Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 55 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
55
Dung lượng
375,56 KB
Nội dung
MỘT SỐ ĐỀ ÔN TẬP KIỂM TRA TOÁN 12 Học kỳ I, Năm học 2008 – 2009 ĐỀ ÔN SỐ 1 Câu 1. Cho hàm số 3 3 1y x x= − + + có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến đó song song với đường thẳng 9 1y x= − + . c) Biện luận theo tham số m, số nghiệm của phương trình 3 3 0x x m− + = . Câu 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số: a) 3 2 3 7 5y x x x= − − + trên đoạn [ ] 0;2 . b) 4 3 2 3 2 9y x x x x= − − + trên đoạn [ ] 2;2− . c) 1 1 x y x + = − trên đoạn [ ] 2;3 . Câu 3. Giải các phương trình, bất phương trình sau: a) 4 6.2 32 0 x x − + = b) ( ) ( ) 2 5 1 5 5 log 4 3 log 4 1 log 3x x x− + + + = b) 4 12.2 32 0 x x − + < d) ( ) 2 1 2 log 5 6 3x x− − ≥ − Câu 4. Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều tâm O cạnh a; các cạnh bên bằng 3a . a) Tính thể tích của khối chóp S.ABC. b) Tính diện tích xung quanh và thể tích của khối nón có đường tròn đáy ngoại tiếp tam giác ABC và chiều cao SO. Câu 5. Cho tứ diện đều ABCD cạnh a. Xác định tâm và tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD. ------ Hết ------ ĐỀ ÔN SỐ 2 Câu 1. Cho hàm số 3 1 x y x − = + có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1− . c) Tìm các điểm thuộc đồ thị (C) có tọa độ là những số nguyên. d) Xác định m để đường thẳng ( ) :d y x m= + cắt đồ thị (C) tại hai điểm phân biệt. Câu 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số: a) 2 3 10y x x= + − b) 2 3 3y x x= + − c) 2 4y x= + trên đoạn [ ] 1;2− Câu 3. Giải các phương trình, bất phương trình sau: a) 2 2 1 1 3 3 270 x x+ − + = b) ( ) 2 log 3.2 1 2 1 x x− = + c) 2 1 1 1 1 3 12 3 3 x x + + > ÷ ÷ d) ( ) ( ) 3 1 3 2log 4 3 log 2 3 2x x− + + ≤ Câu 4. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a; các cạnh bên bằng 5a . a) Tính thể tích của khối chóp S.ABCD. b) Tính diện tích xung quanh và thể tích của khối nón có đường tròn đáy ngoại tiếp hình vuông ABCD và đường sinh SA. Câu 5. Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, các cạnh bên bằng 2a. Xác định tâm và tính bán kính của mặt cầu ngoại tiếp hình chóp S.ABC. ---- Hết ----- ĐỀ ÔN SỐ 3 Câu 1. Cho hàm số 4 2 2 1y x x= − + có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2. c) Dùng đồ thị (C), biện luận số nghiệm của phương trình 4 2 2 1 0x x m− + − = . Câu 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số: a) sin 2y x x= − trên đoạn [ ] 0; π . b) 2 cos 2 4siny x x= + trên đoạn [ ] 0; π . c) 2 cosy x x= + trên đoạn [ ] 0; π . Câu 3. Giải các phương trình, bất phương trình sau: a) ( ) ( ) 2 3 2 3 4 x x + + − = b) ( ) ( ) 2 2 2 log 3 log 6 10 1 0x x− − − + = c) 6.4 13.6 6.9 0 x x x − + ≥ d) ( ) 1 1 3 3 4 log log 3 2 3 x x x + < − − Câu 4. Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều tâm O cạnh 2a; có chiều cao bằng 3a . a) Tính thể tích của khối chóp S.ABC. b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác ABC và chiều cao SO. Câu 5. