1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nghiên cứu trật tự từ trong mô hình heisenberg với các tương tác cạnh tranh trên mạng hình vuông bằng phương pháp popov fedotov

55 425 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 55
Dung lượng 1,7 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI LƯU THỊ HƯƠNG GIANG NGHIÊN CỨU TRẬT TỰ TỪ TRONG MÔ HÌNH HEISENBERG VỚI CÁC TƯƠNG TÁC CẠNH TRANH TRÊN MẠNG HÌNH VUÔNG BẰNG PHƯƠNG PHÁ

Trang 1

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI

LƯU THỊ HƯƠNG GIANG

NGHIÊN CỨU TRẬT TỰ TỪ TRONG MÔ HÌNH HEISENBERG VỚI CÁC TƯƠNG TÁC CẠNH TRANH TRÊN MẠNG HÌNH VUÔNG BẰNG PHƯƠNG PHÁP POPOV-FEDOTOV

LUẬN VĂN THẠC SĨ KHOA HỌC VẬT LÝ

HÀ NỘI, NĂM 2017

Trang 2

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI

LƯU THỊ HƯƠNG GIANG

NGHIÊN CỨU TRẬT TỰ TỪ TRONG MÔ HÌNH HEISENBERG VỚI CÁC TƯƠNG TÁC CẠNH TRANH TRÊN MẠNG HÌNH VUÔNG BẰNG PHƯƠNG PHÁP POPOV-FEDOTOV

Chuyên ngành: Vật lý lý thuyết và vật lý toán

Mã số:60.44.01.03

LUẬN VĂN THẠC SĨ KHOA HỌC VẬT LÝ

Người hướng dẫn khoa học: GS.TS Nguyễn Toàn Thắng

HÀ NỘI, NĂM 2017

Trang 3

LỜI CẢM ƠN

Tôi xin bày tỏ lòng biết ơn sâu sắc và trân thành đến các cá nhân và tập thể sau đây:

GS TS Nguyễn Toàn Thắng đã tận tình chỉ dạy, hướng dẫn và giúp đỡ tôi rất

nhiều trong học tập và nghiên cứu cũng như trình thực hiện luận văn thạc sỹ

Các thầy cô giáo Khoa Vật lý, Phòng Sau đại học, Trường Đại học Sư

Phạm Hà Nội đặc biệt là các thầy cô giáo Bộ môn Vật lý lý thuyết đã cung cấp

những kiến thức quý báu và tạo mọi điều kiện thuận lợi để tôi học tập và hoàn thành luận văn

Các bạn Lớp K25 Cao học Vật lý lý thuyết đã tạo mọi điều kiện thuận lợi

để tôi hoàn thành luận văn

Những người thân trong gia đình, các bạn bè thân thiết đã luôn động viên,

giúp đỡ, ủng hộ, chia sẻ những khó khăn và tạo mọi điều kiện để tôi hoàn thành luận văn

Tác giả

Lưu Thị Hương Giang

Trang 4

LỜI CAM ĐOAN

Tôi xin cam đoan rằng luận văn mang tên “NGHIÊN CỨU TRẬT TỰ TỪ TRONG MÔ HÌNH HEISENBERG VỚI CÁC TƯƠNG TÁC CẠNH TRANH TRÊN MẠNG HÌNH VUÔNG BẰNG PHƯƠNG PHÁP POPOV-FEDOTOV”

là công trình nghiên cứu riêng của tôi Các số liệu trình bày trong luận án là trung thực, đã được các đồng tác giả cho phép sử dụng và chưa từng được công

