香 書 昹 TÝch Ph©n 修 身 齊 家 治 國 平 天 下 NguyÔn §øc Thôy TÝnh c¸c tÝch ph©n sau: 1.(A2004): T 1 = 2 1 1 1 x dx x ∫ + − 2.(B2004): T 2 = 1 3ln .ln 1 e x x dx x + ∫ 3.(D2004): T 3 = ( ) 3 2 ln 2 x x dx− ∫ 4.(A2005): T 4 = 2 sin 2 sin 1 3cos 0 x x dx x π + ∫ + 5.(B2005): T 5 = 2 sin 2 .cos 1 cos 0 x x dx x π ∫ + 6.(D2005): 2 sin cos cos 0 x e x xdx π ÷ + ∫ 7. T 7 = 3 2 sin tan 0 x xdx π ∫ 8. T 8 = 2 cos sin 2 0 x e xdx π ∫ 9. T 9 = 4 2 1 2 4 0 x x dx x − + ∫ + 10. T 10 = 7 2 3 1 0 x dx x + ∫ + 11. T 11 = 4 sin (tan .cos ) 0 x x e x dx π + ∫ 12. T 12 = 2 ln 1 e x xdx ∫ 13. T 13 = 3 2 2 1 x x m dx− + ∫ a. TÝnh T 13 víi m = 1. b. TÝnh T 13 theo m víi m < -3. 14.(C§SPA04) T 14 = 5 3 3 2 2 0 1 x x dx x + ∫ + 15.(C§SP B¾c Ninh 2004) T 15 = 3 tan 2 cos 1 cos 4 x dx x x π π ∫ + 16. (C§SP B×nh Phíc 2004) T 16 = 2 sin 2 1 cos 0 x x dx x π ∫ + 17. (C§SP Kon Tum 2004) T 17 = 1 1 0 dx x e ∫ + 18. (C§SP Hµ Nam A2004) T 18 = 1 x dx x + ∫ 19. (C§SP Hµ Nam A2004) T 19 = 4 2 tan 0 x xdx π ∫ 20. (C§ GTVT 2004) T 20 = 5 ( 2 2 ) 3 x x dx+ − − ∫ − 21. (C§ KTKT I A2004) T 21 = 4 2 5 0 1 x dx x ∫ + 22. (C§ A2004) T 22 = 1 2 2 5 2 0 dx x x ∫ + + 23. (C§ KTKH §µ N½ng 2004) T 23 = . 3 2 2 1 0 x x dx+ ∫ 24. (C§ 2005) T 24 = 1 3 2 3. 0 x x dx+ ∫ 25. (C§ XD sè 3- 2005) T 25 = 3 3 3 1 3 1 x dx x x − ∫ + + + − 26. (C§ GTVT 2005) _______________________________________________________________ 阮 昹 瑞 *Patience and time run through the longest way * 有 志 更 成 Tích Phân Nguyễn Đức Thụy T 26 = 1 5 2 1 0 x x dx 27. (CĐ KTKT I - 2005) T 27 = 2 3 5 sin 0 x e xdx 28. (CĐ TCKT IV - 2005) T 28 = 3 2 5 1. 0 x x dx+ 29. (CĐ Truyền hình A2005) T 29 = 2 4 1 2sin 1 sin 2 0 x dx x + 30. (CĐ SP TP. HCM 2005) T 30 = 0 2 2 4 1 dx x x + + 31. (CĐ KTKT Cần Thơ A2005) T 31 = ln 2 1 e x dx x 32. (CĐ Sp Vĩnh Long 2005) T 32 = 7 3 1 3 3 1 0 x dx x + + 33. (CĐ SP Bến Tre 2005) T 33 = 2 cos3 sin 1 0 x dx x + 34. (CĐ SP Sóc Trăng A2005) T 34 = 2 sin 2 2 0 sin 2cos .cos 2 xdx x x x + 35. (CĐ SP Sóc Trăng 2005) T 35 = 2 3 .sin 2 sin 2 .cos 0 x x dx x x 36.(CĐ Cộng đồng Vĩnh Long A05) T 36 = ln 1 e x xdx 37. (CĐ Công Nghiệp Hà Nội 2005) T 37 = 2 4 .cos . 0 x x dx 38. (CĐ SP Hà Nam 2005) T 38 = 3 2 2 2 4 9 2 4 0 x x x dx x + + + + 39. (CĐ KT TC 2005) T 39 = 1 3 ( 3) 0 xdx x + 40. (CĐ SP Vĩnh Phúc 2005) T 40 = 2 1 1 ln e dx x x 41. (CĐ SP Hà Nội 2005) T 41 = 2004 4 sin 2004 2004 sin cos 0 x dx x x + 42. (CĐ SP Kon Tum 2005) T 42 = 3 2 4sin 1 cos 0 x dx x + 43. (CĐ KTKH Đà Nẵng 2005) T 43 = 4 (sin cos )cos 0 dx x x x + 44. (CĐ SP Quảng Nam 2005) T 44 = 1 2 3 0 ( 1) x x e x dx+ 45. (CĐ Y tế Thanh Hoá 2005) T 45 = ln2 2 5 0 x x e dx 46. (CĐ SP Quảng Bình 2005) T 46 = 2 1 2 3 0 ( 1) x x dx x + + 47. (CĐ SP Quảng Ngãi 2005) _______________________________________________________________ *Patience and time run through the longest way * Tích Phân Nguyễn Đức Thụy T 47 = 4 0 (1 tan tan )sin 2 x x xdx + 48. T 48 = 3 3 1 dx x x + 49. T 49 = ln8 2 1. ln3 x x e e dx+ 50. T 50 = 2 .sin 0 x xdx 51. T 51 = 1 1 0 x xdx 52. T 52 = 3 2 ln ln 1 1 e x dx x x + 53. T 53 = 2 2 (2 1)cos 0 x xdx 54. (2002) T 54 = 3 1 2 0 1 x dx x + 55. (2002) T 55 = ln3 3 0 ( 1) x e dx x e + 56.