tự nhiên lần năm 2017] Trang 3/14 Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x 1 y z Tính 2 khoảng cách từ điểm M 2;1; 1 tới d A GIẢI Nhắc lại : Đường thẳng d có vecto phương ud 1; 2; 2 qua điểm B 2 C D MN ; u N 1; 2; 2 có khoảng cách từ M đến d tính theo cơng thức : d M ; d u Để tính khoảng cách Casio ta nhập hai vecto MN , ud vào máy tính w8111p(p2)=2p1=p2pp1=w8 211=2=p2= Wqcq53Oq54)Pqcq54)= Tính d M ; d 2.357022604 Đáp số xác D VD6-[Thi thử báo Toán học tuổi trẻ lần năm 2017] x t Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : y mt mặt cầu z 2t S : x y z x y z 13 Có giá trị nguyên m để d cắt S hai điểm phân biệt? A B C D GIẢI Mặt cầu S : x 1 y 3 z có tâm I 1; 3; bán kính R Đường thẳng d qua M 2;1;0 có vecto phương u 1; m; 2 2 Ta hiểu : Đường thẳng d cắt mặt cầu S điểm phân biệt khoảng cách từ tâm I (của mặt cầu S ) đến đường thẳng d nhỏ bán kính R (của mặt cầu S ) 2 IM ; u 2m m 1 1 u 12 m2 2 Trang 4/14 2m 02 2m 12 m 2 1 Để giải toán ta dùng máy tính Casio với tính MODE dò nghiệm bất phương trình : w7as(8p2Q))d+(4pQ))dRs Q)d+5$$p1==p9=10=1= Ta dễ dàng tìm tập nghiệm m 3; 4; 5; 6; 7 Đáp án xác A VD7-[Thi thử báo Toán học tuổi trẻ lần năm 2017] x t Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : y mt mặt cầu z 2t S : x y z x y z 13 Có giá trị nguyên m để d cắt S hai điểm phân biệt? A B C D GIẢI Mặt cầu S : x 1 y 3 z có tâm I 1; 3; bán kính R Đường thẳng d qua M 2;1;0 có vecto phương u 1; m; 2 2 Ta hiểu : Đường thẳng d cắt mặt cầu S điểm phân biệt khoảng cách từ tâm I (của mặt cầu S ) đến đường thẳng d nhỏ bán kính R (của mặt cầu S ) 2 IM ; u 2m m 1 1 u 12 m2 2 2m 02 2m 12 m 2 2 1 Để giải tốn ta dùng máy tính Casio với tính MODE dò nghiệm bất phương trình : w7as(8p2Q))d+(4pQ))dRs Q)d+5$$p1==p9=10=1= Ta dễ dàng tìm tập nghiệm m 3; 4; 5; 6; 7 Đáp án xác làA VD8-[Câu 68 Sách tập hình học nâng cao 12] Trang 5/14 Cho đường thẳng d qua điểm M 0;0;1 , có vecto phương u 1;1;3 mặt phẳng có phương trình x y z Tính khoảng cách d A B C D GIẢI Ta thấy : u.nP 1.2 1.1 1 d song song trùng với Khi khoảng cách d khoảng cách từ điểm M thuộc d đến Ta bấm : aqc0+0p1+5Rs2d+1d+2d= Đáp án xác làB VD9-[Câu 92 Sách tập hình học nâng cao 12] x t Trong không gian Oxyz cho đường thẳng : y 1 2t Gọi ' giao tuyến mặt z phẳng : P : x y z Q : x y z Tính khoảng cách , ' A 12 15 B 25 21 C 20 21 D 16 15 GIẢI Đường thẳng ' có vecto phương u ' nP ; nQ 2; 2; w8111=p3=1=w8211=1=p1=W q53Oq54= Và ' qua điểm M ' 0; 2;6 Đường thẳng có