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có , 2AB a AD a= = ; SA⊥(ABCD) và SA = 3a. a) Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD b) Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABCD. ----- Hết ------ ĐỀ ÔN SỐ 4 Câu 1. Cho hàm số 2 2 1 x y x + = − có đồ thị (C). a) Khảo Đề (43) Câu 1: Cho x = b2 + c2 − a 2bc ;y= a − (b − c)2 (b + c ) − a Tính giá trị P = x + y + xy Câu 2: Giải phương trình: a, b, a+b− x = a (b − c)(1 + a ) x + a2 + + b + x (x ẩn số) (c − a )(1 + b) x + b2 + (a − b)(1 + c ) x + c2 =0 (a, b, c số đôi khác nhau) Câu 3: Xác định số a, b biết: (3x + 1) ( x + 1)3 = a ( x + 1)3 + b ( x + 1) Câu 4: Chứng minh phương trình: 2x2 – 4y = 10 nghiệm nguyên Câu 5: Cho ∆ ABC; AB = 3AC Tính tỷ số đường cao xuất phát từ B C 1 Đề (44) Câu 1: Cho a, b, c thoả mãn: = a +b −c c Tính giá trị M = (1 + )(1 + )(1 + b a = b+c−a a c b a c c + a −b b ) Câu 2: Xác định a, b để f(x) = 6x4 – 7x3 + ax2 + 3x +2 chia hết cho y(x) = x2 – x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680 b, 4x2 + 4y – 4xy +5y2 + = Câu 4: Tìm giá trị lớn phân số mà tử số số có chữ số mà mẫu tổng chữ số Câu 5: Cho ∆ ABC cân A, AB lấy D, AC lấy E cho: AD = EC = DE = CB a, Nếu AB > 2BC Tính góc b, Nếu AB < BC Tính góc µA µA của VABC VHBC Đề (45) Câu 1: Phân tích thành nhân tử: a, a3 + b3 + c3 – 3abc b, (x-y)3 +(y-z)3 + (z-x)3 Câu 2: Cho A = x (1 − x ) + x2 : − x3 + x3 ( + x )( − x) 1− x 1+ x a, Rút gọn A b, Tìm A x= - c, Tìm x để 2A = Câu 3: a, Cho x + y + z = Tìm giá trị nhỏ M = x2 + y2 + z2 b, Tìm giá trị lớn P = x ( x + 10) Câu 4: a, Cho a,b,c > 0, CMR: 1< b, Cho x,y ≠ a a+b + b b+c + c c+a 36, CMR: a2 + b2 + c2 > ab + bc + ca b, CMR: a2 + b2 +1 ≥ ab + a + b Câu 4: a, Tìm giá trị nhỏ A = 2x2 + 2xy + y2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ P = a3 + b3 + c3 + a2(b+c) + b2(c+a) + c2(a+b) Câu 5: a, Tìm x,y,x ∈ Z biết: x2 + 2y2 + z2 - 2xy – 2y + 2z +2 = b, Tìm nghiệm nguyên PT: 6x + 15y + 10z = Câu 6: Cho ∆ABC, H trực tâm, đường thẳng vuông góc với AB B, với AC C cắt D a, CMR: Tứ giác BDCH hình bình hành b, Nhận xét mối quan hệ góc µA µ D tứ giác ABDC Đề (47) Câu 1: Phân tích thành nhân tử: a, (x2 – x +2)2 + (x-2)2 b, 6x5 +15x4 + 20x3 +15x2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = a2 + b2 + c2= 14 Tính giá trị A = a4+ b4+ c4 b, Cho a, b, c ≠ Tính giá trị D = x2003 + y2003 + z2003 Biết x,y,z thoả mãn: x2 + y2 + z a + b2 + c = x2 a2 + y2 b2 + z2 c2 Câu 3: a, Cho a,b > 0, CMR: a + ≥ b a+b b, Cho a,b,c,d > CMR: a−d d +b + d −b b+c + b−c c+a + c−a ≥ a+d Câu 4: a, Tìm giá trị lớn nhất: E = b, Tìm giá trị lớn nhất: M = x + xy + y x − xy + y x ( x + 1995) với x,y > với x > Câu 5: a, Tìm nghiệm b, Tìm nghiệm ∈ ∈ Z PT: xy – 4x = 35 – 5y Z PT: x2 + x + = y2 Câu 6: Cho VABC M điểm ∈ miền VABC D, E, F trung điểm AB, AC, BC; A’, B’, C’ điểm đối xứng M qua F, E, D a, CMR: AB’A’B hình bình hành b, CMR: CC’ qua trung điểm AA’ Đề (48) Câu 1: Cho a x+ y = 13 x+ z 169 ( x + z )2 Tính giá trị biểu thức A = = −27 ( z − y )(2 x + y + z ) 2a − 12a + 17a − a−2 Câu 2: Cho x2 – x = 3, Tính giá trị biểu thức M = x4 - 2x3 + 3x2 - 2x + Câu 3: 6 a, Tìm giá trị nhỏ M = x(x+1)(x+2)(x+3) b, Cho x,y > x + y = 0, Tìm giá trị nhỏ N = x + y Câu 4: a, Cho ≤ a, b, c CMR: a2 + b2 + c2 ≤ ≤ 1+ a2b + b2c + c2a b, Cho x + y = Tìm giá trị lớn P = (1 - x2 )(1 - y2 ) Câu 