1. Trang chủ
  2. » Thể loại khác

BT thống kê khoa học ra quyết định trong kinh doanh số (39)

11 63 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 309,5 KB

Nội dung

BÀI KIỂM TRA HẾT MÔN MÔN HỌC: THỐNG TRONG KINH DOANH Học viên: Trần Thị Thuỳ Lớp : GaMBA01.N03 Câu 1: Lý thuyết (2đ) A Trả lời (Đ), sai (S) cho câu sau giải thích sao? 1) Chỉ tiêu thống phản ánh đặc điểm đơn vị tổng thể 2) Tần số tích lũy bảng phân bố tần số biểu số tuyệt đối 3) Hệ số biến thiên cho phép so sánh độ biến thiên tiêu thức nghiên cứu hai tượng khác loại 4) Khoảng tin cậy cho giá trị trung bình tổng thể chung tỷ lệ thuận với phương sai tổng thể chung 5) Hệ số hồi quy (b1) phản ánh chiều hướng mức độ ảnh hưởng tiêu thức nguyên nhân đến tiêu thức kết Trả lời: 1) Đúng, vì: Tổng thể thống tượng số lớn bao gồm đơn vị phần tử cần quan sát phân tích Các đơn vị gọi đơn vị tổng thể Trong đó, Chỉ tiêu thống phản ánh mặt lượng gắn với chất tượng trình KTXH số lớn điều kiện thời gian địa điểm cụ thể 2) Đúng, vì: Tần số tích luỹ tổng tần số (số lần) liệu khoảng liệu đó, ví dụ: Tần số: khoảng liệu từ 10 đến 20; Tần số: khoảng liệu từ 20 đến 30 Như tần số tích luỹ trường hợp (số tuyệt đối) 3) Đúng, vì: Hệ số biến thiên thước đo Độ biến thiên tương đối; Nó so sánh hai nhiều hai tượng khác 4) Sai, vì: Khoảng tin cậy cho giá trị trung bình tổng thể chung tỷ lệ thuận với tổng thể chung 5) Đúng, vì: Phân tích hồi quy sử dụng để dự đoán: Một mô hình thống sử dụng để dự đoán giá trị biến phụ thuộc biến kết dựa giá trị biến độc lập hay biến nguyên nhân * Mô hình hồi quy tuyến tính đơn: Yi = β + β1 X i + €i Trong đó: β tham số tự β1 Là độ dốc hay hệ số hồi quy Yi: Biến phụ thuộc (kết quả) Xi: Biến độc lập (nguyên nhân) * Mô hình hồi quy tuyến tính tổng thể chung: µyx = β + β1 X i * Mô hình hồi quy tuyến tính tổng thể mẫu: Y ^i = b + b X i B Chọn phương án trả lời nhất: 1) Sự khác thang đo khoảng thang đo tỷ lệ là: a) Đơn vị đo b) Điểm gốc không tuyệt đối c) Việc áp dụng phép tính để tính toán d) Cả a) b) c) Trả lời: Chọn phương án d) 2) Phát biểu không mốt: a) Mốt san hay bù trừ chênh lệch lượng biến b) Mốt chịu ảnh hưởng lượng biến đột xuất c) Mỗi dãy số có Mốt d) Cả a) b) c) Trả lời: Chọn phương án d) 3) Các phương pháp biểu xu hướng phát triển tượng nhằm: a) Sắp xếp dãy số theo thứ tự tăng (hoặc giảm) dần b) Đảm bảo tính chất so sánh mức độ dãy số c) Loại bỏ tác động yếu tố ngẫu nhiên d) Không có điều Trả lời: Chọn phương án d) 4) Biểu đồ hình cột (Histograms) có đặc điểm: a) Giữa cột có khoảng cách b) Độ rộng cột biểu độ rộng tổ c) Chiều cao cột biểu thị tần số d) Cả a) b) e) Cả