(2002)T 56 = 0 2 3 ( 1) 1 x x e x dx+ + 57.T 57 = 2 6 3 5 1 cos .sin cos 0 x x xdx 58. (2002) T 58 = 2 3 2 5 4 dx x x + 59. T 59 = 4 1 cos 2 0 x dx x + 60. T 60 = 1 3 2 1 0 x x dx 61. (B2003) T 61 = 2 4 1 2sin 1 sin 2 0 x dx x + 62. T 62 = 2 ln5 1 ln2 x e dx x e 63.T 63 = 1 3 cos 1 x dx x x + ữ + Dục hành viễn, tất tự nhĩ 64. T 64 = 1 2 3 0 x x e dx 65. (D2003) T 65 = 2 2 0 x x dx 66. T 66 = 2 1 ( 1) 1 0 x dx x x + + 67. (CĐ SP Vĩnh Phúc A2002) T 67 = 2 sin sin 2 sin 3 0 x x xdx 68. (CĐ SP Hà Tĩnh A, B2002) T 68 = 2 4 4 cos2 (sin cos ) 0 x x x dx + 69. (CĐ SP Hà Tĩnh AB2002) T 69 = 2 5 cos 0 xdx 70. (CĐ SP KT I 2002) Cho I n = 1 2 2 (1 ) 0 n x x dx và J n = 1 2 (1 ) 0 n x x dx Với n nguyên dơng a. Tính J GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 10 DẠNG TÍCH PHÂN HAY GẶP TRONG CÁC KÌ THI ĐẠI HỌC – CAO ĐẲNG Trong các kì thi Đại Học – Cao Đẳng câu tích phân ln mặc định xuất đề thi mơn Tốn Tích phân khơng phải câu hỏi khó, tốn “nhẹ nhàng”, mang tính chất “cho điểm” Vì việc điểm trở nên “vô duyên” với bỏ chút thời gian đọc tài liệu Ở viết nhỏ cung cấp tới em dạng tích phân thường xuyên xuất kì thi Đại Học - Cao Đẳng ( đề thi khơng nằm ngồi dạng này) Với cách giải tổng quát cho dạng, ví dụ minh họa kèm, với lượng tập đa dạng, phong phú Mong sau đọc tài liệu, việc đứng trước tốn tích phân khơng rào cản em Chúc em thành công ! Trong viết giới thiệu tới em phần: Trang I SƠ ĐỒ CHUNG GIẢI BÀI TỐN TÍCH PHÂN …………………………… II CÁC CƠNG THỨC NGUYÊN HÀM CẦN NHỚ…………………………… III LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN… –12– 26 IV 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG 27 – 81 V ỨNG DỤNG TÍCH PHÂN…………………………………………………… 82 – 93 VI CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI…… 94 – 102 - 106 VII DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA Cnk …… 107 - 110 VIII KINH NGHIỆM GIẢI BÀI TỐN TÍCH PHÂN ĐẠI HỌC ………………111- 114 I SƠ ĐỒ CHUNG GIẢI BÀI TỐN TÍCH PHÂN Trang www.nitropdf.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 II CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ Điều kiện tiên để làm tốt phần tích phân phải nhớ hiểu cách vận dụng công thức nguyên hàm sau: (chỉ cần hiểu công thức biết cách suy luận cơng thức lại) 1 x 1 ax b x dx C ; ax b dx a C u 1 1) u du C ( 1) 1 du du du u C ; C; 1 C u u u u dx ln x C du 2) ln u C x u dx ln ax b C ax b a x ax a dx C; eu du eu C u a ln a 3) au du C ln a e x dx e x C ; eax b dx e axb C a sin xdx cos x C 4) sin udu cos u C sin(ax b)dx cos(ax b) C a cos xdx sin x C 5) cos udu sin u C cos( ax b)dx sin( ax b) C a dx sin x cot x C du 6) cot u C dx sin u cot(ax b) C sin (ax b) a dx cos x tan x C du 7) tan u C dx cos2 u tan(ax b) C cos (ax b) a du ua a u 2a ln u a C du 1 ua 8) 2 du ln C u a 2a u a u a 2a u a dx xa ln C x a 2a xa Trang www.nitropdf.