3: a, Cho a, b ,c độ dài cạnh tam giác CMR: a2 + b2 + c2 < 2(ab+bc+ca) b, Cho ≤ a, b , c ≤ CMR: a + b2 +c3 – ab – bc – ca ≤ Câu 4: Tìm x, y, z biết: x+y–z = y+z-x = z+x-y = xyz Câu 5: Cho n Z n ∈ ≥ CMR: 13 + 23 +33 + +n3 = n + (n + 1) Câu 6: Giải bất phương trình: (x-1)(3x+2) > 3x(x+2) + 9 Câu 7: Chia tập N thành nhóm: 1; (2,3); (4,5,6) , nhóm n gồm n số hạng Tính tổng số nhóm 94 Câu 8: Cho hình vuông ... Đề 1 (43) Câu 1: Cho x = 2 2 2 2 b c a bc + − ; y = 2 2 2 2 ( ) ( ) a b c b c a − − + − Tính giá trị P = x + y + xy Câu 2: Giải phương trình: a, 1 a b x+ − = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a − + + + 2 2 ( )(1 )c a b x b − + + + 2 2 ( )(1 )a b c x c − + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phương trình: 2x 2 – 4y = 10 không có nghiệm nguyên. Câu 5: Cho ∆ ABC; AB = 3AC Tính tỷ số đường cao xuất phát từ B và C Đề 2 (44) Câu 1: Cho a,b,c thoả mãn: a b c c + − = b c a a + − = c a b b + − Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 – 7x 3 + ax 2 + 3x +2 Chia hết cho y(x) = x 2 – x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y – 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. 1 Câu 5: Cho ∆ ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc µ A của ABCV b, Nếu AB < BC. Tính góc µ A của HBCV . đề 3 (45) Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 – 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x − + : 3 3 1 1 ( )( ) 1 1 x x x x x x − + + − − + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y ≠ 0 CMR: 2 2 x y + 2 2 y x ≥ x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a a, Tính số đo các góc ACMV b, CMR: AM ⊥ AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 2 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = 2 2 2 1 b c a+ − + 2 2 2 1 c a b+ − + 2 2 2 1 a b c+ − b, Cho biểu thức: M = 2 2 3 2 15 x x x − + − + Rút gọn M + Tìm x ∈ Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ≥ ab + a + b Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x ∈ Z biết: x 2 + 2y 2 + z 2 - 2xy – 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đường thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc µ A và µ D của tứ giác ABDC. Đề 5 (47) Câu 1: Phân tích thành nhân tử: a, (x 2 – x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c ≠ 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: 3 a, Cho a,b > 0, CMR: 1 a + 1 b ≥ 4 a b+ b, Cho a,b,c,d > 0 CMR: a d d b − + + d b b c − + + b c c a − + + c a a d − + ≥ 0 Câu 4: a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + − + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm ∈ Z của PT: xy – 4x = 35 – 5y b, Tìm nghiệm ∈ Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm ∈ miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A’, B’, C’ là điểm đối xứng của M qua F, E, D. a, CMR: AB’A’B là hình bình hành. b, CMR: CC’ đi qua trung điểm của AA’ Đề 6 (48) Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z − − + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 a a a a − + − − Câu 2: Cho x 2 – x = 3, Tính giá trị của biểu thức M = x 4 - 2x 3 + 3x 2 - 2x + 2 Câu 3: a, Tìm giá trị nhỏ nhất của M = x(x+1)(x+2)(x+3) b, Cho x,y > 0 đề 1 (43) Câu 