Nghiêncứusốkỹthuậtnộisuyhiểnthịảnhytế Lương Thị Thu Hà Trường đại học Công nghệ Luận văn ThS Hệ thống thông tin; Mã số: 60 48 01 04 Người hướng dẫn: PGS.TS Đỗ Năng Toàn Năm bảo vệ: 2014 Abstract - Nghiêncứu hai nhóm phương pháp nộisuy lát cắt trung gian gồm nộisuy dựa cường độ nộisuy dựa đối tượng - Xây dựng thực nghiệm với hai kỹthuậtnộisuy đại diện cho hai nhóm phương pháp gồm nộisuy tuyến tính nộisuy dựa cải tiến phép hợp biến dạng cong, làm tăng số lượng lát cắt thu được, góp phần tái cấu trúc mơ hình 3D giống thực tế, hỗ trợ bác sĩ chẩn đốn bệnh thơng qua hình ảnh Keywords Kỹthuậtnội suy; Xử lý ảnh; Y học; Công nghệ thông tin Content Chương 1: Khái quát ảnhytế toán nộisuy Những đặc trưng ảnhytế trình bày làm tảng để đề cập đến vấn đề nộisuyảnhytế Tiếp đến khái quát chung toán nộisuy hướng tiếp cận ứng dụng kỹthuậtnộisuy xử lý ảnhytế Chương 2: Mộtsốkỹthuậtnộisuy xử lý ảnhytếNội dung chương trình bày mục đích sử dụng thuật tốn cụ thể kỹthuậtnộisuy xử lý ảnhytế Chương 3: Chương trình thử nghiệm Chương phát biểu toán nộisuy sinh lát cắt trung gian hai lát cắt biết Từ cài đặt thử nghiệm hai kỹthuật ngôn ngữ C# đánh giá thuật toán cách sử dụng công thức MSE (Mean Squared Error) để so sánh lát cắt nộisuy sinh với lát cắt gốc References Tiếng Việt [1] Lương Mạnh Bá, Nguyễn Thanh Thuỷ (1999), Nhập môn xử lý ảnh, NXB Khoa học kỹ thuật, Hà Nội [2] Phạm Việt Bình, Đỗ Năng Tồn (2008), Xử lý ảnh, NXB Khoa học kỹ thuật, Hà Nội Tiếng Anh [3] C R Appledorn, “A new approach to the interpolation of sampled data,” IEEE Trans Med Imag., vol 15, pp 369–376, 1996 [4] R Appledorn, 1996, “A new approach to the interpolation of sampled data,” IEEE Trans Med Imag., vol 15, pp 369–376 [5] B Fischer and J Modersitzki, Mar 2004, “A unified approach to fast image registration and a new curvature based registration technique,” Linear Algebra and its Applications, vol 380, pp 107– 124 [6] D H Frakes, L P Dasi, K Pekkan, H D Kitajima, K Sundareswaran, A P Yoganathan, and M J T Smith, Mar 2008, “A new method for registration-based medical image interpolation”, IEEE Trans on medical imaging, vol 27, no 3, pp 370–7 [7] J D Faires and R L Burden, Numerical Methods Boston, MA: PWS,1993 [8] A Goshtasby, D A Turner, and L V Ackerman, Jan 1992, “Matching of tomographic slices for interpolation.,” IEEE Trans on medical imaging, vol 11, no 4, pp 507–16 [9] G J Grevera and J K Udupa, Jan 1996, “Shape-based interpolation of multidimensional grey-level images,” IEEE Trans on medical imaging, vol 15, no 6, pp 881–92 [10] G J Grevera and J K Udupa, Aug 1998, “An objective comparison of 3-D image interpolation methods.,” IEEE transactions on medical imaging, vol 17, no 4, pp 642–52 [11] G J Grevera, J K Udupa, and Y Miki, 1999, “A task-specific evaluation of threedimensional image interpolation techniques,” IEEE Trans on medical imaging, vol 18, no 2, pp 137–43 [12] W E Higgins, C J Orlick, and B E Ledell, Jan 1996, “Nonlinear filtering approach to 3D gray-scale image interpolation.,” IEEE Trans on medical imaging, vol 15, no 4, pp 580– [13] Rorbert G.Keys, 1981, “Cubic convolution interpolation for digital image processing”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol 29, no 6, pp 1153-1160 [14] T Y Lee and W H Wang, 2000, “Morphology-based threedimensional interpolation”, IEEE Trans on medical imaging, vol 19, no 7, pp 711–21 [15] J Leng, G Xu, and Y Zhang, 2013, “Medical image interpolation based on multiresolution registration,” Computers & Mathematics with Applications, vol 66, no 1, pp 1– 18 [16] C.-H Lin and T.-Y Lee, Dec 2002, “Feature-guided shape-based image interpolation”, IEEE transactions on medical imaging, vol 21, no 12, pp 1479–89 [17] Thomas M Lehmann, Claudia Gonner, Klaus Spitzer, November 1999, “Survey: Interpolation Methods in Medical Image Processing”, IEEE Transactions on Medical Imaging, vol 18, no [18] J Modersitzki, Aug 2004, Numerical Methods for Image Registration (Numerical Mathematics and Scientific Computation), Oxford university press USA [19] J Modersitzki, 2009, FAIR: flexible algorithms for image registration, vol SIAM [20] M Merickel, 1988, “3-D recontruction: The registration problem, Computer Vision, Graph”, Image Processing, vol 42, pp 206 – 219 [21] G P Penney, J a Schnabel, D Rueckert, M a Viergever, W J Niessen, 2004, “Registration-based interpolation”, IEEE Trans on medical imaging, vol 23, no 7, pp 922– [22] S W Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections: Implementation and Applications, G T Herman Ed Berlin, Germany: Springer-Verlag, 1979, pp 9–70 [23] D Rueckert, L I Sonoda, C Hayes, D L Hill, M O Leach, D J Hawkes, 1999, “Nonrigid registration using free-form deformations: application to breast MR images.,” IEEE Trans on medical imaging, vol 18, no 8, pp 712–21 [24] Zeyun Yu, Ahmadreza Baghaie, 2014, “Curvature-Based registration for slice interpolation of medical images”, Computational Modeling of Objects Presented in Images Fundamentals, Methods, and Applications Lecture Notes in Computer Science , Springer,Volume 8641, pp 69-80 ... “Medical image interpolation based on multiresolution registration,” Computers & Mathematics with Applications, vol 66, no 1, pp 1– 18 [16] C.-H Lin and T. -Y Lee, Dec 2002, “Feature-guided shape-based... Phạm Việt Bình, Đỗ Năng Tồn (2008), Xử lý ảnh, NXB Khoa học kỹ thuật, Hà Nội Tiếng Anh [3] C R Appledorn, “A new approach to the interpolation of sampled data,” IEEE Trans Med Imag., vol 15, pp... Methods for Image Registration (Numerical Mathematics and Scientific Computation), Oxford university press USA [19] J Modersitzki, 2009, FAIR: flexible algorithms for image registration, vol SIAM [20]