vecto phương u 1; 2;0 qua điểm M 3; 1; Ta hiểu : khoảng cách hai đường thẳng tồn chúng song song chéo Kiểm tra đồng phẳng đường thẳng tích hỗn tạp MM ' u; u ' Nhập ba vecto MM ', u , u ' vào máy tính Casio w811p3=3=2=w8211=2=0=w 8312=2=4= Trang 6/14 Xét tích hỗn tạp MM ' u; u ' 40 , ' chéo Tính độ dài hai đường thẳng chéo , ' ta có cơng thức : MM ' u; u ' 20 d 4.3640 21 u; u ' Wqcp40)Pqcq54Oq55)= Đáp án xác C VD9-[Câu 25 Sách tập hình học nâng cao 12] x y 1 z x 1 y 1 z 1 Cho hai đường thẳng d : d ' : Khoảng cách 2 2 hai đường thẳng d , d ' : A B C D GIẢI Đường thẳng d có vecto phương u 1; 2; qua điểm M 2; 1; 3 Đường thẳng d ' qua điểm M ' 1;1; 1 Dễ thấy hai đường thẳng d , d ' song song với nên khoảng cách từ d ' đến d khoảng cách từ điểm M ' (thuộc d ' ) đến d Gọi khoảng cách cần tìm h ta có MM '; u h 1.8856 w811p1=2=2=w8 u 211=2=2=Wqcq53Oq54)Pqc q54)= Đáp án xác B VD10-[Câu 26 Sách tập hình học nâng cao 12] Trang 7/14 x t x 2t ' Cho hai đường thẳng d : y t d ' : y Mặt phẳng cách hai đường thẳng z 2t z t ' d d ' có phương trình : A x y z 12 B x y z 12 C x y z 12 D x y z 12 GIẢI Đường thẳng d có vecto phương u 1; 1; qua điểm M 2;1;0 Đường thẳng d ' có vecto phương u ' 2;0;1 qua điểm M ' 2;3;0 Dễ thấy hai đường thẳng d , d ' cheo nên mặt phẳng P cách hai đường thẳng mặt phẳng qua trung điểm MM ' song song với đường thẳng Mặt phẳng P song song với đường thẳng nên nhận vecto phương đường thẳng cặp vecto phương nP u; u ' 1; 5; 2 w8111=p1=2=w821p2=0=1=W q53Oq54= P lại qua trung điểm I 2; 2;0 MM ' nên P : x y 2z 12 Đáp án xác D Bài 1-[Đề minh họa Bộ GD-ĐT lần năm 2017] Trong không gian với hệ trục tọa độ Oxyz , phương trình phương trình mặt cầu có tâm I 1; 2; 1 tiếp xúc với mặt phẳng P : x y 2z ? 2 2 2 A x 1 y z 1 2 B x 1 y z 1 2 C x 1 y z 1 D x 1 y z 1 Bài 2-[Thi thử báo Toán học tuổi trẻ lần năm 2017] x 1 t Tìm điểm M đường thẳng d : y t cho AM với A 0; 2; 2 : z 2t 1;1; 1;1; 1;3; 4 A B C D.Khơng có M thỏa 2;1; 1 1;3; 4 2;1; 1 Bài 3-[Thi thử THPT Phan Chu Trinh – Phú Yên lần năm 2017] Cho P : x y z m A 1;1;3 Tìm m để d A; P m 2 m m 2 m 3 A B C D m m 9 m 10 m 12 Bài 4-[Đề minh họa Bộ GD-ĐT lần năm 2017] Trang 8/14 Trong không gian với hệ tọa độ Oxyz cho hai điểm A 2;3;1 B 5; 6; 2 Đường thẳng AB cắt mặt phẳng Oxz điểm M Tính tỉ số MA MB MA MA MA MA 3 B C D 2 MB MB MB MB Bài 5-[Câu 67 Sách tập hình học nâng cao lớp 12] Tính khoảng cách từ điểm M 2;3; 1 đến đường thẳng d giao tuyến hai mặt phẳng A : x y z ' : x y 2z 215 