1: Cho x = 2 2 2 2 b c a bc + ; y = 2 2 2 2 ( ) ( ) a b c b c a + Tính giá trị P = x + y + xy Câu 2: Giải phơng trình: a, 1 a b x+ = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a + + + 2 2 ( )(1 )c a b x b + + + 2 2 ( )(1 )a b c x c + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phơng trình: 2x 2 4y = 10 không có nghiệm nguyên. Câu 5: Cho ABC; AB = 3AC Tính tỷ số đờng cao xuất phát từ B và C Đề 2 (44) Câu 1: Cho a,b,c thoả mãn: a b c c + = b c a a + = c a b b + Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 7x 3 + ax 2 + 3x +2 Chia hết cho y(x) = x 2 x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: 1 Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc à A của ABCV b, Nếu AB < BC. Tính góc à A của HBCV . đề 3 (45) Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x + : 3 3 1 1 ( )( ) 1 1 x x x x x x + + + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y 0 CMR: 2 2 x y + 2 2 y x x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a a, Tính số đo các góc ACMV b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: 2 A = 2 2 2 1 b c a+ + 2 2 2 1 c a b+ + 2 2 2 1 a b c+ b, Cho biểu thức: M = 2 2 3 2 15 x x x + + Rút gọn M + Tìm x Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ab + a + b Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x Z biết: x 2 + 2y 2 + z 2 - 2xy 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đờng thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc à A và à D của tứ giác ABDC. Đề 5 (47) Câu 1: Phân tích thành nhân tử: a, (x 2 x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: a, Cho a,b > 0, CMR: 1 a + 1 b 4 a b+ b, Cho a,b,c,d > 0 CMR: a d d b + + d b b c + + b c c a + + c a a d + 0 Câu 4: 3 a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm Z của PT: xy 4x = 35 5y b, Tìm nghiệm Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A, B, C là điểm đối xứng của M qua F, E, D. a, CMR: ABAB là hình bình hành. b, CMR: CC đi qua trung điểm của AA Đề 6 (48) Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 a a a a + Câu 2: Cho x 2 x = 3, Tính giá trị của biểu thức M = x Đề 1 (43) Câu 1: Cho x = ; y = Tính giá trị P = x + y + xy Câu 2: Giải phương trình: a, = ++ (x là ẩn số) b, + + = 0 (a, b, c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: = + Câu 4: Chứng minh phương trình: 2x 2 – 4y = 10 không có nghiệm nguyên. Câu 5: Cho ABC; AB = 3AC Tính tỷ số đường cao xuất phát từ B và C Đề 2 (44) Câu 1: Cho a, b, c thoả mãn: = = Tính giá trị M = (1 +)(1 +)(1 + ) Câu 2: 2 2 2 2 b c a bc + − 2 2 2 2 ( ) ( ) a b c b c a − − + − 1 a b x+ − 1 a 1 b 1 x 2 2 ( )(1 )b c a x a − + + 2 2 ( )(1 )c a b x b − + + 2 2 ( )(1 )a b c x c − + + 3 (3 1) ( 1) x x + + 3 ( 1) a x + 2 ( 1) b x + ∆ a b c c + −b c a a + −c a b b + − b a c b a c 1 Xác định a, b để f(x) = 6x 4 – 7x 3 + ax 2 + 3x +2 chia hết cho y(x) = x 2 – x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y – 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB> 2BC. Tính góc của b, Nếu AB < BC. Tính góc của . Đề 3 (45) Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 – 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = : ∆ µ A ABCV µ A HBCV 2 2 2 (1 ) 1 x