bố trong bất cứ công trình nào khác

Hà Nội, ngày 20 tháng 06 năm 2017

Tác giả luận văn

Lưu Thị Hương Giang

Trang 5

MỤC LỤC

Trang

MỞ ĐẦU 1

1 Lí do chọn đề tài 1

2 Mục đích nghiên cứu 2

3 Đối tượng nghiên cứu 2

4 Nhiệm vụ nghiên cứu 2

5 Phương pháp nghiên cứu 2

6 Giới hạn và phạm vi nghiên cứu 3

7 Bố cục luận văn 3

CHƯƠNG 1: TỔNG QUAN MÔ HÌNH HEISENBERG VÀ HỆ VẤP TỪ 4 1.1 Mô hình Heisenberg 4

1.1.1 Phân loại vật liệu từ 4

1.1.2 Mô hình Heisenberg 7

1.2 Vấp từ 8

1.2.1 Vấp tương tác 8

1.2.2 Vấp hình học 9

1.2.3 Tính chất chung của các hệ vấp từ [5,6] 10

CHƯƠNG 2 TỔNG QUAN VỀ PHƯƠNG PHÁP POPOV-FEDOTOV 13

2.1 Biểu diễn toán tử spin qua các toán tử chính tắc 13

2.1.2 Biểu diễn các toán tử spin qua các toán tử chính tắc Boson 13

2.1.3 Biểu diễn các toán tử Spin qua các toán tử chính tắc Fermion 14

2.2 Vấn đề khử các trạng thái phi vật lý trong biểu diễn fermion 15

2.2.1 Trường hợp S=1/2 15

Trang 6

2.2.2 Trường hợp S=1 18

2.3 Tổng thống kê trong biểu diễn tích phân phiếm hàm Popov-Fedotov 19

2.4 Sơ đồ nghiên cứu pha trật tự từ trong mô hình Heisenberg bằng phương pháp tích phân phiếm hàm Popov 22

2.4.1 Tìm trạng thái cơ bản cổ điển bằng cách tham số hóa véc tơ spin 22 2.4.2 Hệ tọa độ định xứ: 24

2.4.3 Tính tổng thống kê bằng phương pháp Popov-Fedotov: 25

CHƯƠNG 3: Áp dụng phương pháp Popov-Fedotov cho mô hình Heisenberg phản sắt từ mạng hình vuông với tương tác cạnh tranh 29

3.1 Mô hình Heisenberg phản sắt từ với hai tương tác: 30

3.1.2 Hamiltonian và các đặc trưng mạng tinh thể 30

3.2 Vec tơ trật tự từ Q và năng lượng trạng thái cơ bản cổ điển: 33

3.3 Lý thuyết sóng spin trong biểu diễn Holstein – Primakov 34

3.3.1 Biểu diễn qua các tóan tử boson Holstein-Primakov: 35

3.3.2 Chéo hoá Bogoliubov: 36

3.4 Kết quả phương pháp Popov-Fedotov 39

3.4.1 Công thức chung cho năng lượng tự do và độ từ hoá tự phát 39

3.4.2 Thảo luận kết quả 42

TÀI LIỆU THAM KHẢO 45

Trang 7

tự xoắn, cấu trúc từ sợi đơn, sợi kép gắn liền với hiện tượng vấp từ, nghĩa là

khi tương tác giữa các spin định xứ không thể thoả mãn trên một liên kết nào đó [4]

Hiện tượng vấp từ được phân thành hai loại: vấp hình học và vấp tương tác Một thí dụ cụ thể của vấp hình học là hệ phản sắt từ trên mạng tam giác Lúc đó nếu spin trên hai đỉnh tam giác là phản song song thì trên đỉnh còn lại của tam giác spin sẽ không thể đồng thời thoả mãn liên kết phản sắt từ với hai đỉnh kia Còn nếu ta xét mạng hình vuông với tương tác theo cạnh và theo đường chéo là phản sắt từ thì nếu spin thoả mãn liên kết phản sắt từ theo các cạnh thì lại không thể thoả mãn liên kết theo đường chéo Đó chính là vấp tương tác

Hệ vấp từ đang đặt ra nhiều vấn đề chưa có câu trả lời Về mặt lý thuyết, nguyên nhân là các toán tử spin không là những toán tử chính tắc, vì vậy không thể áp dụng các phương pháp nhiễu loạn truyền thống được xây dựng cho các toán tử boson và fermion [5] Người ta đã đề ra nhiều phương pháp khác nhau

