BẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONGBẢNG TÍNH MỐ HỘP MỐ CHUI MÔ KHUNG TIENG ANH CAU DUONG
01 Bo Ao_Cal Box Abutment_25.7m.xls【Input】 SHEET NO : / INPUT DATA: 1.1 Dimensional of abutment Items C C B B A A Notation Items Value (m) Pile cap Width of shoulder Width b1 7.40 Height h1 1.50 Body abutment Notation Value (m) b8 0.30 Length of bearing pad Lđk 0.90 Width of bearing pad bđk 0.75 h9 0.42 Backfill inside the box Width b2 1.40 Height h2 2.95 Width of cape head b3 0.90 Height of cape head h3 0.00 Width of headwall b4 0.50 Height of head wall h4 1.90 Hiden wall Width of box b5 4.00 Height hc 1.35 Thickness of box h5 0.50 Width bc 0.15 Width of box wall b6 0.50 Length & Elevation Chamfer of body b7 0.10 Width of abutment L 12.00 Chamfer of box v 0.30 Elevation at bottom of pile cap cd1 0.50 Elevation of supporting slab cd2 2.50 Transition shoulder & Bearing pad Vertical dimension Height h6 0.30 Elevation of wearing surface cd4 6.86 h7 0.75 Elevation of bearing cd3 5.15 h8 0.30 Distance from center of bearing to end girder g 0.40 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 01 Bo Ao_Cal Box Abutment_25.7m.xls【Input】 SHEET NO : / 1.2 Superstructure 1.2.1 General parameter Items No Notation Unit Value - Length of girder 25.70 - Distance between two bearing of girder L Ltt m m 25.00 - Width of bridge B m 12.00 - Girder ng Girder 5.00 SW g KN 415.00 hd m 1.45 + Quantity + Unit weigth + Height - Diapharm + Thickness t1 m 0.30 + Length l1 m 7.20 + Height hdn m 1.45 + Quantity ndn ea 4.00 + Wearing surface thickness dlp m 0.05 + Deck slab thickness dmc m 0.20 - Deck slab - Concrete formwork + Width w2 m 7.20 + Thickness t2 m 0.08 Bxc m 11.00 + Width on left side Rt m 0.50 + Width on right side Rp m 0.50 + Height hlc 1.30 + Area of cross section Slc m m2 Nb lane - Total width of carriage way - Parapet 10 - Quantity of lane 11 - Type of bearing at abutment 0.40 3.00 Fixed bearing 1.2.2 Live load HL-93 Stt Distance (m) P1 Truck Load Unit KN 35.00 P P2 4.3 KN 145.00 P3 4.3 KN 145.00 Pt1 KN 110.00 Pt2 KN 110.00 KN/m KN/m 9.30 Value Tandem Load Lane Load Wl Pedestrian Load PL 1.2 3.00 1.3 Unit density & Coefficient Items No Notation Concrete density γc Unit KN/m3 Backfilling density γs KN/m3 18.00 Bituminous wearing surface density γb KN/m3 23.00 Internal friction angle of backfilling ϕ degree Acceleration coefficient of earthquake k Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 25.00 30 0.0698 01 Bo Ao_Cal Box Abutment_25.7m.xls【Load】 SHEET NO : / LOADS 2.1 Superstructure load: 2.1.1 Dead load: No Items Unit 2.1.1.1 Dead load of strucural components and nonstructural attachments - DC1 =0.5 x (length x width x thickness) x γc - Deck slab =0.5 x (length x thickness x width) x γc - Concrete formwork - Diaphragm =0.5 x (length x thickness x height x quantity) x γc - Girder =0.5 x Unit weight x quantity of girder Total - DC Value KN 771.00 KN 185.04 KN 156.60 KN 1037.50 KN 2150.14 2.1.1.2 Dead load of wearing surfaces and utilities - DW1 - Railing =0.5 x (length x KN/m) x KN 12.85 - Pedestrian lane and parapet + Left side =0.5 x area on left side x length x γc KN 128.50 =0.5 x area on right side x length x γc KN 128.50 KN 162.55 KN 432.40 + Right side =0.5 x (length x width x thickness) x γb - Wearing surface Total - DW 2.1.2 Live load (3.6.1.2 - 22TCN272-05) 2.1.2 Live load on structure: In case of 1: Live load on superstructure - Distance from center bearing to center of pile cap - Quantity of lane - Multiple presence coefficient - Horizontal eccentricity of truck load eg = 1.70 m Ng = m= en = 0.85 0.35 m HL - 93 Load LL(1): Truck load + Lane load LL(2): Tandem load + lane load Yi/ w Nb m en = = = Pz (KN) lane x m P1 0.67 23.29 59.38 27.95 0.83 120.74 307.89 144.89 P3 1.01 147.03 374.93 176.44 Wl 12.68 117.88 300.59 141.45 Total Pt1 15.19 0.97 408.93 106.33 1042.78 271.15 490.72 127.60 Pt2 1.01 111.54 