x x − + 3 3 1 1 ( )( ) 1 1 x x x x x x − + + − − + 2 a, Rút gọn A b, Tìm A khi x= - c, Tìm x để 2A = 1 Câu 3: a, Cho x + y + z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = Câu 4: a, Cho a,b,c > 0, CMR: 1 < ++< 2 b, Cho x,y 0 CMR: + + Câu 5: Cho ∆ABC đều có độ dài cạnh là a, kéo dài BC một đoạn CM = a a, Tính số đo các góc ∆ACM b, CMR: AM AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR ∆MNP đều. Đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = + + b, Cho biểu thức: M = + Rút gọn M + Tìm x Z để M đạt giá trị nguyên. Câu 3: 1 2 2 ( 10) x x + a a b+ b b c+ c c a+ ≠ 2 2 x y 2 2 y x ≥ x y y x ⊥ 2 2 2 1 b c a+ − 2 2 2 1 c a b+ − 2 2 2 1 a b c+ − 2 2 3 2 15 x x x − + − ∈ 3 a, Cho abc = 1 và a 3 > 36, CMR: + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ab + a + b Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x Z biết: x 2 + 2y 2 + z 2 - 2xy – 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ∆ABC, H là trực tâm, đường thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc và của tứ giác ABDC. Đề 5 (47) Câu 1: Phân tích thành nhân tử: a, (x 2 – x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: = ++ Câu 3: a, Cho a,b > 0, CMR: + b, Cho a,b,c,d > 0 CMR: +++ 0 Câu 4: 2 3 a ≥ ∈ µ A µ D ≠ 2 2 2 2 2 2 x y z a b c + + + + 2 2 x a 2 2 y b 2 2 z c 1 a 1 b ≥ 4 a b+ a d d b − + d b b c − + b c c a − + c a a d − + ≥ 4 a, Tìm giá trị lớn nhất: E = với x,y > 0 b, Tìm giá trị lớn nhất: M = với x > 0 Câu 5: a, Tìm nghiệm Z của PT: xy – 4x = 35 – 5y b, Tìm nghiệm Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho M là một điểm miền trong của . D, E, F là trung điểm AB, AC, BC; A’, B’, C’ là điểm đối xứng của M qua F, E, D. a, CMR: AB’A’B là hình bình hành. b, CMR: CC’ đi qua trung điểm của AA’ Đề 6 (48) Câu 1: Cho = và = Tính giá trị của biểu thức A = Câu 2: Cho x 2 – x = 3, Tính giá trị của biểu thức M = x 4 - 2x 3 + 3x 2 - 2x + 2 Câu 3: a, Tìm giá trị nhỏ nhất của M = x(x+1)(x+2)(x+3) b, Cho x,y > 0 và x + y = 0, Tìm giá trị nhỏ nhất của N = + Câu 4: Đề 1 (43) Câu 1: Cho x = 2 2 2 2 b c a bc + − ; y = 2 2 2 2 ( ) ( ) a b c b c a − − + − Tính giá trị P = x + y + xy Câu 2: Giải phương trình: a, 1 a b x+ − = 1 a + 1 b + 1 x (x là ẩn số) b, 2 2 ( )(1 )b c a x a − + + + 2 2 ( )(1 )c a b x b − + + + 2 2 ( )(1 )a b c x c − + + = 0 (a,b,c là hằng số và đôi một khác nhau) Câu 3: Xác định các số a, b biết: 3 (3 1) ( 1) x x + + = 3 ( 1) a x + + 2 ( 1) b x + Câu 4: Chứng minh phương trình: 2x 2 – 4y = 10 không có nghiệm nguyên. Câu 5: Cho ∆ ABC; AB = 3AC Tính tỷ số đường cao xuất phát từ B và C Đề 2 (44) Câu 1: Cho a,b,c thoả mãn: a b c c + − = b c a a + − = c a b b + − Tính giá trị M = (1 + b a )(1 + c b )(1 + a c ) Câu 2: Xác định a, b để f(x) = 6x 4 – 7x 3 + ax 2 + 3x +2 1 Chia hết cho y(x) = x 2 – x + b Câu 3: Giải PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x 2 + 4y – 4xy +5y 2 + 1 = 0 Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó. Câu 5: Cho ∆ ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho: AD = EC = DE = CB. a, Nếu AB > 2BC. Tính góc µ A của ABCV b, Nếu AB < BC. Tính góc µ A của HBCV . đề 3 (45) Câu 1: Phân tích thành nhân tử: a, a 3 + b 3 + c 3 – 3abc b, (x-y) 3 +(y-z) 3 + (z-x) 3 Câu 2: Cho A = 2 2 2 (1 ) 1 x x x − + : 3 3 1 1 ( )( ) 1 1 x x x x x x − + + − − + a, Rút gọn A b, Tìm A khi x= - 1 2 c, Tìm x để 2A = 1 Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x 2 + y 2 + z 2 b, Tìm giá trị lớn nhất của P = 2 ( 10) x x + 2 Câu 4: a, Cho a,b,c > 0, CMR: 1 < a a b+ + b b c+ + c c a+ < 2 b, Cho x,y ≠ 0 CMR: 2 2 x y + 2 2 y x ≥ x y + y x Câu 5: Cho ABCV đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a a, Tính số đo các góc ACMV b, CMR: AM ⊥ AB c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR MNPV đều. đề 4 (46) Câu 1: Phân tích thành nhân tử: a, a 8 + a 4 +1 b, a 10 + a 5 +1 Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = 2 2 2 1 b c a+ − + 2 2 2 1 c a b+ − + 2 2 2 1 a b c+ − b, Cho biểu thức: M = 2 2 3 2 15 x x x − + − + Rút gọn M + Tìm x ∈ Z để M đạt giá trị nguyên. Câu 3: a, Cho abc = 1 và a 3 > 36, CMR: 2 3 a + b 2 + c 2 > ab + bc + ca b, CMR: a 2 + b 2 +1 ≥ ab + a + b 3 Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x 2 + 2xy + y 2 - 2x + 2y +1 b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a 3 + b 3 + c 3 + a 2 (b+c) + b 2 (c+a) + c 2 (a+b) Câu 5: a, Tìm x,y,x ∈ Z biết: x 2 + 2y 2 + z 2 - 2xy – 2y + 2z +2 = 0 b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3 Câu 6: Cho ABCV . H là trực tâm, đường thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D. a, CMR: Tứ giác BDCH là hình bình hành. b, Nhận xét mối quan hệ giữa góc µ A và µ D của tứ giác ABDC. Đề 5 (47) Câu 1: Phân tích thành nhân tử: a, (x 2 – x +2) 2 + (x-2) 2 b, 6x 5 +15x 4 + 20x 3 +15x 2 + 6x +1 Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a 2 + b 2 + c 2 = 14. Tính giá trị của A = a 4 + b 4 + c 4 b, Cho a, b, c ≠ 0. Tính giá trị của D = x 2003 + y 2003 + z 2003 Biết x,y,z thoả mãn: 2 2 2 2 2 2 x y z a b c + + + + = 2 2 x a + 2 2 y b + 2 2 z c Câu 3: a, Cho a,b > 0, CMR: 1 a + 1 b ≥ 4 a b+ b, Cho a,b,c,d > 0 CMR: a d d b − + + d b b c − + + b c c a − + + c a a d − + ≥ 0 Câu 4: 4 a, Tìm giá trị lớn nhất: E = 2 2 2 2 x xy y x xy y + + − + với x,y > 0 b, Tìm giá trị lớn nhất: M = 2 ( 1995) x x + với x > 0 Câu 5: a, Tìm nghiệm ∈ Z của PT: xy – 4x = 35 – 5y b, Tìm nghiệm ∈ Z của PT: x 2 + x + 6 = y 2 Câu 6: Cho ABCV M là một điểm ∈ miền trong của ABCV . D, E, F là trung điểm AB, AC, BC; A’, B’, C’ là điểm đối xứng của M qua F, E, D. a, CMR: AB’A’B là hình bình hành. b, CMR: CC’ đi qua trung điểm của AA’ Đề 6 (48) Câu 1: Cho a x y+ = 13 x z+ và 2 169 ( )x z+ = 27 ( )(2 )z y x y z − − + + Tính giá trị của biểu thức A = 3 2 2 12 17 2 2 ... ABCD Trên BD lấy M, từ M kẻ đường vuông góc AB, AD E, F a, CMR: CF = DE; CF ⊥ b, CMR: CM = EF; CM DE ⊥ EF c, CMR: CM, BF, DE đồng qui Đề 13 (55) Câu 1: a, Rút gọn: A = (1- 12 )(1- 32 ) (1- 1992... chữ nhật ABCD có chiều dài BC gấp lần chiều rộng CD, từ C kẻ Cx tạo với CD góc 150 cắt AD E CMR: VBCE cân Đề (50) Câu 1: Cho A = n3 + 2n − n3 + 2n + 2n + a, Rút gọn A b, Nếu n Z A phân số tối... +y x + y4 Câu 7: Cho hình thang ABCD (AD//BC) M, N trung điểm AD, BC Từ O MN kẻ đưởng thẳng song song với AD cắt AB, CD E F CMR: OE = OF 16 16 Đề 15 (57) Câu 1: Cho xyz = x+y+z = Tính giá trị