để vượt qua khó khăn này Những phương pháp thông dụng nhất là biểu diễn các toán tử spin thông qua các toán tử chính tắc khác Các biểu diễn được nhiều nhà khoa học sử dụng nghiên cứu spin thông qua toán tử Boson như phương pháp Holstein – Primakov, phương pháp Schwinger boson, phương pháp Dyson – Maleev Ngoài ra cũng có thể biểu diễn các toán tử spin qua các toán tử fermion [5] Khi biểu diễn toán tử spin qua các tóan tử chính tắc luôn nảy sinh các vấn đề, các trạng thái phi vật lý Nếu spin bằng S thì số trạng thái trong không gian Hilbert bằng 2S , nhưng trong không gian Fock của các toán tử boson, số boson n có thể là bất kì, còn trong không gian Fock của các toán tử fermion số trạng thái cũng luôn lớn hơn 2S, thí dụ với S=1/2 thì không gian của

Trang 8

các toán tử fermion tương ứng có 4 trạng thái Vì vậy với n > 2S thì các trạng thái này là không vật lý Ta luôn phải có điều kiện ràng buộc n ≤ 2S Điều kiện ràng buộc có thể được tính đến bằng phương pháp thừa số Lagrange Tuy nhiên điều kiện ràng buộc phải được thỏa mãn trên mỗi nút nên số thừa số Lagrange đưa vào phải bằng đúng số nút trong tinh thể (điều kiện ràng buộc định xứ), vì vậy không thể tính chính xác được mà thường được thay bằng điều kiện ràng buộc trung bình trên toàn tinh thể với một thừa số Lagrange Hai nhà khoa học Popov và Fedotov đã đề xuất một phương pháp để xét một cách chính xác điều kiện ràng buộc đó khi biểu diễn các toán tử spin qua toán tử fermion [6]

Với mong muốn tiếp cận hệ spin vấp từ trên mạng hình vuông bằng một

phương pháp tương đối hiện đại, em đã chọn đề tài: Nghiên cứu trật tự từ

trong mô hình Heisenberg với các tương tác cạnh tranh trên mạng hình vuông bằng phương pháp Popov-Fedotov

2 Mục đích nghiên cứu

Đọc và hiểu về các vật liệu từ, đặc biệt là về mô hình Heisenberg vấp từ Tìm hiểu một số phương pháp nghiên cứu mô hình Heisenberg, đặc biệt là phương pháp biểu diễn qua các toán tử fermion mà Popov-Fedotov đề xuất, từ

đó áp dụng tính toán cụ thể cho mô hình Heisenberg vấp từ trên mạng hình vuông

3 Đối tượng nghiên cứu

Vật liệu từ với các spin định xứ S=1/2 được mô tả bằng Hamiltonian Heisenberg trên mạng hình vuông với tương tác trao đổi phản sắt từ giữa các nút lân cận gần nhất và tiếp lân cận gần nhất

4 Nhiệm vụ nghiên cứu

Tìm hiểu về mô hình Heisenberg và hiện tượng vấp từ

Tìm hiểu các phương pháp biểu diễn toán tử spin qua toán tử chính tắc, đặc biệt là phương pháp Popov-Fedotov

Áp dụng cho bài toán cụ thể trên mô hình Heisenberg phản sắt từ mạng hình vuông với tương tác cạnh tranh

Thực hiện tính số trên phần mềm Mathematica

5 Phương pháp nghiên cứu

Trang 9

Phương pháp lý thuyết trường lượng tử trong hệ nhiều hạt kết hợp với tính

số trên máy tính

6 Giới hạn và phạm vi nghiên cứu

Thu nhiệt độ chuyển pha trong điều kiện ràng buộc chính xác

Thu độ từ hóa tự phát, năng lượng tự do trong gần đúng một vòng, nội năng và nhiệt dung đẳng tích