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 III LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC LỚP TÍCH PHÂN HỮU TỈ CÁCH TÍNH TÍCH PHÂN HÀM HỮU TỈ I f ( x) dx g ( x) (*) Chú thích: Sơ đồ hiểu sau : Khi đứng trước toán tích phân có dạng hữu tỉ trước tiên ta quan tâm tới bậc tử số mẫu số *) Nếu bậc tử số nhỏ bậc mẫu số, ta ý tới bậc mẫu số Cụ thể: ++) Nếu bậc mẫu số ta có ln cơng thức bảng ngun hàm đưa đáp số ++) Nếu bậc mẫu số ta quan tâm tới hay “tính có nghiệm” phương trình mẫu +) Nếu tức ta phân tích mẫu thành tích dùng kĩ thuật tách ghép để tách thành hai biểu thức có mẫu bậc (quay trường hợp mẫu số có bậc ) +) Nếu tức ta phân tích mẫu thành đẳng thức dùng kĩ thuật tách ghép để đưa tích phân dạng biết +) Nếu tức ta khơng thể phân tích mẫu số thành tích đẳng thức -) Nếu tử số khác ta dùng phương pháp lượng giác hóa để chuyển dạng ( theo cách đổi biến sơ đồ trên) -) Nếu tử có dạng bậc ta chuyển bậc ( số hay số tự do) kĩ thuật vi phân cách trình bày sơ đồ quay trường hợp trước (tử số khác ) ++) Nếu bậc mẫu số lớn ta tìm cách giảm bậc phương pháp đổi biến kĩ thuật: Nhân, chia, tách ghép (đồng hệ số), vi phân… *) Nếu bậc tử số lớn bậc mẫu số ta chuyển sang TH2 (trường hợp 2) Trang www.nitropdf.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 CHÚ Ý : Việc đồng hệ số dựa theo cách phân tích sau: f ( x) m ( ax b) (cx dx e) n A1 ( ax b ) A2 (ax b) Am ( ax b ) m B1 x C1 (cx dx e) B2 x C 2 (cx dx e) Bn x Cn (cx dx e) n Sau quy đồng bỏ mẫu, dùng tính chất “hai đa thức hệ số tương ứng chúng nhau” từ tìm Ai , B j , C j (i 1, m; j 1, n) dùng cách chọn x để tìm Ai , B j , C j Các ví dụ minh họa Ví dụ Tính tích phân I Giải: 1) Với k dx với : x 2x k 1) k 2) k 3) k : 2 4dx (2 x 3) (2 x 1) 2x 1 I 2 dx dx ln x 8x (2 x 1)(2 x 3) x 1 2x 2x x2 2x 0 dx 2) Với k : I 3) Với k : I ln 15 2 dx dx 2 x x ( x 1) x 1 dx dx x x ( x 1) 3dt Đặt x tan t với t ; dx 3.(1 tan t ) dt x : t : cos t 2 Khi I 3.(1 tan t )dt 3 3 dt t 3.(tan t 1) 18 Ví dụ Tính tích phân sau: dx 1) I1 2) dx I2 4x 1 2x x 1 5) I 4x dx x2 x 2 6) I 1 3) I 3x dx 4x x dx x 6x 7) I Trang www.nitropdf.com x 1 x 3 dx 2x 4) I dx x 2x 2 GV: THANH TÙNG 0947141139 – ...GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 1 10 DẠNG TÍCH PHÂN HAY GẶP TRONG CÁC KÌ THI ĐẠI HỌC – CAO ĐẲNG Trong các các kì thi Đại Học – Cao Đẳng câu tích phân luôn mặc định xuất hiện trong đề thi môn Toán. Tích phân không phải là câu hỏi khó, đây là một bài toán “nhẹ nhàng”, mang tính chất “cho điểm”. Vì vậy việc mất điểm sẽ trở nên “vô duyên” với những ai đã bỏ chút thời gian đọc tài liệu. Ở bài viết nhỏ này sẽ cung cấp tới các em các dạng tích phân thường xuyên xuất hiện trong các kì thi Đại Học - Cao Đẳng ( và đề thi cũng sẽ không nằm ngoài các dạng này). Với cách giải tổng quát cho các dạng, các ví dụ minh họa