284.43 133.85 Wl 12.68 117.88 300.59 141.45 14.66 335.75 856.16 LL(1) choiced to caculation 402.90 In case of 2: Live load on superstructure and abutment - Distance from axle P3 to center of pile cap e3 = -3.0 m - Distance from center lane on abutment to center of pile cap el = -1.2 m - Quantity of lane Ng = - Multiple presence coefficient - Horizontal eccentricity of truck load m= en = 0.85 0.35 Yi/ w Pz (KN) Load Truck load + Lane load P3 P2 4.3m W y3 P1 4.3m y2 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung W y1 lane x m P2 Total HL - 93 1.20 3.15 m lane x m P1 0.83 29.14 74.32 P2 1.01 147.03 374.93 P3 1.00 145.00 369.75 Wl 12.68 117.88 300.59 W2 5.00 46.50 118.58 Total 20.52 485.55 1238.16 01 Bo Ao_Cal Box Abutment_25.7m.xls【Load】 SHEET NO : / 2.1.2 Live load inside abutment 1800 3000 - Live load inside abutment inculding: Factor of axle weights for the road of class V f= Truck load: Lane load: 0.50 (3.6.1.2.2) P= W1 = 195.00 133.92 KN KN Pedestrian Load: - Distance from the center of live load to center of pile cap PL = ell = 43.20 -1.20 KN m - Quantity of lane Ng = - Multiple presence coefficient m= 1.2 2.1.2.3 Dynamic load allowance - IM (3.6.2 - 22TCN272-05) The static effect of design truck or tandem shall be increased by the following percentages: IM= 25% x LL 2.1.3 Summary of Live load: Live load on superstructure Pz (KN) Items Mx (KN.m) A-A A-A 364.97 LL 1042.78 1772.73 IM 185.55 315.43 64.94 LL IM 490.72 87.32 834.23 148.44 1545.77 275.05 Live load on superstructure and abutment My Pz (KN.m) (KN) A-A Mx (KN.m) lanes on span lanes on span Items My (KN.m) LL IM lanes on span and abutment 1238.16 204.75 A-A -190.26 -86.38 433.35 71.66 My (KN.m) A-A -394.70 -58.50 -51.84 Mx (KN.m) A-A 0.00 0.00 0.00 Live load inside abutment Pz (KN) Items LL IM PL lanes inside abutmment 328.92 48.75 43.20 2.2 Braking force - BR (3.6.4 - 22TCN272-05) - BR=Hx=0.25 x m x Nb x ∑Pi: - Distance from elevation of bearing to elevation bottom of pile cap - My = Hx x ezi Items BR - lanes BR - lanes Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung Hx (KN) My (KN.m) 207.19 97.50 963.42 453.38 A-A ezi = 4.65 m 01 Bo Ao_Cal Box Abutment_25.7m.xls【Load】 SHEET NO : / 2.3 Dead load of abutment 2.3.1 Dead load of structure - DC2 No A - A (bottom of pile cap) Items V (m ) Pzi (KN) exi (m) My (KN.m) Body of abutment 118.23 2955.70 -0.43 -1257.29 Pile cap 133.20 3330.00 6285.70 0.00 -0.20 0.00 -1257.29 Total 2.3.2 Dead load of wearing surfaces - DW2 No A - A (bottom of pile cap) Items Wearing surface V (m ) Pzi (KN) exi (m) My (KN.m) 2.75 63.25 63.25 -1.20 -1.20 -75.90 -75.90 Total 2.4 Earthquake effects - EQ - Acceleration coefficient of earthquake No Items AQ = 0.0698 A - A (bottom of pile cap) Pzi (KN) Qy ezi (m) M (KN.m) 2,955.70 206.31 4.12 850.81 Body of abument Wearing surface 63.25 4.41 6.35 28.03 Pile cap 3,330.00 232.43 0.75 174.33 Superstructure 2,582.54 180.26 4.65 838.22 Total Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 623.42 1,891.39 01 Bo Ao_Cal Box Abutment_25.7m.xls【Load】 SHEET NO : / 2.5 Vertical pressure of earth backfilling - EV Items No F(m2) B(m) Pzi (KN) exi (m) Backfilling in front of abutment 0.75 12.00 162.00 2.95 477.90 Backfilling inside of abutment 1.68 12.00 362.88 -1.20 -435.46 524.88 0.08 42.44 Total My (KN.m) 2.6 Wind load 2.6.1 Wind load on superstructure - WS (3.8.1.2; 22TCN-272-05) Horizontal wind load: Transverse wind load PD= 0.0006 xV x At x Cd ³ 1.8 x At (kN) (3.8.1.2.1-1; 22TCN-272-05) Where: V=VB x S V: Design wind velocity = 41.42 m/s Vb: Basic wind velocity V = 38 m/s S : Correction factor S = 1.09 Cd: Drag coefficient Cd = 1.30 At: Area of structure or element for calculation of transverse wind load PDt= Þ (kN) 1.80 x At Longitudinal wind load For superstructures 0.25*PDt PDL= For abutments, longitudinal wind loads be calculated in a manner similar to horizontal wind loads 