Trang 10

CHƯƠNG 1: TỔNG QUAN MÔ HÌNH HEISENBERG VÀ HỆ VẤP TỪ 1.1 Mô hình Heisenberg

1.1.1 Phân loại vật liệu từ

Vật liệu từ có thể là kim loại, bán dẫn hay điện môi Tính chất từ của vật liệu là do chúng có các momen từ Các hệ này có thể là nguyên tử , phân tử hay ions với số electron là số lẻ, hoặc có một số phân tử với số electron là chẵn (O2

và một vài hợp chất hữu cơ), hoặc các nguyên tử có lớp vỏ không lấp đầy dù rằng số electron là chẵn (lớp 3d, 4f, 5f) Trong mỗi lớp vỏ này mỗi electron được đặc trưng bằng momen quỹ đạo : s - electron không có momen quỹ đạo, p - electron có momen quỹ đạo bằng 1, d - electron momen có quỹ đạo bằng 2, f - electron có momen quỹ đạo bằng 3…Như vậy các ion hay các nguyên tử trên mỗi nút mạng có thể có momen góc (là tổng các momen quỹ đạo và spin ), bằng ½, 1, 3/2…Chính momen góc là cội nguồn của moment từ - đại lượng đặc trưng cơ bản cho tính chất từ của các ion,nguyên tử, điện tử Trong vật lí cổ điển momen từ có thể hình dung như lưỡng cực từ Trong cơ học lượng tử, momen từ liên hệ với momen góc như sau:

M  gBJ  gB L S (1.1)

Tính chất từ của vật liệu thể hiện ở phản ứng của vật liệu khi có từ trường ngoài, được đặc trưng bởi độ từ hoá là trung bình nhiệt động học của momen từ (1.1) và độ cảm từ là đạo hàm bậc 2 của năng lượng tự do F theo từ trường ngoài H:

(1.2)

Một số vật liệu từ có mômen từ dư hay còn gọi độ từ hóa tự phát ngay cả khi không có từ trường ngoài và được gọi là có trật tự từ Ta cũng có thể hình dung trật tự từ như là trạng thái khi các mômen từ trong các vật liệu định hướng theo một quy tắc nhất định trong không gian được hiểu như một trật tự tầm xa Nếu mômen từ trên tất cả các nút song song với nhau thì ta có chất sắt từ Nếu mômen từ trên một phân mạng phản song song với phân mạng khác thì đó là phản sắt từ Nếu trật tự phản song song không làm triệt tiêu mômen từ toàn phần

Trang 11

thì ta có ferrit từ Trật tự từ sẽ bị phá hủy do dao động nhiệt của các mômen từ ở một nhiệt độ gọi là nhiệt độ tới hạn Curie TC cho vật liệu sắt từ và ferrit từ, nhiệt độ Neel TN cho vật liệu phản sắt từ

Trong Bảng 1.1 ta có thống kê cho 6 nhóm vật liệu chính

Loại vật liệu Độ từ hóa của cả mẫu Trật tự từ tầm xa

Không có Không có

độ cảm từ chung của vật liệu:

p  d (1.3)

Với kim loại thì:



Trang 12

Tính thuận thuận từ là khi vật liệu bị hút bởi từ trường ngoài do tương tác của từ trường với mômen từ do vật liệu thuận từ có các electron không kết cặp Khi có từ trường ngoài, các mômen từ định hướng theo từ trường, kết quả là độ

từ hóa khác không và tự cảm lớn hơn không Do dao động nhiệt nên các mômen này còn có xu hướng định hướng hỗn loạn ngẫu nhiên, vì vậy từ cảm phụ thuộc nhiệt độ theo định luật Curie:

Hoặc định luật Curie - Weiss:

; Sắt từ

Là các vật liệu có trật tự tầm xa tức là các mômen từ định hướng theo một trật tự nhất định khi nhiệt độ nhỏ hơn nhiệt độ tới hạn nào đó Nguyên nhân của việc này là do tương tác trao đổi mạnh giữa các mômen từ định xứ hoặc do tương quan mạnh của các hệ mômen từ linh động

Trạng thái sắt từ cũng là trạng thái tự phát: Khi T < TC , từ độ tự phát xuất hiện ngay cả khi H = 0 Tuy nhiên, thông thường khi H = 0 ta nhận thấy vật liệu bị khử từ Điều này được giải thích bởi cấu trúc đômen

Ferrit từ

Vật liệu ferrit (nhóm các vật liệu gốm) có công thức hóa học chung là XO.Y2O3 với X là một kim loại hóa trị 3 (mà dùng phổ biến nhất là Sắt - Fe) Ví dụ: ZnO.Fe2O3 , MnO.Fe2O3 , ferrit Bari BaFe12O19, hay các ferrit - garnet (Y3Fe5O12 , 5Fe2O3.3Y2O3 )

Trang 13

Với vật liệu ferrit từ, hai vị trí mạng A và B trong tinh thể có các spin có

độ lớn khác nhau sắp xếp phản song song với nhau dẫn đến độ từ hóa tổng cộng khác không cả khi từ trường ngoài bằng không Từ độ tổng cộng này được gọi là

từ độ tự phát Tồn tại nhiệt độ chuyển pha TC gọi là nhiệt độ Curie Tại T > TC trật tự từ bị phá vỡ và vật liệu trở thành thuận từ

Phản sắt từ

Vật liệu phản sắt từ ( Cr, FeO, MnO, NiO, CoO ) cũng giống vật liệu thuận từ ở chỗ nó có từ tính yếu, nhưng khác với vật liệu thuận từ, sự phụ thuộc nhiệt độ của của nó có một hõm tại nhiệt độ TN gọi là nhiệt độ Néel

Khi T < TN các spin ở hai phân mạng A và B có trật tự phản song song Khi T > TN sự sắp xếp spin trở nên hỗn loạn, lại tăng như vật liệu thuận từ

1.1.2 Mô hình Heisenberg

Mô hình Heisenberg là một trong số những mô hình mô tả hệ mômen từ định xứ tương tác với nhau Mô hình này được xây dựng dựa trên cơ sở của tương tác Coulomb giữa các electron kết hợp với nguyên lí loại trừ Pauli

Heisenberg đề xuất Hamiltonian tương tác của hệ các Si định xứ tại nút spin có dạng:

(1.6) Trong đó: Jij là hằng số tương tác, phụ thuộc vào khoảng cách giữa các nút i và j

Ta có:

• Nếu Jij> 0, Hamiltonian (1.6) mô tả hệ phản sắt từ

• Nếu Jij < 0, Hamiltonian (1.6) mô tả hệ sắt từ

Vì hằng số tương tác giảm theo bình phương của khoảng cách hai nút i và

j nên thường giới hạn các cặp i, j là các cặp lân cận gần nhất hay tiếp lân cận gần nhất:

• Nếu chỉ giới hạn i,j là các nút lân cận gần nhất , ta có gần đúng n.n

(nearest- neighbor) và kí hiệu lấy tổng theo i,j là <i,j>

• Nếu tính tiếp tới i,j là các nút tiếp theo lân cận gần nhất , ta có gần đúng n.n.n (next- nearest neighbor) và kí hiệu lấy tổng theo i,j là <<i,j>> Tương tự có

Trang 14

(1.8) trong đó là tensor phản đối xứng hoàn toàn theo cả 3 chỉ số (tensor Levi- Civita)

Như vậy, không là các toán tử chính tắc như các toán tử Fermion hay Boson điều này là nguyên nhân gây khó khăn khi làm việc với Halmintonian (1.6) dù nó chỉ chưa tích của 2 toán tử spin

1.2 Vấp từ

Cách đây sáu thập kỷ, hệ spin vấp lần đầu tiên đã được nghiên cứu Sự vấp được sinh ra bởi sự cạnh tranh của các loại tương tác khác nhau hoặc bởi tính đối xứng mạng, khi tương tác trên các liên kết không đồng thời thỏa mãn điều kiện cực tiểu năng lượng của cả hệ Vấp từ có hai loại là vấp tương tác và vấp hình học