b) c) f) Cả a), b) c) Trả lời: Chọn phương án c) 5) Các biện pháp hạn chế sai số chọn mẫu: a) Tăng số đơn vị tổng thể mẫu b) Sử dụng phương pháp chọn mẫu thích hợp c) Giảm phương sai tổng thể chung d) Cả a), c) e) Cả a), b) f) Cả a), b), c) Trả lời: Chọn phương án e) Câu (1,5 đ) Một doanh nghiệp muốn ước lượng trung bình một công nhân hoàn thành sản phẩm để đặt định mức Giám đốc nhà máy muốn xây dựng khoảng ước lượng có sai số sản phẩm độ tin cậy 95%, Theo kinh nghiệm ông ta độ lệch tiêu chuẩn suất sản phẩm Hãy tính số công nhân cần điều tra để đặt định mức Giả sử sau chọn mẫu (với cỡ mẫu tính trên) số sản phẩm trung bình mà họ hoàn thành 35 với độ lệch tiêu chuẩn 6,5 Hãy ước lượng suất trung bình toàn công nhân với độ tin cậy 95% Bài làm: * Cỡ mẫu suy rộng số trung bình: Theo đề độ tin cậy (95%) => α = 5% α/2=5/2%=2.5% => Az = 0.975 Tra bảng ta Z = 1.960 Thay số ta được: n=(1.960^2*6^2)/1^2=138.297 làm tròn lên ta có Số công nhân cần điều tra: 139 * Xác định giả thiết: n = 139 X = 35 σ = 6,5 Zα/2=1.960 Đây trường hợp ước lượng khoảng tin cậy số trung bình tổng thể chung trường hợp biết độ lệch chuẩn, tổng thể chung phân phối chuẩn, mẫu lớn Ta có khoảng tin cậy sau: 35 – 1,960 * 6,5/11,79 ≤ µ ≤ 35 + 1,960 * 6,5/11,79 33,919 ≤ µ ≤ 36,080 KL: Với độ tin cậy 95%, công nhân doanh nghiệp sản xuất số lượng sản phẩm công lao động nằm khoảng từ 33,919 sản phẩm đến 36,080 sản phẩm Câu (1,5đ) Có hai phương pháp dạy học sử dụng cho lớp thuộc đối tượng học sinh Để xem tác động phương pháp dạy học đến kết học tập có khác không, người ta chọn ngẫu nhiên từ lớp số học sinh để kiểm tra kết học tập họ Số học sinh chọn lớp thứ nhóm (20 học sinh) với điểm trung bình 8,1 điểm độ lệch tiêu chuẩn 0,7 điểm Số học sinh đ ược chọn lớp thứ hai nhóm (25 học sinh) với điểm trung bình 7,8 điểm độ lệch tiêu chuẩn 0,6 điểm Với mức ý nghĩa 0,05 rút kết luận Bài làm: Theo giả thiết cho: Số lượng học sinh Điểm trung bình Độ lệch tiêu chuẩn Mức ý nghĩa Nhóm n1 20 x1 ngang 8.1 s1 0.7 0.05 Nhóm n2 x2 ngang s2 25 7.8 0.6 Gọi µ1 hiệu phương pháp dạy học lớp Gọi µ2 hiệu phương pháp dạy học lớp Giả thiết H0 : µ1 = µ2 : Không có khác H1: µ1 ≠ µ2 : Có khác Đây trường hợp so sánh hai trung bình với mẫu độc lập, chưa biết phương sai hai tổng thể chung, mẫu nhỏ (n1, n2 < 30) Tiêu chuẩn kiểm định chọn t Thay giá trị tương ứng vào ta được: s2 = 0.4174 => s = 0.6460650, t = 1.5478318 Tra bảng tìm giá trị: tα/2,43 Ta có kiểm định với mức ý nghĩa α = 5%;α / = 2,5% tα/2,43 = (2.018+2.015)/2 = 2.0165 => |t|< tα/2,43 Vậy t không nằm miền bác bỏ H 0, theo không đủ sở bác bỏ giả thiết H0 Kết luận: Với mức