205 215 205 B C D 24 15 24 15 Bài 6-[Câu Sách tập hình học nâng cao lớp 12] Cho A 1;1;3 , B 1;3; , C 1; 2;3 Khoảng cách từ gốc tọa độ O đến mặt phẳng A ABC : 3 D 2 Bài 7-[Câu 69b Sách tập hình học nâng cao lớp 12] x 1 y z x y 1 z Tính khoảng cách cặp đường thẳng d : d ' : 2 4 2 386 127 127 386 A B C D 4 Bài 8-[Câu 69c Sách tập hình học nâng cao lớp 12] x t x 1 y z Tính khoảng cách cặp đường thẳng d : d ' : y 1 t z t A B C 24 26 D 11 13 LỜI GIẢI BÀI TẬP TỰ LUYỆN Bài 1-[Đề minh họa Bộ GD-ĐT lần năm 2017] Trong không gian với hệ trục tọa độ Oxyz , phương trình phương trình A 7 B C mặt cầu có tâm I 1; 2; 1 tiếp xúc với mặt phẳng P : x y 2z ? 2 2 2 A x 1 y z 1 2 B x 1 y z 1 2 C x 1 y z 1 D x 1 y z 1 GIẢI Mặt cầu tiếp xúc với mặt phẳng P d I ; P R aqc1p4+2p8Rs1d+2d+2d= d I ; P R Đáp số C D Trang 9/14 2 Mà ta lại có tâm mặt cầu I 1; 2; 1 S : x 1 y z 1 Vậy đáp số xác D Bài 2-[Thi thử báo Toán học tuổi trẻ lần năm 2017] x 1 t Tìm điểm M đường thẳng d : y t cho AM với A 0; 2; 2 : z 2t 1;1; 1;1; A B 2;1; 1 1;3; 4 1;3; 4 C D.Khơng có M thỏa 2;1; 1 GIẢI Gọi điểm M thuộc d có tọa độ theo t M 1 t;1 t; 2t Ta có AM AM AM Sử dụng máy tính Casio tìm t (1+Q)p0)d+(1pQ)p2)d+(2Q) +2)dp6qr5=qrp5= Ta tìm hai giá trị t Với t M 1;1;0 , với t 2 M 1;3; 4 Đáp án xác B Bài 3-[Thi thử THPT Phan Chu Trinh – Phú Yên lần năm 2017] Cho P : x y z m A 1;1;3 Tìm m để d A; P m 2 A m m B m 9 m 2 m 3 C D m 10 m 12 GIẢI Thiết lập phương trình khoảng cách d A; P 2.1 m 22 12 12 Đó ta nhẩm, vừa nhẩm vừa điền ln vào máy tính làm sau (để tiết kiệm thời gian) aqc2p1+3pQ)Rs2d+1d+1d Tìm nghiệm ta sử dụng chức CALC xem giá trị m làm vế trái rp2= Chỉ có A C Trang 10/14 r4= Giá trị m không thỏa mãn đáp án A sai Đáp án xác C Bài 4-[Đề minh họa Bộ GD-ĐT lần năm 2017] Trong không gian với hệ tọa độ Oxyz cho hai điểm A 2;3;1 B 5; 6; 2 Đường thẳng AB cắt mặt phẳng Oxz điểm M Tính tỉ số MA MB MA MA 3 D MB MB GIẢI Mặt phẳng Oxz có phương trình y MA Để tính tỉ số ta sử dụng công thức tỉ số khoảng cách (đã gặp chun đề hình học khơng MB gian ) MA d A; Oxz Ta có : hai điểm A, B phía hay khác phía so với Oxz MB d B; Oxz Ta dùng máy tính Casio tính tỉ số w1aqc0+3+0Rqc0+p6+0= A MA MB B MA 2 MB C Ta hiểu hai mẫu số hai phép tính khoảng cách nên ta triệt tiêu mà không cần cho vào phép tính Casio Đáp số xác A Bài 5-[Câu 67 Sách tập hình học nâng cao lớp 12] Tính khoảng cách từ điểm M 2;3; 1 đến đường thẳng d giao tuyến hai mặt phẳng : x y z ' : x y 2z A 215 24 B 205 15 C 205 15 D 