Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
2,8 MB
Nội dung
Trang 1 Soạn ngày 02 tháng 9 năm 2007 Ngày dạy : . Tiết : 01 * CÁC ĐỊNH NGHĨA * I. MỤC TIÊU CẦN ĐẠT Về kiến thức Hiểu khái niệm vectơ, vectơ − không, độ dài vectơ, hai vectơ cùng phương, hai vectơ bằng nhau. Biết được vectơ − không cùng phương và cùng hướng với mọi vectơ. Về kỹ năng Chứng minh được hai vectơ bằng nhau. Khi cho trước điểm A và vectơ a r , dựng được điểm B sao cho AB a = uuur r . Về tư duy và thái độ Biết “ quy lạ về quen ”, so sánh và phán đoán để ứng dụng vào thực tiễn. Tích cực hoạt động dưới sự hướng dẫn của thầy. Mạnh dạn trình bày ý kiến của cá nhân về những vấn đề đã thảo luận trong nhóm. II. CHUẨN BỊ Giáo viên : Soạn bài và xem lại giáo án trước giờ lên lớp. Sử dụng phương pháp thảo luận nhóm, chia nhóm, cử nhóm trưởng. Chuẩn bị hệ thống bài toán, câu hỏi và in sẵn. Học sinh : Đọc sách giáo khoa, chuẩn bị bài trước khi đến lớp, ghi lại những vấn đề cần trao đổi. III. TIẾN TRÌNH HOẠT ĐỘNG DẠY VÀ HỌC 1. Ổn định lớp và kiểm tra bài cũ : Có thể thành lập được mấy đoạn thẳng từ hai điểm phân biệt A, B ? 2. Bài mới Mở bài : Vectơ là một khái niệm “mới ”đối với học sinh, cần được giới thiệu và làm quen một cách trực quan và đúng bản chất của vectơ. Cần so sánh với đoạn thẳng để hiểu thấu đáo hơn về vectơ. Hoạt động bài mới Trang 2 Hoạt động của thầy Hoạt động của trò Nội dung chính ghi bảng 1. Giúp hs hình thành và củng cố khái niệm vectơ. − Có thể xác định bao nhiêu vectơ khác 0 r từ hai điểm phân biệt A, B cho trước ? 2. Giúp hs hình thành và nhận biết vtơ cùng phương − Hãy nhận xét về vị trí tương đối của giá các vectơ sau : AB uuur , CD uuur , EF uuur , GH uuur . 3. Giúp hs hiểu và nhận biết vectơ cùng hướng, ngược hướng. − Cho ba điểm A, B, C phân biệt và thẳng hàng. Trong trường hợp nào hai vectơ AB uuur và AC uuur cùng hướng ? Trong trường hợp nào hai vectơ AB uuur và AC uuur ngưọc hướng ? 4. Giúp hs hiểu và nhận biết vectơ bằng nhau. − Gọi O là tâm của lục giác đều ABCDEF. Hãy chỉ ra các vectơ bằng OA uuur ? B A Bài giải Từ hai điểm phân biệt A, B có thể xác định hai vectơ khác 0 r là AB uuur ; BA uuur . A B C AB uuur và AC uuur cùng hướng ⇔ A, B, C thẳng hàng và B, C nằm cùng một phía đối với điểm A. B A C AB uuur và AC uuur ngược hướng ⇔ A, B, C thẳng hàng và B, C nằm về hai phía đối với điểm A. OA DO = uuur uuur ; OA CB = uuur uuur ; OA EF= uuur uuur . 