2.6.1.1 Transverse wind load Z i (m) A-A No Items A t (m ) B-B Hy (KN) Mx (KN.m) A-A Railing Deck slab Girder 16.71 6.95 5.45 30.07 3.21 6.20 4.70 5.78 35.85 18.63 5.38 3.88 33.54 180.27 69.39 425.10 Total 208.98 2.6.1.2 Longitudinal wind load A t (m ) Items No Railing Deck slab Girder Z i (m) B-B 16.71 6.95 5.45 7.52 3.21 6.20 4.70 1.45 8.96 18.63 5.38 3.88 8.38 45.07 17.35 106.28 Total 2.6.2 Longitudinal wind load on vehicle: (3.8.1.3; 22TCN-272-05) Wind load on vehicles taken as - Longitudinal: - Transverse: - Distance between point of load application and bridge surface No Items Wind load on vehicles Total Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung A-A Hx (KN) My (KN.m) A-A Z i (m) A-A B-B 8.16 6.66 52.24 0.750 KN/m 1.500 KN/m 1.80 m Longitudinal A-A Hx (KN) My (KN.m) Transverse A-A Hy (KN) Mx (KN.m) 9.64 78.64 19.28 157.28 9.64 78.64 19.28 157.28 01 Bo Ao_Cal Box Abutment_25.7m.xls【ES-LS】 SHEET NO : / EARTH PRESSURE: (3.11.5; 22TCN-272-05) 3.1 Horizontal earth pressure load -EH - Height of abutment H1 = 6.36 m - Length of abutment L= 12.00 m Eha=pa.H3/2.L Earth pressure taken as MEha=Eha.H3.0.4 H3: Calculated height, from top of pile slab upward pa=ka.γ.H3 + Active earth pressure: Where: pa : Basic earth pressure γ : Density of soil ka : Active pressure coefficient Ka sin ( θ φ) Γ sin θ sin( θ Γ sin ( φ sin ( θ δ) β ) sin ( φ δ ) sin ( θ δ) β) Where: β: Angle of fill to the horizontal (degree) Kp = δ: friction angle between fill and wall (degree) 20 θ: Angle of back face of wall to the horizontal (degree) 90 sin (θ − φ ) Γ sin θ sin( θ + δ ) Γ = (1 − sin(φ + δ ) sin(φ + β ) ) sin(θ + δ ) sin(θ + β ) pp=kp.γ.H2+2.c.(kp)^0.5 + Passive earth pressure: c : Unit cohesion H2: Height of backfill KN/m3 18.0 - Density of soil (γ) - Load factor (f) - - Friction angle of drained soil (ϕf) 30 degree - Unit cohesion: (c) 0.0 KN/m2 3.1.1 Active earth pressure No Items Section A - A H3 (m) pa ka 4.36 (KN/m2) 0.30 23.3 Eha (KN) MEHa (KN.m) 610.4 1064.5 3.1.2 Passive earth pressure No Items Section A - A Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung H2 (m) 0.00 pp kp 6.11 (KN/m ) 0.0 Ehp (KN) MEHp (KN.m) 0.0 0.0 01 Bo Ao_Cal Box Abutment_25.7m.xls【ES-LS】 SHEET NO : / 3.2 Lateral pressure due to effect of earthquake - EAE : Lateral pressure due to effect of earthquake taken as: PAE=(1-Kv)KAE.γ H3 EAE=0.5.PAE H3 L MEae=EAE 0.5.H3 cos ( φ θ K AE β) δ ) sin ( φ θ β θ ) cos ( i sin ( φ cos ( δ cosθ cos β cos ( δ β i) β) θ) Where: Horizontal acceleration coefficient kh= 0.07 Vertical acceleration coefficient kv= 0.00 θ=arctan(kh/(1-kv)) 0.07 (rad) 18.0 - Density of soil (γ) KN/m3 - Load factor (f) - - Friction angle of drained soil (ϕf) 30 Degree KAE Items No Section A - A 0.34 PAE (KN/m ) EAE (KN) MEae (KN.m) 27.0 705.1 1537.23 MLS (KN.m) 610.7 3.3 Live load surcharge - LS: (3.11.6; 22TCN-272-05) - The increase in horizontal pressure due to live load surcharge taken as : Dp=K.γ.heq Where: K : Coefficient of earth pressure heq : Equivalent height of soil for vehicular load LS=Dp.H3.L MLS =0.5.LS.H3 No Items Section A - A Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung Dp kA heq (m) (KN/m ) LS (KN) 0.30 1.00 5.4 280.1 01 Bo Ao_Cal Box Abutment_25.7m.xls【Summary】 SHEET NO : / SUMMARY OF LOAD AT BOTTOM OF PILE CAP (Section A - A) No (KN) Abutment and superstructure load - DC (DC1+DC2) Wearing surface load - DW (DW1+DW2) lanes on span lanes on span Braking force - BR lanes on span and abutment lanes inside abutmment Longitidunal Bridge Pz Load Horizontal Bridge Hx (KN) My (KN.m) Hy (KN) Mx (KN.m) 8,435.8 0.0 2,397.9 0.0 0.0 495.7 0.0 659.2 0.0 0.0 1,042.8 0.0 1,772.7 0.0 365.0 Dynamic load - IM 185.5 0.0 315.4 0.0 64.9 Live load - LL 490.7 0.0 834.2 0.0 1,545.8 87.3 0.0 148.4 0.0 275.0 lane 0.0 207.2 963.4 0.0 0.0 lane 0.0 97.5 453.4 0.0 0.0 Live load - LL Dynamic load - IM 1,238.2 0.0 -190.3 0.0 433.4 Dynamic