Giải phương trình lượnggiác sau : (2 sin x + 1)(3cos x + 2sin x − 4) + cos x = sin x + cos x = 2(sin x + cos8 x) cos x.cos x.cos x.cos8 x = π 8cos3 x + ÷ = cos 3x 3 16 (2sin x − 1)(2sin x + 1) = − cos x cos x − cos8 x + cos x = sin x − 4sin x + cos x − cos x = 3sin x + cos x = + tan x 10 11 12 13 14 15 cos3 x + cos x + sin x = 2(tan x − sin x) + 3(cot x − cos x) + = cos x − cos x − cos x = sin x + sin x + sin x = cos x + cos x + cos x π sin x.sin x = cos − x ÷− cos x.sin x 6 x x π x + sin sin x − cos sin x = 2cos − ÷ 2 2 cos x − sin x = 2(sin x + cos x) cos x − cos x + cos x = 16 17 18 19 20 π sin x + ÷ = sin x 4 + sin x + cos x + sin x + cos x = tan x + tan x + tan x + cotx + cot x + cot x = + sin x = sin x + cos x sin x + cos x = 21 π π cot x + ÷.cot − x ÷ 3 6 22 23 24 25 26 cos 2 x + 2(sin x + cos x)3 − 3sin x − = 4(sin x − cos x) = 5(sin x − 1) sin x − 4sin x + cos x = cos10 x + + cos8 x + cos x.cos x = cos x + 8cos x.cos 3 x π sin x + cos x + ÷ = 4 cos x.cos x + sin x.sin x = 27