1. Vectơ là gì ? Định nghĩa : Vectơ là một đoạn thẳng có hướng, nghiã là một đoạn thẳng có quy định thứ tự hai đầu mút. Để chỉ vectơ có điểm đầu là M, điểm cuối là N, ta ký hiệu : MN uuuur . Độ dài đoạn thẳng MN gọi là độ dài của vectơ MN uuuur , ký hiệu : | MN uuuur |. Đường thẳng MN gọi là giá của vectơ MN uuuur , chiều từ M đến N gọi là chiều của vectơ MN uuuur . Vectơ có điểm đầu và điểm cuối trùng nhau gọi là vectơ − không, ký hiệu : 0 r . Vectơ−không là vectơ có phương tùy ý và có độ dài bằng 0. 0AM = uuuur r ⇔ A M ≡ . 2. Vectơ cùng phương, vectơ cùng hướng, vectơ ngược hướng Định nghĩa : Hai vectơ cùng phương nếu chúng có giá song song hoặc trùng nhau. AB uuur , CD uuur , EF uuur , GH uuur . là những vectơ cùng phương. Ký hiệu : AB CD uuur uuur [Z , AB EF uuur uuur [Z , . Hai vectơ cùng phương và cùng chiều gọi là hai vectơ cùng hướng. Hai vectơ cùng phương và ngược chiều gọi là hai vectơ ngược hướng. 3. Vectơ bằng nhau, vectơ đối nhau Định nghĩa : Hai vectơ gọi là bằng nhau khi chúng cùng hướng và có độ dài bằng nhau. Hai vectơ gọi là đối nhau khi chúng ngược hướng và có độ dài bằng nhau. Chú ý : Cho vectơ 0a ≠ r r và một điểm O bất kỳ thì ta luôn tìm được điểm A duy nhất sao cho OA a = uuur r . 3. Hoạt động nối tiếp : Học thuộc định nghĩa, chuẩn bị bài tập : 1, 2, 3, 4 trang 7. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Trang 3 Soạn ngày 02 tháng 9 năm 2007 Ngày dạy : . Tiết : 02 * LUYỆN TẬP * I. MỤC TIÊU CẦN ĐẠT Về kiến thức Củng cố khái niệm vectơ, vectơ − không, độ dài vectơ, hai vectơ cùng phương, hai vectơ bằng nhau. Về kỹ năng Nhận biết vectơ cùng phương, cùng hướng, ngược hướng và vectơ bằng nhau. Về tư duy và thái độ Rèn luyện tư duy logic và trí tưởng tượng không gian, tính cẩn thận, chính xác; biết ứng dụng vào thực tiễn. Tích cực hoạt động dưới sự hướng dẫn của thầy. Mạnh dạn trình bày ý kiến của cá nhân về những vấn đề đã thảo luận trong nhóm. II. CHUẨN BỊ Giáo viên : Soạn bài và xem lại giáo án trước giờ lên lớp. Sử dụng phương pháp thảo luận nhóm, chia nhóm, cử nhóm trưởng. Học sinh : Đọc sách giáo khoa, chuẩn bị bài trước khi đến lớp, ghi lại những vấn đề cần trao đổi. III. TIẾN TRÌNH HOẠT ĐỘNG DẠY VÀ HỌC 1. Ổn định lớp và kiểm tra bài cũ : Thế nào là hai vectơ cùng phương ? cùng hướng ? ngược hướng ? 2. Bài mới Hoạt động bài mới Hoạt động của thầy Hoạt động của trò và ghi bảng Bài 1.7 : Cho ba vectơ a r , b r , c r đều khác 0 r . Các khẳng định sau đúng hay sai ? a) Nếu hai vectơ a r , b r cùng phương với c r thì a r và b r cùng phương. b) Nếu hai vectơ a r , b r cùng ngược hướng với c r thì a r và b r cùng hướng. Bài 2.7 : Trong hình sau hãy chỉ ra các vectơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau. Bài giải Các khẳng định a), b) đều đúng. Trang 4 Hoạt động của thầy Hoạt động của trò và ghi bảng Bài 3.7 : Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi AB CD = uuur