load - IM Live load - LL 204.7 0.0 -86.4 0.0 71.7 Live load - LL 328.9 0.0 -394.7 0.0 0.0 Dynamic load - IM 48.8 0.0 -58.5 0.0 0.0 Pedestrian load - PL 43.2 0.0 -51.8 0.0 0.0 0.0 610.4 1,064.5 0.0 0.0 Active earth pressure - Eh Passive earth pressure - Ep 10 Vertical earth backfill load- EV Horizontial pressure due to earthquake - E AE 11 Live load surchange load - LS 12 Wind load on superstructure - WS 0.0 13 14 Wind load on vehicles - WL 0.0 9.6 78.6 19.3 157.3 Earthquake effects - EQ 0.0 623.4 1,891.4 623.4 1,891.4 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 0.0 0.0 0.0 0.0 0.0 524.9 0.0 42.4 0.0 0.0 0.0 705.1 1,537.2 0.0 0.0 0.0 280.1 610.7 0.0 0.0 17.3 106.3 69.4 425.1 01 Bo Ao_Cal Box Abutment_25.7m.xls【Comb-A】 SHEET NO : / LOAD COMBINATION 5.1 SECTION A - A 5.1.1 Combinations 5.1.1.1 Combination 1: STRENGTH I-1 (Live load on structure) No Load Load factor Pz (KN) Longitudinal Hx (KN) Transverse My (KN.m) Hy (KN) Mx (KN.m) Dead load - DC 1.25 10544.80 0.00 2997.43 0.00 Wearing surface dead load - DW 1.50 743.48 0.00 988.78 0.00 0.00 Live load lanes on span - LL 1.75 1824.87 0.00 3102.28 0.00 638.70 Dynamic load lanes on span - IM 1.75 324.71 0.00 552.01 0.00 113.65 Braking force lanes on span - BR 1.75 0.00 362.58 1685.99 0.00 0.00 Active earth pressure - Eh 1.50 0.00 915.59 1596.80 0.00 0.00 Passive earth pressure - Ep 0.90 0.00 0.00 0.00 0.00 0.00 Vertical earth backfill load - EV 1.35 708.59 0.00 57.30 0.00 0.00 Live load surgchage - LS 1.75 490.26 1068.76 0.00 0.00 1,768.43 12,049.34 0.00 752.35 Total 0.00 14,146.45 0.00 5.1.1.2 Combination 2: STRENGTH I-2 (Eccentricity in horizontal Bridge - Live load on structure) No Load Load factor Pz (KN) Longitudinal Hx (KN) Dead load - DC 1.25 10544.80 0.00 Wearing surface dead load - DW 1.50 743.48 Live load lanes on span - LL 1.75 858.76 Dynamic load lanes on span - IM 1.75 Braking force lanes on span - BR Active earth pressure - Eh Transverse My (KN.m) Hy (KN) Mx (KN.m) 2997.43 0.00 0.00 988.78 0.00 0.00 0.00 1459.90 0.00 2705.10 152.81 0.00 259.77 0.00 481.34 1.75 0.00 170.63 793.41 0.00 0.00 1.50 0.00 915.59 1596.80 0.00 0.00 Passive earth pressure - Ep 0.90 0.00 0.00 0.00 0.00 0.00 Vertical earth backfill load - EV 1.35 708.59 0.00 57.30 0.00 0.00 Live load surgchage - LS 1.75 0.00 490.26 1068.76 0.00 0.00 13,008.44 1,576.48 9,222.14 0.00 3,186.44 Total 0.00 5.1.1.3 Combination 3: STRENGTH I-3 ( Live load on structure, on abutment and inside abutment) Load No Load factor Pz (KN) Longitudinal Hx (KN) Transverse My (KN.m) Hy (KN) Mx (KN.m) Dead load - DC 1.25 10544.80 0.00 2997.43 0.00 0.00 Wearing surface dead load - DW 1.50 743.48 0.00 988.78 0.00 0.00 Live load lanes on span and abutment - LL 1.75 2166.77 0.00 -332.96 0.00 758.37 Dynamic load lanes on span and abutment - IM 1.75 358.31 0.00 -151.17 0.00 125.41 Braking force lanes on span - BR 1.75 0.00 362.58 1685.99 0.00 0.00 Live load lanes inside abutmment - LL 1.75 575.61 0.00 -690.73 0.00 0.00 Dynamic load lanes inside abutmment - IM 1.75 85.31 0.00 -102.38 0.00 0.00 Pedestrian load lanes inside abutmment - PL 1.75 75.60 0.00 -90.72 0.00 0.00 Active earth pressure - Eh 1.50 0.00 915.59 1596.80 0.00 0.00 10 Passive earth pressure - Ep 0.90 0.00 0.00 0.00 0.00 0.00 11 Vertical earth backfill load - EV 1.35 708.59 0.00 57.30 0.00 0.00 11 Live load surgchage - LS 1.75 Total Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 0.00 490.26 1068.76 0.00 0.00 15,258.48 1,768.43 7,027.10 0.00 883.78 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【Q(6-6)】 SHEET NO : / - Area of cross section of shear reinforcement Nominal shear resistance of reinforcement Av1 - mm2 Vs1 - N Group Angle of inclination of transverse reinforcement to longitudinal axis α2 Spacing of stirrups s2 45 degrees 500 mm Area of shear reinforcement within a distance s: Av2 - Diameter - - Quantity - - Area of cross section of shear