1.2.1 Vấp tương tác

Do sự cạnh tranh giữa các loại tương tác khác nhau mà không biết tương tác nào

sẽ chiếm ưu thế hơn, thường được gọi là vấp tương tác Ví dụ, ta xét một mạng hình vuông, tương tác lân cận giữa các nút gần nhất là trao đổi phản sắt từ Lúc

đó ta có hệ phản sắt từ trên hình 1.2a) Bây giờ ta xét thêm tương tác theo đường

Trang 15

chéo cũng là trao đổi phản sắt từ Trao đổi phản sắt từ theo đường chéo làm cho các spin trên bốn đỉnh có thể đồng thời thỏa mãn với tương tác theo cạnh và theo đường chéo Kết quả là có những chỗ ta không xác định được sự định hướng của

spin Điều này được thể hiện trên Hình 1.2b)

Hình 1.2: (a) Mô hình mạng trật tự phản sắt từ (FM); (b) mạng từ bị vấp do cạnh tranh tương tác phản sắt từ theo cạnh và theo đường chéo

1.2.2 Vấp hình học

Về loại vấp thứ hai, thường được gọi là vấp hình học là khi chỉ có một loại tương tác Ví dụ, ta xét một mô hình phản sắt từ mạng tam giác Nếu ở mạng hình vuông thì trao đổi này sẽ tạo ra trật tự phản sắt từ và không có tính vấp; nhưng ở mạng tam giác,nếu ở hai đỉnh mô men từ phản song thì ở đỉnh còn lại sẽ song song với một trong hai đỉnh đó Ở những chỗ bị phá vỡ đó, tương tác giữa các spin không có lợi về mặt năng lượng so với năng lượng cực tiểu thông thường của tương tác phản sắt từ khi hai spin định hướng ngược chiều nhau Điều này được thể hiện trên Hình 1.2: Hình 1.2a)thể hiện mạng trật tự phản sắt

từ (AFM) đối với mạng hình vuông hai chiều, còn Hình 1.2b) thể hiện mạng trật

tự phản sắt từ cho mạng tam giác liên kết phản sắt từ luôn bị phá vỡ ở một cạnh

Nếu một vật liệu có đồng thời cả hai loại vấp này thì hiện tượng càng phức tạp hơn Hiện nay nhiều tính chất của hệ spin vấp vẫn chưa được hiểu thấu đáo

Trang 16

Điều thú vị đối với các hệ vấp hình học này là do tương quan giữa thăng giáng lượng tử và vấp hình học có thể xuất hiện những trạng thái rất đặc biệt như "chất lỏng spin" và kích thích cơ bản spin phân số (s = 1/2) hoặc kích thích

cơ bản với điện tích phân số Ở đây "chất lỏng spin" được hiểu là trạng thái mà đối xứng tịnh tiến và đối xứng quay của spin bị vi phạm Trạng thái "kỳ quái" chất lỏng spin và kích thích spin phân số lần đầu tiên được Anderson và Farekas

đề xuất cách đây hơn 30 năm [16] Sự tồn tại của trạng thái này được khẳng định đối với hệ một chiều 1D, song với hệ hai chiều 2D điều này vẫn còn đang được tranh cãi cả về mặt lý thuyết lẫn thực nghiệm

,J>0 (1.9) Trên mạng có cấu trúc hai phân mạng (như mạng hình vuông) thì trạng thái cơ bản sẽ có spin trái chiều trên các nút lân cận Tuy nhiên trên mạng có cấu trúc lớn hơn hai phân mạng thì tình hình sẽ khác