đi kèm, cùng với lượng bài tập đa dạng, phong phú. Mong rằng sau khi đọc tài liệu, việc đứng trước một bài toán tích phân sẽ không còn là rào cản đối với các em . Chúc các em thành công ! Trong bài viết này sẽ giới thiệu tới các em 8 phần: Trang I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN …………………………… 1 II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ…………………………… 2 III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN… 3 –12– 26 IV. 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG 27 – 81 V. ỨNG DỤNG TÍCH PHÂN…………………………………………………… 82 – 93 VI. CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI…… 94 – 102 - 106 VII. DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA k n C …… 107 - 110 VIII. KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC ………………111- 114 I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 2 II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ Điều kiện tiên quyết để làm tốt phần tích phân là chúng ta phải nhớ và hiểu được cách vận dụng các công thức nguyên hàm sau: (chỉ cần hiểu 8 công thức thì sẽ biết cách suy luận ra các công thức còn lại) 1 ( 1) ) 1 u u du C 1 2 1 1 1 1 ; . 1 1 1 1 ; ; 1 ax b x x dx C ax b dx C a du du du u C C C u u u u ) ln du u C u 2 ln 1 ln dx x C x dx ax b C ax b a ) ln u u a a du C a 3 ; ln 1 ; x x u u x x ax b ax b a a dx C e du e C a e dx e C e dx e C a ) sin cos udu u C 4 sin cos 1 sin( ) cos( ) xdx x C ax b dx ax b C a ) cos sin udu u GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 1 10 DẠNG TÍCH PHÂN HAY GẶP TRONG CÁC KÌ THI ĐẠI HỌC – CAO ĐẲNG Trong các các kì thi Đại Học – Cao Đẳng câu tích phân luôn mặc định xuất hiện trong đề thi môn Toán. Tích phân không phải là câu hỏi khó, đây là một bài toán “nhẹ nhàng”, mang tính chất “cho điểm”. Vì vậy việc mất điểm sẽ trở nên “vô duyên” với những ai đã bỏ chút thời gian đọc tài liệu. Ở bài viết nhỏ này sẽ cung cấp tới các em các dạng tích phân thường xuyên xuất hiện trong các kì thi Đại Học - Cao Đẳng ( và đề thi cũng sẽ không nằm ngoài các dạng này). Với cách giải tổng quát cho các dạng, các ví dụ minh họa đi kèm, cùng với lượng bài tập đa dạng, phong phú. Mong rằng sau khi đọc tài liệu, việc đứng trước một bài toán tích phân sẽ không còn là rào cản đối với các em . Chúc các em thành công ! Trong bài viết này sẽ giới thiệu tới các em 8 phần: Trang I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN …………………………… 1 II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ…………………………… 2 III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN… 3 –12– 26 IV. 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG 27 – 81 V. ỨNG DỤNG TÍCH PHÂN…………………………………………………… 82 – 93 VI. CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI…… 94 – 102 - 106 VII. DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA k n C …… 107 - 110 VIII. KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC ………………111- 114 I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN www.VNMATH.