reinforcement Nominal shear resistance of reinforcement Av2 - mm2 Vs2 - N - N Vs1 + Vs2 Checking: Vr = mm Nominal shear resistance Vn 596,339 N Calculation shear resistance Vr 536,705 N 536,705 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung > Vu = 100,980 Satisfactory 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(7-7)】 SHEET NO : / 7.6.3.6 SECTION - 7.6.3.6.1 CHECKING FLEXURAL & AXIAL RESISTANCE The factored flexural resistance M r shall be taken as: Mr=ϕMn Mn=Asfy(ds-a/2)-A'sf'y(d's-a/2) Where : - Mn : Nominal resistance - ϕ : Resistance factor as specified in Article 5.5.4.2 - As : Area of nonprestressed tension reinforcement - A's : Area of compression reinforcement - fy : Specified yield strength of tension reinforcement - f'y : Specified yield strength of compression reinforcement - ds : Distance from extreme compression fiber to the centiod of nonprestressed tension reinforcement - d : Distance from extreme tension fiber to the centriod of nonprestressed tension reinforcement - d's : Distance from extreme compression fiber to the centriod of compression reinforcement - a : Depth of the equivalent stress block = c β1 − β1 : Stress block factor specified in Article 5.7.2.2 0.84 - c : Distance from neutral axis to the extreme compression fiber = [A sfy-A'sf'y]/(0.85f'cβ1b) 1- Checking load Maximum axial force N 785.0 kN Maximum moment M 486.5 kN.m 2- Checking cross section h 1,400 mm b 1,000 mm d's 85 mm d 85 mm ds 1,315 mm 3- Materials Specified yield strength of tension reinforcement fy 400 MPa Specified yield strength of compression reinforcement f'y 400 MPa Specified compressive strength of concrete f'c 30 MPa Modulus of elasticity of steel Es 200,000 MPa Modulus of elasticity of concrete Ec 29,440 MPa - Reinforcement Tension reinforcement As D As-1bar 25.0 mm 490.87 mm2 Nos As 3,436 mm2 Compression reinforcement A' s D Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 16.0 mm 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(7-7)】 SHEET NO : / A's-1bar 201.06 mm2 Nos A's 1407 mm2 - Checking flexural resistance c= 64.496 mm a= 53.90 mm Mn 1,738 kN.m - ϕ : Flexural resistance and compression factor of concrete 0.9 Mr=ϕMn 1564 kN.m Checking: Mr = 1,564 > Mu = 487 Satisfactory For cracking moment Apllied formular : ϕMn ≥ Min (1.2 Mcr, 1.33M) For which : Mcr = frIg/yt - Modulus of rupture of concrete f r = 0.63f'c0.5 3.45 Mpa 228,666,666,667 mm4 - Moment of inertia of gross concrete section Ig : - Distance from neutral axis to the extreme tension fiber y t: Checking: 700 mm ϕMn = 1,564 > 1.2Mcr = 647 Satisfactory Checking for maximum reinforcement : The maximum amount of nonprestressed reinforcement shall be such that : c/de ≤ 0.42 Where: de = (As*fy*ds)/(As*fy) - de : the corresponding effective depth from the extreme compression fiber to the centriod of the tensile force in the tensile reinforcement (mm) Checking: c/d e = 0.0490 < 0.42 Satisfatory Checking for minimum reinforcement : The minimum amount of nonprestressed reinforcement shall be such that : ρmin ≥ 0.03f'c/f'y − ρmin : ratio of tension reinforcement and effective concrete area - Area of tension reinforcement - Gross area of concrete Checking: ρmin = ρmin=As/Ac 3,436 mm2 As = 1,315,000 mm2 Ac = 0.00261 ρmin=As/Ac 0.0026 0.03f'c/f'y = 0.0023 > 0.03f'c/f'y = 0.00225 Satisfactory Control cracking by distribution of reinforcement: Checking load combination is Service load M= 291.0 kN.m Condition: fs ≤ fsa = Z/(dcA)1/3 ≤ 0.6 f'y + Minimum reinforcement Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung ρ 0.00261 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(7-7)】 SHEET NO : / + Es/Ec n 6.79 +k k 0.172 +j j 0.943 fs = 68.31 Mpa dc: depth of concrete measured from extreme tension fiber to center of bar located closest hereto, for calculation purpose, the thickness of clear cover used to compute d c shall not be taken to be