215 24 GIẢI d giao tuyến hai mặt phẳng ' nên thuộc mặt phẳng vecto phương u đường thẳng d vng góc với vecto pháp tuyến mặt phẳng u n ; n ' 8; 4; w8111=1=p2=w8210=3=2=Wq5 3Oq54= Trang 11/14 5 Gọi điểm N x; y;0 thuộc đường thẳng d N ; ;0 2 MN ; u 205 Khoảng cách từ điểm M đến đường thẳng d : h 3.8265 14 u w8115P2p2=p3P2p3=0pp1=w82 18=p4=2=Wqcq53Oq54)Pqcq5 4)= Đáp số xác B Bài 6-[Câu Sách tập hình học nâng cao lớp 12] Cho A 1;1;3 , B 1;3; , C 1; 2;3 Khoảng cách từ gốc tọa độ O đến mặt phẳng ABC : A B C 3 D 2 GIẢI Vecto pháp tuyến ABC n AB; AC 1; 2; w811p2=2=p1=w821p2=1=0=W q53Oq54= ABC :1 x 1 y 1 z 3 x y 3z Khoảng cách từ O đến mặt phẳng ABC h 0 009 12 2 22 3 Đáp số xác B Bài 7-[Câu 69b Sách tập hình học nâng cao lớp 12] x 1 y z x y 1 z Tính khoảng cách cặp đường thẳng d : d ' : 2 4 2 386 127 127 386 A B C D 4 GIẢI Đường thẳng d qua điểm M 1; 3; có vecto phương 2;1; 2 Đường thẳng d ' qua điểm M ' 2;1; 1 có vecto phương 4; 2; Dễ thấy đường thẳng song song với Khoảng cách cần tìm khoảng cách tứ M ' đến d M ' M ; u 386 6.5489 u Trang 12/14 w811p3=4=p5=w8212=1=p2=W qcq53Oq54)Pqcq54)= Đáp số xác D Bài 7-[Câu 69b Sách tập hình học nâng cao lớp 12] x 1 y z x y 1 z Tính khoảng cách cặp đường thẳng d : d ' : 2 4 2 386 127 127 386 A B C D 4 GIẢI Đường thẳng d qua điểm M 1; 3; có vecto phương 2;1; 2 Đường thẳng d ' qua điểm M ' 2;1; 1 có vecto phương 4; 2; Dễ thấy đường thẳng song song với Khoảng cách cần tìm khoảng cách tứ M ' đến d M ' M ; u 386 6.5489 u w811p3=4=p5=w8212=1=p2=W qcq53Oq54)Pqcq54)= Đáp số xác D Bài 8-[Câu 69c Sách tập hình học nâng cao lớp 12] x t x 1 y z Tính khoảng cách cặp đường thẳng d : d ' : y 1 t z t 24 11 GIẢI Đường thẳng d qua điểm M 1; 2;3 có vecto phương u 1; 2;3 Đường thẳng d ' qua điểm M ' 2; 1;0 có vecto phương u ' 1;1;1 Dễ thấy đường thẳng chéo Khoảng cách cần tìm MM ' u; u ' 26 0.3922 13 u ; u ' w8111=p3=p3=w8211=2=3=w8 31p1=1=1=Wqcq53q57(q54Oq 55))Pqcq54Oq55)= A 7 B C 26 13 D Trang 13/14 Đáp số xác C Trang 14/14 ... trình x y z Tính khoảng cách d A B C D GIẢI Ta thấy : u.nP 1.2 1.1 1 d song song trùng với Khi khoảng cách d khoảng cách từ điểm M thuộc d đến... 1;1; 1 Dễ thấy hai đường thẳng d , d ' song song với nên khoảng cách từ d ' đến d khoảng cách từ điểm M ' (thuộc d ' ) đến d Gọi khoảng cách cần tìm h ta có MM '; u h 1.8856... x y 1 z mặt phẳng P : x y z M điểm có hồnh độ âm thuộc d cho khoảng cách từ M Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : đến P Tọa độ điểm M : A M 2;3;1