ý nghĩa α = 0,05, từ mẫu ngẫu nhiên chọn hai lớp, ta kết luận phương pháp dạy học không tác động đến kết học tập lớp Câu (2,5đ) Dưới liệu khối lượng sản phẩm thép 30 tháng gần nhà máy (đơn vị: triệu tấn) 6,4 7,8 5,3 4,5 6,1 4,8 5,3 7,0 4,7 3,0 6,2 7,3 3,7 4,9 5,1 7,5 4,7 7,2 6,4 4,5 6,5 5,7 3,8 6,6 7,9 6,1 7,3 3,3 5,2 6,0 Biểu diễn tập hợp số liệu biểu đồ thân (Stem and leaf) Xây dựng bảng tần số phân bố với tổ có khoảng cách tổ Vẽ đồ thị tần số cho nhận xét khối lượng sản phẩm thép 30 tháng nói Tính khối lượng sản phẩm thép trung bình tháng từ tài liệu điều tra từ bảng phân bố tần số So sánh kết giải thích Bài làm: Biểu đồ thân (Stem and leaf): Thân Lá 5 8 3 7 5 Xây dựng bảng tần số phân bố với tổ có khoảng cách tổ Tổ Trị số Tần số Tần suất (%) Tần số tích lũy Tần suất tích lũy (%) Từ - 3,5 13% 13% Từ - 4,5 20% 10 33% Từ - 5,5 17% 15 50% Từ - 6,5 27% 23 77% Từ - 7,5 23% 30 100% 30 100% Tổng Vẽ đồ thị tần số cho nhận xét khối lượng sản phẩm thép 30 tháng nói Nhận xét: Từ đồ thị tần số (phân bố sản thép) trên, cho thấy 30 tháng gần đây: Tổ từ đến đem lại sản lượng thép sản xuất nhà máy lớn với tần số 8, tương ứng với tần suất 27% Để tăng sản phẩm thép thời gian tới, Nhà máy nên tập trung vào tổ từ đến muốn giảm sản phẩm thép Nhà máy nên tập trung vào tổ từ đến Tính khối lượng sản phẩm thép trung bình tháng từ tài liệu điều tra từ bảng phân bố tần số So sánh kết giải thích a) Từ tài liệu điều tra: X = ∑x i n = 170,8 = 5,6933 30 b) Từ bảng phân bố tần số: X = ∑x f ∑f i i i = 173 = 5,76667 30 Kết luận: So sánh kết tính toán ta thấy, tính theo phân bố tần số có kết cao không xác so với tính giá trị trung bình theo số liệu điều tra Lý do: Tổ TB thật (SL điều tra) Trị số (SL theo bảng phấn bổ tần số) Từ - 3.45 3.5 Từ - 4.68 4.5 Từ - 5.32 5.5 Từ - 6.28 6.5 Từ - 7.43 7.5 Như vậy, tổ có tổ (từ đến tấn) có trị số nhỏ trung bình thật; tổ lại có trị số lớn trung bình thật tổ Do vậy, làm sản lượng thép trung bình tháng tính từ bảng phân bố tần số lớn sản lượng thép trung bình tháng dựa số liệu điều tra ban đầu Vậy, số liệu điều tra ban đầu xác Câu (2,5đ) Một hãng lĩnh vực kinh doanh nước thực thử nghiệm để đánh giá mức độ ảnh hưởng quảng cáo doanh thu Hãng cho phép tăng chi phí quảng cáo vùng khác đất nước so với mức năm trước ghi chép lại mức độ thay đổi doanh thu vùng Thông tin ghi chép sau: % tăng chi phí quảng cáo % tăng doanh thu 2.5 3.5 5.5 Với liệu trên, xác định phương trình hồi quy tuyến tính để biểu mối liên hệ % tăng chi phí quảng cáo % tăng doanh thu, phân tích mối liên hệ qua tham số mô hình Kiểm định xem liệu % tăng chi phí quảng cáo % tăng doanh