uuur . Bài 4.7 : Cho lục giác đều ABCDEF có tâm O. a) Tìm những vectơ khác 0 r và cùng phương với OA uuur ? b) Tìm những vectơ khác 0 r và bằng AB uuur ? a b r r [Z , u v r r [Z , x y r ur [Z , x w r ur [Z x z r r [Z , y w ur ur [Z , w z ur r [Z . a r , b r cùng hướng; x r , y ur cùng hướng; x r , z r cùng hướng; y ur , z r cùng hướng. u r , v r ngược hướng; x r , w ur ngược hướng; y ur , w ur ngược hướng; w ur , z r ngược hướng. x y = r ur . ABCD là hình bình hành thì AB CD = uuur uuur . Ngược lại nếu AB CD = uuur uuur thì AB cùng phương CD nên ABCD là hình bình hành. a) DO uuur , OD uuur , BC uuur , CB uuur , EF uuur , FE uuur . b) AB ED FO OC= = = uuur uuur uuur uuur . 3. Hoạt động nối tiếp : Xem lại cách giải bài tập. Chuẩn bi bài : “ Tổng và hiệu của hai vectơ ”. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Soạn ngày 09 tháng 9 năm 2007 Ngày dạy : Tiết : 03, 04 * TỔNG VÀ HIỆU CỦA HAI VECTƠ * I. MỤC TIÊU CẦN ĐẠT Về kiến thức Hiểu cách xác định tổng, hiệu hai vectơ; quy tắc ba điểm, quy tắc hình bình hành và các tính chất của phép cộng, trừ vectơ. Biết được a b a b + ≤ + r r r r . Về kỹ năng Vận dụng được quy tắc ba điểm, quy tắc hình bình hành khi lấy tổng hai vectơ cho trước. Vận dụng được quy tắc trừ OB OC CB− = uuur uuur uuur vào việc chứng minh các đẳng thức vectơ. Về tư duy và thái độ Rèn luyện tư duy logic và trí tưởng tượng không gian, tính cẩn thận, chính xác; biết ứng dụng vào thực tiễn. Tích cực hoạt động dưới sự hướng dẫn của thầy. Trang 5 Mạnh dạn trình bày ý kiến của cá nhân về những vấn đề đã thảo luận trong nhóm. II. CHUẨN BỊ Giáo viên : Soạn bài và xem lại giáo án trước giờ lên lớp. Sử dụng phương pháp thảo luận nhóm, chia nhóm, cử nhóm trưởng. Chuẩn bị hệ thống bài toán, câu hỏi và in sẵn. Học sinh : Đọc sách giáo khoa, chuẩn bị bài trước khi đến lớp, ghi lại những vấn đề cần trao đổi. III. TIẾN TRÌNH HOẠT ĐỘNG DẠY VÀ HỌC 1. Ổn định lớp và kiểm tra bài cũ : 2. Bài mới Mở bài : Cho vectơ 0a ≠ r r và một điểm O tùy ý hãy dựng vectơ OA a = uuur r ? Hoạt động bài mới Hoạt động của thầy Hoạt động của trò Nội dung chính ghi bảng 1. Giúp hs hình thành phép cộng vectơ, từ đó rút ra quy tắc ba điểm và quy tắc hình bình hành. 2. Giúp hs nhận biết và ghi nhớ các tính chất của phép cộng vectơ. − Kiểm chứng các tính chất của phép cộng vectơ qua hình vẽ bên ? 1. Tổng của hai vectơ Định nghĩa : Cho hai vectơ a r , b r . Từ một điểm A tùy ý ta dựng các vectơ ,AB a BC b = = uuur r uuur r ; vectơ c AC = r uuur được gọi là tổng của hai vectơ a r , b r . Ký hiệu : c a b = + r r r . 2. Hệ quả : AB BC AC + = uuur uuur uuur ( Quy tắc ba điểm ). AB AD AC + = uuur uuur uuur (Quy tắc hình bình hành ). 