THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 89 |
Dung lượng | 291,51 KB |
Nội dung
Ngày đăng: 31/12/2017, 10:12
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[1] Huỳnh Thế Phùng – Cơ sở giải tích lồi, Nhà xuất bản giáo dục Việt Nam, năm 2012.[B] Tài liệu Tiếng Anh | Khác | |
[2] H. Attouch and H. Brézis, Duality for the sum of convex functions in general Banach spaces, in Aspects of Mathematics and its applications, J | Khác | |
[3] H. Attouch and M. Théra, A general Duality Principle for the sum oftwo operators, in Journal of Convex Analysis 3(1) (1996), 1-24 | Khác | |
[4] H. H. Bauschke, J. M. Borwein and W. Li, Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization, Math. Progr, 86 (1999), 135- 160 | Khác | |
[5] H. H. Bauschke, J. M. Borwein and P. Tseng, Bounded linear regularity, strong CHIP, and CHIP are distinct properties, J. Convex Analysis, 7(2)(2000), 395-412 | Khác | |
[6] R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Applied Mathematics Preprint, University of New South Wales, Sydney, Australia. Toappearin Proc.Amer. Math. Soc | Khác | |
[7] R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, (2004) | Khác | |
[8] F. Clarke, Optimization and Nonsmooth Analysis, SIAM series Classicsin Applied Mathematics, Holland, (1990) | Khác | |
[9] F. ClarkeandI. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. , 33(2) (1980), 103-116 | Khác | |
[10] F. Deutsch, The role of conical hull intersection property in convex optimization and approximation, in Approximation Theory IX, C. K | Khác | |
[11] F. Deutsch, W. Li andJ. Swetits, Fenchel duality and the strong conical hull intersection property, J. Optim. Theory Appl, 102 (1999), 681-695 | Khác | |
[12] I. Ekeland and R. Temam, Convex analysis and variational problems, North Holland, Amsterdam, (1976) | Khác | |
[13] J-B. Hiriart-Urruty and R. R. Phelps, Subdierential calculus using subdierentials, J. Funct. Anal. 118 (1993), 154-166 | Khác | |
[14] V. Jeyakumar, Duality and innite dimensional optimization, Nonlinear Anal, 15 (1990), 1111-1122 | Khác | |
[15] V. Jeyakumar, G. M. Lee and N. Dinh, New sequential Lagrange multiplier conditions characterizing optimality without constraint qualications for convex programs, SIAM J. Optim, 14(2) (2003), 534- 547 | Khác | |
[16] V. Jeyakumar, G. M. Lee and N. Dinh, A new closed cone constraint qualication for convex optimization, Applied Mathematics Research Report AMR 04/6, university of New South Wales (submitted for publication) | Khác | |
[17] V. Jeyakumar, A. M. Rubinov, B. M. Glover and Y. Ishizuka, Inequality systems and Global Optimization, J. Math. Anal. Appl, 202 (1996), 900-919 | Khác | |
[19] C. Li and X. Jin, Nonlinearly constrained best approximation in Hilbert spaces: the strong CHIP, and the basic constraint qualication, SIAMJ. Optim, 13(1) (2002), 228-239 | Khác | |
[20] K. F. Ng and W. Song, Fenchel duality in innite-dimensional setting and its applications, Nonlinear Analysis 25 (2003), 845-858 | Khác | |
[21] T. Stromberg, The operation ofinmal convolution, Diss. Math, 352 (1996), 1-61 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN