COMPUTED TORQUECONTROL Manipulator in the standard form Mx cx M (q)q Inertia matrix kx F V (q, q ) G (q ) Coriolis/centripetal vector Gravity vector * M(q) is symmetric Computed-Torque Control (⇒ feedback linearization of nonlinear system) Consider robot arm dynamics : M (q)q N (q, q ) d ,where d : -① disturbance/noise, : controltorque Define tracking error as e(t ) qd (t ) q(t ) then, e q d q e qd q ①⇒ e qd M 1 ( N d ) M (qd e) ( N d ) qd e M 1 ( N d ) e qd M 1 ( N d ) Defining control input u and disturbance function w , u qd M 1 ( N ) -② w M 1 d then e u w Defining state x : e x e Then, tracking error dynamics : d dt e 0 I e 0 0 e 0 0 e I u I w -③ ↖linear error system ★ The dynamic sytem itself is nonlinear, but the tracking error dynamic is linear ② looks like feedback linearizing transformation u qd M 1 ( N ) ② M (qd u) N ②⇒ -④ ↘called "Computed-torque control law." ★ If we selects u(t) stabilizing ③ so that e(t) goes to zero, then non trajectory (1) Selecting control input u(t) as PD : ④ M (qd uPD ) N uPD Kp e Then, equation ④ becomes M (qd Kd e Kd e K p e) N Now, we want to find gains for u Closed-loop error dynamics e e Kd e Kp e Kp e Kd e w e u w (←③): Kd e w e Kd e Kp e Kp e w w in state-space form : d e dt e I e o Kp Kd e I w Closed-loop characteristic equation : Using | sI A | c ( s) S K v S K p Where, K v diag{K vi } , K p diag{K pi } ∴ Error system is asymptotically stable if K vi and K pi are all positive (using Routh-Hurwitz table) Dynamics of a Two-Link Planar Elbow Arm Elearning Exercise (m1 m2 ) a12 m2 a2 2m2 a1a2 cos m2 a2 m2 a1a2 cos m2 a2 m2 a1a2 cos 1 m2 a m2 a1a2 ( 212 12 ) sin (m1 m2 ) ga1 cos 1 m2 ga2 cos(1 ) sin m2 ga2 cos(1 ) m a a 2 1 For the robot dynamic equation derived above, desired trajectory qd (t ) has the components: 1d g1 sin( 2t / T ) 2d g2 cos(2t / T ) ,where T=2s , amplitudes g1=g2=0.1 rad, kp=100, kd=20, m1=1, m2=1, a1=1, a2=1, initial condition, x=[0 0 0]:theta1, theta2, dtheta1,dtheta2 Simulate PID computed torquecontrol ... M (qd u) N ②⇒ -④ ↘called "Computed -torque control law." ★ If we selects u(t) stabilizing ③ so that e(t) goes to zero, then non trajectory (1) Selecting control input u(t) as PD : ④ ... m2=1, a1=1, a2=1, initial condition, x=[0 0 0]:theta1, theta2, dtheta1,dtheta2 Simulate PID computed torque control