3. Các tính chất : Cho ba vectơ a r , b r , c r tùy ý, ta có : 1. a b b a + = + r r r r (tính chất giao hoán). 2. ( ) ( )a b c a b c + + = + + r r r r r r (tính chất kết hợp). 3. 0 0a a a+ = + = r r r r r (tính chất của vectơ 0 r ). 4. ( ) 0a a + − = r r r (tính chất của vectơ đối). Quy tắc trọng tâm tam giác : Cho ∆ABC, chứng minh rằng : a) Điểm I là trung điểm của AB khi và chỉ khi 0IA IB+ = uur uur r . b) Điểm G là trọng tâm của tam giác ABC ⇔ 0GA GB GC+ + = uuur uuur uuur r . Trang 6 Hoạt động của thầy Hoạt động của trò Nội dung chính ghi bảng − I là trung điểm của AB thì quan hệ giữa IA uur , IB uur là thế nào với nhau ? − Theo quy tắc hình bình hành ta có đẳng thức vectơ nào ? 3. Giúp hs nắm khái niệm phép trừ vectơ và quy tắc ba điểm; quy tắc hình bình hành đối với phép cộng và phép trừ vtơ. − Từ hình bình hành ABCD ta có những đẳng thức vectơ nào ? Bài giải a) I là trung điểm của AB ⇔ IA uur , IB uur là hai vectơ đối nhau. ⇔ 0IA IB+ = uur uur r . b) Gọi G là trọng tâm ∆ABC ⇒ G nằm trên trung tuyến AI; lấy D đối xứng với G qua I thế thì AGBD là hình bình hành và G là trung điểm của CD. Ta có GA GB GD+ = uuur uuur uuur và 0GD GC + = uuur uuur r nên 0GA GB GC GD GC+ + = + = uuur uuur uuur uuur uuur r . 4. Hiệu của hai vectơ Định nghĩa : Hiệu của hai vectơ a r , b r (theo thứ tự đó) là tổng của vectơ a r với vectơ đối của vectơ b r . Ký hiệu : ( )a b a b − = + − r r r r . Tính chất : Cho 3 vectơ a r , b r , c r : c a b a b c= − ⇔ = + r r r r r r Quy tắc ba điểm : 1) 2) AC AB BC BC AC AB = + = − uuur uuur uuur uuur uuur uuur Quy tắc hình bình hành : 1) 2) AB AD AC AB AD DB + = − = uuur uuur uuur uuur uuur uuur Ví dụ 1 : Cho bốn điểm bất kỳ A, B, C, D. Chứng minh rằng : AB CD AD CB + = + uuur uuur uuur uuur . Bài giải ( ) ( ) ( ) ( ) AB CD OB OA OD OC OD OA OB OC+ = − + − = − + − uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ⇔ AB CD AD CB + = + uuur uuur uuur uuur . Củng cố : Cho bốn điểm A, B, C, D tùy ý. Chứng minh rằng : a) AB CD AD CB + = + uuur uuur uuur uuur . b) AB CD AC BD − = + uuur uuur uuur uuur . Hướng dẫn : a) ( ) ( ) ( ) AB CD AD DB CB BD AD CB DB BD AD CB O AD CB+ = + + + = + + + = + + = + uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ur uuur uuur . b) ( ) ( ) ( ) AB CD AC CB BD BC AC BD CB BC AC BD O AC BD− = + − − = − + + = + + = + uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ur uuur uuur . 3. Hoạt động nối tiếp : Hướng dẫn học sinh hoàn thiện bài học ở nhà. Chuẩn bị bài tập : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 trang 12. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 0978 150 544. Trang 7 Soạn ngày 12 tháng 9 năm 2007 Ngày dạy : Tiết : 05 * LUYỆN TẬP * I. MỤC TIÊU CẦN ĐẠT Về kiến thức Nắm vững cách xác định tổng, hiệu hai vectơ; quy tắc ba điểm, quy tắc hình bình hành và các tính chất của phép cộng, trừ vectơ. Về kỹ năng Vận dụng được quy tắc ba điểm, quy tắc hình bình hành khi lấy tổng hai vectơ cho trước. Vận dụng được quy tắc trừ OB OC CB− = uuur uuur uuur vào việc chứng minh các đẳng thức vectơ. Về tư duy và thái độ Rèn luyện tính sáng tạo, tính linh hoạt, tính chính xác, tính cẩn thận, tính chịu khó. Tích cực hoạt động dưới sự hướng dẫn của thầy. Mạnh dạn trình bày ý kiến của cá nhân về những vấn đề đã thảo luận trong nhóm. II. CHUẨN BỊ Giáo viên : Soạn bài và xem lại giáo án trước giờ lên lớp. Sử dụng phương pháp thảo luận nhóm, chia nhóm, cử nhóm trưởng. Học sinh : Đọc sách giáo khoa, chuẩn bị bài trước khi đến lớp, ghi lại những vấn đề cần trao đổi. III. TIẾN TRÌNH HOẠT ĐỘNG DẠY VÀ HỌC 1. Ổn định lớp và kiểm tra bài cũ : Nêu cách dựng vectơ tổng của hai vectơ cho trước ? 2. Bài mới Hoạt động bài mới Hoạt động của thầy Hoạt động của trò và ghi bảng Bài 1.12 : Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho AM MB > . Vẽ các vectơ MA MB + uuur uuur ; MA MB − uuur uuur . Bài 2.12 : Gọi O là tâm của hình bình hành ABCD. Chứng minh rằng : a) 0OA OB OC OD + + + = uuur uuur uuur uuur r . b) Với mọi điểm M thì MA MC MB MD+ = + uuur uuuur uuur uuuur . a) Vẽ AC MB = uuur uuur A C M B b) Vẽ AD BM = uuur uuuur D A M B Bài giải a) Vì O là tâm của hình bình hành nên O là trung điểm của AC ⇔ 0OA OC + = uuur uuur r . Tương tự 0OB OD + = uuur uuur r . Suy ra : 0OA OB OC OD + + + = uuur uuur uuur uuur r . b) Vì ( ) ( ) MA MC MB BA MD CD MB MD BA DC MB MD + = + + + = + + + = + uuur uuuur uuur uuur uuuur uuur uuur uuuur uuur uuur uuur uuuur . Trang 8 Hoạt động của thầy Hoạt động của trò và ghi bảng Bài 3.12 : Chứng minh rằng đối với tứ giác ABCD bất kỳ ta luôn có a) 0AB BC CD DA+ + + = uuur uuur uuur uuur r . b) AB AD CB CD− = − uuur uuur uuur uuur . Bài 4.12 : Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS . Chứng minh rằng : 0RJ IQ PS + + = uuur uur uuur r . Bài 5.12 : Cho tam giác đều ABC cạnh bằng a. Tính độ dài các vectơ AB BC+ uuur uuur ; AB BC − uuur uuur . Bài 6.12 : Cho hình bình hành ABCD có tâm O. Chứng minh rằng : a) CO OB BA− = uuur uuur uuur . b) AB BC DB− = uuur uuur uuur . c) DA DB OD OC− = − uuur uuur uuur uuur . d) 0DA DB DC− + = uuur uuur uuur r . Bài 7.12 : Cho a r , b r khác 0 r . Khi nào có đẳng thức a) a b a b + = + r r r r . b) a b a b + = − r r r r . Bài 8.12 : Cho 0a b + = r r . So sánh độ dài, phương và hướng của hai vectơ a r , b r . Bài 