greater than 50mm A: Area of concrete surrounding tension reinforcement Z: crack width parameter + 30 kN/mm for members in moderate exposure conditions + 23 kN/mm for members in severe exposure conditions + 17.5 kN/mm for buried structures + f'y : Specified yield strength of compression reinforcement 400 Mpa dc (actually)= 50.0 mm dc (choosen) = 50.0 mm 12,142.9 mm2 A= Z= 30.0 kN/mm fs = 68.3 Mpa fsa= 354 Mpa 0.6f'y= 240 Mpa Checking: fs = 68.3 < min(fsa; 06f'y)= 240 Satisfactory 785,000 Satisfactory 10 Checking axial compression: Axial resistance of components shall be taken as: Pr = ϕ Pn For members with spiral reinforcement: Pn = 0.85 [0.85f' c(Ag-Ast) + fyAst] For members with tie reinforcement: Pn = 0.8 [0.85f' c(Ag-Ast) + fyAst] Type of reinforcement: Tie 0.75 - ϕ: axial compression factor 1,400,000.0 mm2 Ag: gross area of section 4,843.6 mm2 Ast: total area of longitudinal reinforcement 30,011,127.7 N Pn: nominal axial resistance 22,508,345.79 N Pr: calculation axial resistance Checking: Pr = Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 22,508,346 > min(fsa; 06f'y)= 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【Q(7-7)】 SHEET NO : / 7.6.3.6.2 CHECKING SHEAR RESISTANCE Materials Yield strength of reinforcement fy Elastic modulus of Prestressing Steel Ep 197,000 MPa Elastic modulus of Reinforcement Es 200,000 MPa Elastic modulus of Concrete Ec 29,440 MPa Compress strength of concrete f'c Maximum moment Mu 486,510 N.mm Maximum shear Vu 151,710 N 400 MPa 30 MPa Checking load Section properties Depth h 1,400 mm Effective web width bw 1,000 mm Distance from extreme tension fiber to the centroid tensile reinforcement ds 85.0 mm Tension reinforcement - Diameter mm 25 - Quantity bar - Area of cross section of tensile reinforcement Ast 3,436 mm2 Distance from extreme compression fiber to the centroid tensile reinforcement dst 1,315 mm Effective shear depth dv 1,008 mm Shear capacity Vr = ϕ Vn Vn = {ϕ(Vc + Vs + Vp); 0.25f'cbvdv + Vp} + Vc : nominal shear resistance of concrete 0.083*b*(f'c)^0.5*bw*dv + Vs : nominal shear resistance of reinforcement Ay*fy*dv*(cosq+cosa)*sina)/s * α : angle of inclination of transverse reinforcement to longitudinal axis * b : factor indicating ability of diagonally cracked concrete to transmit tension * q : inclination angle of diagonal compressive stress + Vp : component of effective prestresed force in the direction of the applied shear Resistance factor for shear Determine b & q Factor indicating ability of diagonally cracked concrete to transmit tension ϕ 0.9 β 3.7 Strain in the tensile reinforcement εξ 0.000 Inclination angle of diagonal compressive stress θ 27.94 độ Vc Nominal shear resistance of concrete Vc 1,684,381 N Vp Component of effective prestresed force in the direction of the applied shear Vp 0N Checking region requiring transverse reinforcement: Vu 0.5ϕ(Vc+Vp) Minimum tranverse reinforcement within distance s s: Unncessary Av 227.305 mm2 Data of transverse reinforcement Group Angle of inclination of transverse reinforcement to longitudinal axis α1 Spacing of stirrups s1 90 degrees 200 mm Area of shear reinforcement within a distance s: Av1 - Diameter - - Quantity - Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung mm 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【Q(7-7)】 SHEET NO : / - Area of cross section of shear reinforcement Nominal shear resistance of reinforcement Av1 - mm2 Vs1 - N Group Angle of inclination of transverse reinforcement to longitudinal axis α2 Spacing of stirrups s2 45 degrees 500 mm Area of shear reinforcement within a distance s: Av2 - Diameter - - Quantity - - Area of cross section of shear reinforcement Nominal shear resistance of reinforcement Av2 - mm2 Vs2 - N - N Vs1 + Vs2 Checking: Vr = mm Nominal shear resistance Vn 1,684,381 N Calculation shear resistance Vr 1,515,943 N 1,515,943 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung > Vu = 151,710 Satisfactory 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(8-8)】 SHEET NO : / 7.6.3.7 SECTION - 7.6.3.7.1 CHECKING FLEXURAL & AXIAL RESISTANCE The factored flexural resistance M r shall be taken as: Mr=ϕMn Mn=Asfy(ds-a/2)-A'sf'y(d's-a/2) Where : - Mn : Nominal resistance - ϕ : Resistance factor as specified in Article 5.5.4.2 - As : Area of nonprestressed tension reinforcement - A's : Area of compression reinforcement - fy : Specified yield strength of tension reinforcement - f'y : Specified yield strength of compression reinforcement - ds : Distance from extreme compression fiber to the centiod of nonprestressed tension reinforcement - d : Distance from extreme tension fiber to the centriod of nonprestressed tension reinforcement - d's : Distance from extreme compression fiber to the centriod of compression reinforcement - a : Depth of the equivalent stress block = c β1 − β1 : Stress block factor specified in Article 5.7.2.2 0.84 - c : Distance from neutral axis to the extreme compression fiber = [A sfy-A'sf'y]/(0.85f'cβ1b) 1- Checking load Maximum moment 554.9 kN.m M 2- Checking cross section h 1,500 mm b 1,000 mm d's 89 mm d 164 mm ds 1,336 mm 3- Materials Specified yield strength of tension reinforcement fy 400 MPa Specified yield strength of compression reinforcement f'y 400 MPa Specified compressive strength of concrete f'c 30 MPa Modulus of elasticity of steel Es 200,000 MPa Modulus of elasticity of concrete Ec 29,440 MPa - Reinforcement Tension reinforcement As D As-1bar 25.0 mm 490.87 mm2 Nos As 3,436 mm2 Compression reinforcement A' s D Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 20.0 mm 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(8-8)】 SHEET NO : / A's-1bar 314.16 mm2 Nos A's 2199 mm2 - Checking flexural resistance c= 64.496 mm a= 53.90 mm Mn 1,745 kN.m - ϕ : Flexural resistance and compression factor of concrete 0.9 Mr=ϕMn 1570 kN.m Checking: Mr = 1,570 > Mu = 555 Satisfactory For cracking moment Apllied formular : ϕMn ≥ Min (1.2 Mcr, 1.33M) For which : Mcr = frIg/yt - Modulus of rupture of concrete f r = 0.63f'c0.5 3.45 Mpa 281,250,000,000 mm4 - Moment of inertia of gross concrete section Ig : - Distance from neutral axis to the extreme tension fiber y t: Checking: 750 mm ϕMn = 1,570 > 1.2Mcr = 738 Satisfactory Checking for maximum reinforcement : The maximum amount of nonprestressed reinforcement shall be such that : c/de ≤ 0.42 Where: de = (As*fy*ds)/(As*fy) - de : the corresponding effective depth from the extreme compression fiber to the centriod of the tensile force in the tensile reinforcement (mm) Checking: c/d e = 0.0483 < 0.42 Satisfatory Checking for minimum reinforcement : The minimum amount of nonprestressed reinforcement shall be such that : ρmin ≥ 0.03f'c/f'y − ρmin : ratio of tension reinforcement and effective concrete area - Area of tension reinforcement - Gross area of concrete Checking: ρmin = ρmin=As/Ac 3,436 mm2 As = 1,336,000 mm2 Ac = 0.00257 ρmin=As/Ac 0.0026 0.03f'c/f'y = 0.0023 > 0.03f'c/f'y = 0.00225 Satisfactory Control cracking by distribution of reinforcement: Checking load combination is Service load M= 343.3 kN.m Condition: fs ≤ fsa = Z/(dcA)1/3 ≤ 0.6 f'y + Minimum reinforcement Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung ρ 0.00257 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【M, N(8-8)】 SHEET NO : / + Es/Ec n 6.79 +k k 0.170 +j j 0.943 fs = 79.28 Mpa dc: depth of concrete measured from extreme tension fiber to center of bar located closest hereto, for calculation purpose, the thickness of clear cover used to compute d c shall not be taken to be greater than 50mm A: Area of concrete surrounding tension reinforcement Z: crack width parameter + 30 kN/mm for members in moderate exposure conditions + 23 kN/mm for members in severe exposure conditions + 17.5 kN/mm for buried structures + f'y : Specified