thu thực có mối liên hệ tương quan tuyến tính không? Đánh giá cường độ mối liên hệ phù hợp mô hình Hãy ước tính (dự đoán) tỷ lệ % tăng doanh thu tỷ lệ % tăng chi phí quảng cáo 8% với xác suất tin cậy 95% Bài làm: Phương trình hồi quy tuyến tính: y= b0 + b1*x Trong đó: y: doanh thu lý thuyết x: chi phí quảng cáo Theo giả thiết % tăng chi phí quảng cáo % tăng doanh thu 2.5 3.5 5.5 Với chức tính toán Regression Excel, ta có: b0=1.9 b1=0.5 Vậy, Phương trình hồi quy tuyến tính y =1.9 + 0.5x Ý nghĩa b1 (hệ số hồi quy): Độ lệch chuẩn biến quan sát nằm gần đường hồi quy Kiểm định xem liệu % tăng chi phí quảng cáo % tăng doanh thu thực có mối liên hệ tương quan tuyến tính không? * Cặp giả thiết H0 : β1=0 (không có mối liên hệ tuyến tính) H1 : β10 (có mối liên hệ tuyến tính) Tính toán Excel ta thu kết quả: Syx = 0.25819889   Intercept % tăng chi phí quảng cáo Coefficients Standard Error 1.9 0.233 0.5 0.051 t Stat 8.149 9.874 Tra bảng t với bậc tự do, ta giá trị tới hạn t3= 2.353 < 9.874 Tức thuộc miền bác bỏ, bác bỏ H0 Kết luận đủ sở “% tăng chi phí quảng cáo % tăng doanh thu thực có mối liên hệ tương quan tuyến tính” Đánh giá cường độ mối liên hệ phù hợp mô hình Tính toán Excel, ta có: Regression Statistics Multiple R 0.985 R Square 0.970 Adjusted R Square 0.960 Standard Error 0.258 Observations Suy ra: r =0.985 Kết luận: r =0.985 (>0.9) % tăng chi phí quảng cáo % tăng doanh thu có mối liên hệ chặt chẽ Hãy ước tính (dự đoán) tỷ lệ % tăng doanh thu tỷ lệ % tăng chi phí quảng cáo 8% với xác suất tin cậy 95%: Tức Ước lượng khoảng tin cậy cho Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations yx 0.985 0.970 0.960 0.258 Trong đó: Y^= 1.9+0.5*8= 5.9 Syx=0.258; t2.5;3,=3.182; =4; =5 = 5.09902 Thay giá trị vào công thức ước lượng được: 5.9- 1.106977697  4.793022303 yx yx 5.9 + 1.106977697 7.00697697 Kết luận: Với độ tin cậy 95%, tỷ lệ tăng chi phí quảng cáo 8% tỷ lệ % tăng doanh thu nằm khoảng (4.793022303,7.00697697) 10 11 ... tác động phương pháp dạy học đến kết học tập có khác không, người ta chọn ngẫu nhiên từ lớp số học sinh để kiểm tra kết học tập họ Số học sinh chọn lớp thứ nhóm (20 học sinh) với điểm trung bình... thấy, tính theo phân bố tần số có kết cao không xác so với tính giá trị trung bình theo số liệu điều tra Lý do: Tổ TB thật (SL điều tra) Trị số (SL theo bảng phấn bổ tần số) Từ - 3.45 3.5 Từ - 4.68... điểm Số học sinh đ ược chọn lớp thứ hai nhóm (25 học sinh) với điểm trung bình 7,8 điểm độ lệch tiêu chuẩn 0,6 điểm Với mức ý nghĩa 0,05 rút kết luận Bài làm: Theo giả thiết cho: Số lượng học

Ngày đăng: 29/08/2017, 16:37

TỪ KHÓA LIÊN QUAN

w