9.12 : Chứng minh AB CD = uuur uuur khi và chỉ khi trung điểm của 2 đoạn thẳng AD và BC trùng nhau. Bài 10.12 : Cho 3 lực 1 F MA = uur uuur , 2 F MB = uur uuur , 3 F MC = uur uuuur cùng tác động vào một vật tại điểm M đứng yên. Cho biết cường độ của lực 1 F uur , 2 F uur đều là 100N và · 0 60AMB = . Tìm cường độ và hướng của lực 3 F uur . Bài giải a) 0AB BC CD DA AC CA AA+ + + = + = = uuur uuur uuur uuur uuur uuur uuur r . b) AB AD CB CD− = − uuur uuur uuur uuur ⇔ DB DB = uuur uuur . Bài giải ( ) ( ) ( ) RJ IQ PS RA AJ IB BQ BC CS+ + = + + + + + uuur uur uuur uuur uuur uur uuur uuur uuur . ( ) ( ) ( ) 0RJ IQ PS RA CS AJ IB BQ PC + + = + + + + + = uuur uur uuur uuur uuur uuur uur uuur uuur r . Bài giải AB BC AC AC a + = = = uuur uuur uuur ; vẽ BD AB = uuur uuur ⇒ 3AB BC CD a − = = uuur uuur . Bài giải a) CO OB OA OB BA− = − = uuur uuur uuur uuur uuur . b) AB BC AB AD DB− = − = uuur uuur uuur uuur uuur . c) DA DB BA CD OD OC− = = = − uuur uuur uuur uuur uuur uuur . d) 0DA DB DC BA DC− + = + = uuur uuur uuur uuur uuur r . Bài giải a) a b a b + = + r r r r ⇔ a r , b r cùng hướng. b) a b a b + = − r r r r ⇔ a r , b r khác 0 r và vuông góc với nhau. Bài giải 0a b + = r r ⇔ hai vectơ a r , b r đối nhau. Bài giải Gọi I là trung điểm của AB và J là trung điểm của BC, ta có : AB CD = uuur uuur ⇔ AI IJ JB CJ JI ID+ + = + + uur uur uur uuur uur uur ⇔ ( ) ( ) AI ID IJ CJ JB JI − + = − + uur uur uur uuur uur uur ⇔ IJ JI = uur uur ⇔ 0IJ = uur r ⇔ I J ≡ . Bài giải Vẽ hình thoi OBCD có O = 60 0 ⇒ ∆OBD và ∆CBD là tam giác đều 3 100 3 2. 2 100 3 2 2 OB OC = = = . Vậy lực tổng hợp có cường độ 100 3,( )N . 3. Hoạt động nối tiếp : Hướng dẫn học sinh học bài tập và chuẩn bị bài : “ Tích của vectơ với một số ”. Trang 9 Soạn ngày 07 tháng 9 năm 2007 Ngày dạy : Tiết : 06, 07 * TÍCH CỦA VECTƠ VỚI MỘT SỐ * I. MỤC TIÊU CẦN ĐẠT Về kiến thức Hiểu định nghĩa và biết các tính chất của tích một số với một vectơ. Biết điều kiện để hai vectơ cùng phương. Về kỹ năng Xác định được vectơ b ka = r r khi cho trước số k và vectơ a r . Diễn đạt được bằng vectơ : ba điểm thẳng hàng, trung điểm của một đoạn thẳng, trọng tâm của tam giác, hai điểm trùng nhau và sử dụng chúng vào giải các bài toán hình học. Về tư duy và thái độ Biết “ quy lạ về quen ”, rèn luyện tư duy logic, tính cẩn thận, biết ứng dụng vào thực tiễn. Tích cực hoạt động dưới sự hướng dẫn của thầy. Mạnh dạn trình bày ý kiến của cá nhân về những vấn đề đã thảo luận trong nhóm. II. CHUẨN BỊ Giáo viên : Soạn bài và xem lại giáo án trước giờ lên lớp. Sử dụng phương pháp thảo luận nhóm, chia nhóm, cử nhóm trưởng. Chuẩn bị hệ thống bài toán, câu hỏi và in sẵn. Học sinh : Đọc sách giáo khoa, chuẩn bị bài trước khi đến lớp, ghi lại những vấn đề cần trao đổi. III. TIẾN TRÌNH HOẠT ĐỘNG DẠY VÀ HỌC 1. Ổn định lớp và kiểm tra bài cũ : 2. Bài mới Mở bài : Cho ∆ABC. Gọi M là trung điểm của đoạn AB, N là một điểm trên đoạn AC sao cho 2AN NC = . Hãy biểu diễn AM uuuur theo AB uuur ; AN uuur theo CA uuur ? Ta có 1 2 AM AB = uuuur uuur ; 1 3 AN CA= − uuur uuur . Trang 10 Hoạt động của thầy Hoạt động của trò Nội dung chính ghi bảng 1. Từng bước dẫn dắt hs vào việc nhân một số thực với một vectơ. 2. Củng cố tính chất đã thừa nhận bằng cách : − Tìm vectơ đối của vectơ ka r ; 3 4a b − r r ? 3. Hãy chứng minh quy tắc trọng tâm tam giác ? Xem phần dẫn mở bài để hình thành phép toán ! − Vectơ đối của vectơ ka r là ka − r ; 3 4a b − r r là 3 4a b − + r r . Chứng minh a) ( ) ( ) MB MC MI IB MI IC+ = + + + uuur uuuur uuur uur uuur uur ⇔ ( ) 2MB MC MI IB IC+ = + + uuur uuuur uuur uur uur . ⇔ 2 0 2MB MC MI MI + = + = uuur uuuur uuur r uuur b) Vì 0GA GB GC + + = uuur uuur uuur r ⇔ ( ) ( ) ( ) 0MA MG MB MG MC MG− + − + − = uuur uuuur uuur uuuur uuuur uuuur r ⇔ 3MA MB MC MG + + = uuur uuur uuuur uuuur . 1. Tích của một số thực với một vectơ Định nghĩa : Cho một số thực 0k ≠ và một vectơ 0a ≠ r r . Tích của số thực k với vectơ a r , ký hiệu ka r , là một vectơ : Cùng hướng với vectơ a r nếu 0k > ; nghướng với vectơ a r nếu 0k < . Có độ dài bằng : k a r . Quy ước : 0 0a = r r , 0 0k = r r . Hệ qủa : 0 0 0 k ka a = = ⇔ = r r r r . 2. Tính chất : Cho 2 vectơ ,a b r r tùy ý và hai số thực k, h bất kỳ : 1. ( ) ( )k ha kh a = r r . 2. ( )k h a ka ha + = + r r r . 3. ( )k a b k a kb + = + r r r r 4. 1 ;( 1)a a a a = − = − r r r r . 3. Trung điểm của một đoạn thẳng−trọng tâm của tam giác Cho tam giác ABC và I là trung điểm của cạnh BC. Chứng minh rằng với mọi điểm M, ta có : a) 2MB MC MI + = uuur uuuur uuur . b) 3MA MB MC MG + + = uuur uuur uuuur uuuur . 4. Điều kiện để hai vectơ cùng phương Điều kiện cần và đủ để hai vectơ a r , b r , ( 0b ≠ r r ) cùng phương là có một số thực k để a kb = r r . Chứng minh Nếu a kb = r r thì a r , b r cùng phương. Nếu a r , b r , ( 0b ≠ r r ) cùng phương, ta chọn a k b = r r nếu a r , b r cùng hướng và chọn a k b = − r r nếu a r , b r ngược hướng. Khi đó bao giờ ta cũng có a kb = r r . Hệ qủa: A, B, C thẳng hàng ⇔ ,AB AC uuur uuur cùng phg ⇔ 0 :k AB k AC ∃ ≠ = uuur uuur . . 3856932 - Mobil 097 8 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 097 8 150 544. Soạn ngày 09 tháng 9 năm 2007. Thuột. Phone 0500 3856932 - Mobil 097 8 150 544. Nguyễn Bá Tùng - 235/1 Mai Hắc Đế, TP Buôn Ma Thuột. Phone 0500 3856932 - Mobil 097 8 150 544. Nguyễn Bá Tùng