yield strength of compression reinforcement 400 Mpa dc (actually)= 75.0 mm dc (choosen) = 50.0 mm 23,428.6 mm2 A= Z= 30.0 kN/mm fs = 79.3 Mpa fsa= 285 Mpa 0.6f'y= 240 Mpa Checking: fs = Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung 79.3 < min(fsa; 06f'y)= 240 Satisfactory 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【Q(8-8)】 SHEET NO : / 7.6.3.7.2 CHECKING SHEAR RESISTANCE Materials Yield strength of reinforcement fy Elastic modulus of Prestressing Steel Ep 197,000 MPa Elastic modulus of Reinforcement Es 200,000 MPa Elastic modulus of Concrete Ec 29,440 MPa Compress strength of concrete f'c Maximum moment Mu 554,900 N.mm Maximum shear Vu 646,580 N 400 MPa 30 MPa Checking load Section properties Depth h 1,500 mm Effective web width bw 1,000 mm Distance from extreme tension fiber to the centroid tensile reinforcement ds 164.0 mm Tension reinforcement - Diameter mm 25 - Quantity bar - Area of cross section of tensile reinforcement Ast 3,436 mm2 Distance from extreme compression fiber to the centroid tensile reinforcement dst 1,336 mm Effective shear depth dv 1,080 mm Shear capacity Vr = ϕ Vn Vn = {ϕ(Vc + Vs + Vp); 0.25f'cbvdv + Vp} + Vc : nominal shear resistance of concrete 0.083*b*(f'c)^0.5*bw*dv + Vs : nominal shear resistance of reinforcement Ay*fy*dv*(cosq+cosa)*sina)/s * α : angle of inclination of transverse reinforcement to longitudinal axis * b : factor indicating ability of diagonally cracked concrete to transmit tension * q : inclination angle of diagonal compressive stress + Vp : component of effective prestresed force in the direction of the applied shear Resistance factor for shear Determine b & q Factor indicating ability of diagonally cracked concrete to transmit tension ϕ 0.9 β 2.4 Strain in the tensile reinforcement εξ 0.001 Inclination angle of diagonal compressive stress θ 34.38 độ Vc Nominal shear resistance of concrete Vc 1,154,556 N Vp Component of effective prestresed force in the direction of the applied shear Vp 0N Checking region requiring transverse reinforcement: Vu 0.5ϕ(Vc+Vp) Minimum tranverse reinforcement within distance s s: Requied Av 227 mm2 Data of transverse reinforcement Group Angle of inclination of transverse reinforcement to longitudinal axis α1 Spacing of stirrups s1 90 degrees 200 mm Area of shear reinforcement within a distance s: Av1 - Diameter - - Quantity - Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung mm 01 Bo Ao_Checking Section M, N, Q_25.7m.xls【Q(8-8)】 SHEET NO : / - Area of cross section of shear reinforcement Nominal shear resistance of reinforcement Av1 - mm2 Vs1 - N Group Angle of inclination of transverse reinforcement to longitudinal axis α2 Spacing of stirrups s2 90 degrees 500 mm Area of shear reinforcement within a distance s: Av2 16 mm - Diameter - Quantity Av2 - Area of cross section of shear reinforcement Vs2 Nominal shear resistance of reinforcement Vs1 + Vs2 Checking: Vr = 402 mm2 507,712 N 507,712 N Nominal shear resistance Vn 1,662,268 N Calculation shear resistance Vr 1,496,041 N 1,496,041 Checked by LEE, Jong Dae Approved by CHO, Wan Hyoung > Vu = 646,580 Satisfactory 01.1 BA1_Bored Pile Capacity_D1.0M1.xls【BH-DD】 SHEET NO : / PILE CAPACITY CALCULATION ACCORDING TO SPECIFICATION FOR BRIDGE DESIGN 22TCN 272-05 BO AO BRIDGE BORE HOLE BA-1 (Abutment M1) ABOUT PILE: Bored Pile Type of pile 1.00 m Dimension of pile Length of pile 60.00 m Pile cross-section circumference 3.142 m Pile cross-section area 0.785 m2 Elevation of bottom pile cap 0.50 m Elevation of existing ground 2.52 m Calculated elevation of existing ground 0.50 m 0.5 m Elevation of underground water Consider Bouyancy effectiveness (Consider/ Not consider): b-Resistance factor in clay: b-Resistance factor in sand: ϕqs = 0.65 ϕqp = 0.55 ϕqs = 0.65 ϕqp = 0.55 Formula: Qs = Σ (qs * As * li ) SHAFT RESISTANCE: Shaft nominal unit resistance qs: For sand: qs=2.8*N với N