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 2 II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ Điều kiện tiên quyết để làm tốt phần tích phân là chúng ta phải nhớ và hiểu được cách vận dụng các công thức nguyên hàm sau: (chỉ cần hiểu 8 công thức thì sẽ biết cách suy luận ra các công thức còn lại) 1 ( 1)) 1 u u du C 1 2 1 1 1 1 ; . 1 1 1 1 ; ; 1 ax b x x dx C ax b dx C a du du du u C C C u u u u ) ln du u C u 2 ln 1 ln dx x C x dx ax b C ax b a ) ln u u a a du C a 3 ; ln 1 ; x x u u x x ax b ax b a a dx C e du e C a e dx e C e dx e C a ) sin cosudu u C 4 sin cos 1 sin( ) cos( ) xdx x C ax b dx ax b C a ) cos sinudu u C 5 cos sin 1 cos( ) sin( ) xdx x C ax b dx ax b C a 2 ) cot sin du u C u 6 2 2 cot sin 1 cot( ) sin ( ) dx x C x dx ax b C ax b a 2 ) tan cos du u C u 7 2 2 tan cos 1 tan( ) cos ( ) dx x C x dx ax b C ax b a 2 2 11 1 1 ) ln 2 2 du u a du C u a a u a u a a u a 8 2 2 2 2 1 ln 2 1 ln 2 du u a C a u a u a dx x a C x a a x a www.VNMATH.com GV: THANH TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 Trang 3 III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC 1. LỚP TÍCH PHÂN HỮU TỈ CÁCH TÍNH TÍCH PHÂN HÀM HỮU TỈ ( ) ( ) f x I dx g x (*) Chú thích: Sơ đồ trên được hiểu như sau : Khi đứng trước một bài toán tích phân có dạng hữu tỉ trước tiên ta quan tâm tới bậc của tử số và mẫu số. *) Nếu bậc của tử số nhỏ hơn bậc của mẫu số, khi đó ta chú ý tới bậc dưới GIÁO VIÊN CHUYÊN LUYỆN THI MÔN Toán GIỚI THIỆU Chuyên Đề Tích Phân - Đăng Kí Nhận Tài Liệu Trọn Bộ TOán Lý Hóa Sinh Anh Văn Tai: www.hoclamgiau.vn/?refid=455327 (Nếu ko thầy chỗ Đăng kí các bạn bấm vào Ô đăng nhập sẽ thấy Chỗ Đăng kí) - Bấm Ô xác thực bên cạnh ô nhập điện thoại để lấy mã xác thực thành viên -Sau khi đăng kí Các bạn gửi tên đăng nhập đã tạo vào hòm thư hoclamgiau0202@gmail.com Để Chúng Tôi Gửi Tài Liệu Cho bạn sau đó 24h kê từ lúc đăng kí thành công Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com GV: THANH TÙNG 0947141139 – 0925509968 10 DẠNG TÍCH PHÂN HAY GẶP TRONG CÁC KÌ THI ĐẠI HỌC – CAO ĐẲNG Trong các kì thi Đại Học – Cao Đẳng câu tích phân mặc định xuất đề thi môn Toán Tích phân câu hỏi khó, toán “nhẹ nhàng”, mang tính chất “cho điểm” Vì việc điểm trở nên “vô duyên” với bỏ chút thời gian đọc tài liệu Ở viết nhỏ cung cấp tới em dạng tích phân thường xuyên xuất kì thi Đại Học - Cao Đẳng ( đề thi không nằm dạng này) Với cách giải tổng quát cho dạng, ví dụ minh họa kèm, với lượng tập đa dạng, phong phú Mong sau đọc tài liệu, việc đứng trước toán tích phân không rào cản em Chúc em thành công ! Trong viết giới thiệu tới em phần: Trang I SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN …………………………… II CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ…………………………… III LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN… –12– 26 IV 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG 27 – 81 V ỨNG DỤNG TÍCH PHÂN…………………………………………………… 82 – 93 VI CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI…… 94 – 102 - 106 VII DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA Cnk …… 107 - 110 VIII KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC ………………111- 114 I SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN Trang Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com GV: THANH TÙNG 0947141139 – 0925509968 II CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ Điều kiện tiên để làm tốt phần tích phân phải nhớ hiểu cách vận dụng công thức nguyên hàm sau: (chỉ cần hiểu công thức biết cách suy luận công thức lại) 1 ax b x 1 x dx C ; ax b dx a C u 1 1) u du C ( 1) 1 du du 1 du u C ; C; 1 C u u u u dx ln x C du 2) ln u C x u dx ln ax b C ax b a x ax a dx C; eu du eu C u a a ln C 3) au du ln a e x dx e x C; eax b dx eaxb C a sin xdx cos x C 4) sin udu cos u C sin(ax b)dx cos(ax b) C a cos xdx sin x C 5) cos udu sin u C cos( ax b)dx sin( ax b) C a dx sin x cot x C du 6) cot u C dx sin u cot(ax b) C sin (ax b) a dx cos x tan x C du 7) tan u C dx cos2 u tan(ax b) C cos (ax b) a du ua a u 2a ln u a C du 1 ua 8) 2 du ln C u a 2a u a u a 2a u a dx xa ln C x a 2a xa Trang Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com GV: THANH TÙNG 0947141139 – 0925509968 III LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC LỚP TÍCH PHÂN HỮU TỈ CÁCH TÍNH TÍCH PHÂN HÀM HỮU TỈ I f ( x) dx g ( x) (*) Chú thích: Sơ đồ hiểu sau : Khi đứng trước toán tích phân có dạng hữu tỉ trước tiên ta quan tâm tới bậc tử số mẫu số *) Nếu bậc tử số nhỏ bậc mẫu số, ta ý tới bậc mẫu số Cụ thể: ++) Nếu bậc mẫu số ta có công thức bảng nguyên hàm đưa đáp số ++) Nếu bậc mẫu số ta quan tâm tới hay “tính có nghiệm” phương trình mẫu +) Nếu tức ta phân tích mẫu thành tích dùng kĩ thuật tách ghép để tách thành hai biểu thức có mẫu bậc (quay trường hợp mẫu số có bậc ) +) Nếu tức ta phân tích mẫu thành đẳng thức dùng kĩ thuật tách ghép để đưa tích phân dạng biết +) Nếu tức ta phân tích mẫu số thành tích đẳng thức -) Nếu tử số khác ta dùng phương pháp lượng giác hóa để chuyển dạng ( theo cách đổi biến sơ đồ trên) -) Nếu tử có dạng bậc ta chuyển bậc ( số hay số tự do) kĩ thuật vi phân cách trình bày sơ đồ quay trường hợp trước (tử số khác ) ++) Nếu bậc mẫu số lớn ta tìm cách giảm bậc phương pháp đổi biến ... TÙNG 0947141139 – 0925509968 http://www.facebook.com/giaidaptoancap3 IV 10 DẠNG TÍCH PHÂN HAY GẶP TRONG CÁC KÌ THI ĐẠI HỌC – CAO ĐẲNG DẠNG 1: I1 f g ( x), n g ( x) g '( x)dx (*) CÁCH... http://www.facebook.com/giaidaptoancap3 TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN Trước vào 10 dạng tích phân hay gặp kì thi Đại Học – Cao Đẳng em cần nắm cách tính tích phân lượng giác qua ví dụ sau: Ví dụ Tính... 1: (đổi biến) Đặt t x x dt (2 x 3) dx x :1 t : 10 10 10 dt 1 t Khi I dt ln t (t 2) t t t2 10 15 ln 12 Cách 2: (tách ghép sử dụng kĩ thuật vi phân) 2