Xét mạng gồm ba phân mạng trên các đỉnh của tam giác đều (xem hình

Trang 17

1.2) Năng lượng cực tiểu trên mỗi liên kết là    jS 2 Tam giác đều có ba liên kết nên lẽ ra, năng lượng cực tiểu của tam giác là 3 jS 2 Nhưng với tương tác Ising, năng lượng cực tiểu thực tế của tam giác chỉ là  jS 2 Lí do là bao giờ cũng

có hai liên kết phản sắt từ với năng lượng trên mỗi liên kết là  jS 2 và một liên kết sắt từ với năng lượng là jS 2 Mở rộng bài toán cho mạng có N nút, mỗi nút

có 6 liên kết với 6 lân cận gần nhất thì mạng tam giác với tương tác phản săt từ Ising sẽ có năng lượng ở trạng thái cơ bản là NJS 2 , lớn hơn nhiều so với năng lượng trong trạng thái không bị vấp 3JS 2 Do đó, đặc tính đầu tiên ta chứng minh được đó là: vấp hình học làm tăng năng lượng trạng thái cơ bản

Đặc điểm thứ hai là trạng thái cơ bản của hệ spin vấp có độ suy biến cao Thật vậy, mỗi tam giác do vấp hình học có một liên kết không thỏa mãn tương tác phản sắt từ Ta có thể chia mạng tam giác thành hai tập con: một tập con gồm 2N/3 nút nằm trên mạng lục giác tổ ong, còn tập hợp con thứ hai gồm N/3 nút nằm tại tâm của lục giác đều Dù spin ở tâm lục giác đều hướng theo hướng nào (lên hay xuống) thì năng lượng trạng thái cơ bản vẫn không thay đổi và vẫn đảm bảo mỗi tam giác cơ sở có một liên kết phản sắt từ không thỏa mãn Ở tâm của lục giác đều, mỗi spin có hai hướng Vậy độ suy biến của hệ là 2N/3, sẽ là lớn hơn theo bậc lũy thừa

Các lý luận trên có thể mở rộng cho tương tác Heisenberg phản sắt từ tổng quát và cho cấu trúc mạng khác Vì vậy, hai đặc tính kể trên thuộc tính chung cho mọi hệ vấp

Hình 1.4: Chia mạng tam giác thành hai tập hợp con: một tập hợp con gồm 2N/3 nút nằm trên mạng lục giác tổ ong, còn tập hợp con thứ hai gồm N/3 nút

nằm tại tâm của lục giác đều

Trang 18

Ta cũng chứng minh tương tự cho các cấu trúc mạng bị vấp khác Ví dụ các mạng tam sau đây:

Mạng dàn Mạng bounce

Hình 1.5: Một số mạng vấp hình học [6].

Trang 19

CHƯƠNG 2 TỔNG QUAN VỀ PHƯƠNG PHÁP POPOV-FEDOTOV

2.1 Biểu diễn toán tử spin qua các toán tử chính tắc

Các toán tử spin tuân theo hệ thức giao hoán (1.8), như vậy các toán

tử spin là không chính tắc nên gặp nhiều khó khăn trong nghiên cứu Để

giải quyết vấn đề này cách thông dụng nhất là biểu diễn các toán tử spin

thông qua các toán tử chính tắc khác Các biểu diễn được nhiều n

hà khoa học sử dụng nghiên cứu spin thông qua toán tử Boson như phương

pháp Holstein-Primakov, phương pháp Schwinger Boson, phương pháp

Dyson – Maleev hay qua các toán tử fermion

2.1.2 Biểu diễn các toán tử spin qua các toán tử chính tắc Boson

Thông dụng nhất là các toán tử spin S z;S được biểu diễn theo các toán tử

boson theo khai triển Holstein – Primakov như sau :

Nếu a a, là các tử boson thì có thể thử lại từ (2.1) suy ra các thành phần

của toán tử S i thỏa mãn giao hoán tử (1.8)

Trên mỗi nút chỉ có một spin với giá trị hình chiếu trên trục lượng tử là

–s,-s+1,……S-1,S tức là có thể có 2S=1 giá trị Tuy nhiên các toán tử boson có

thể tạo ra các giá trị spin bất kỳ trên các nút, như vây các trạng thái với số

boson n>2s sẽ là phi vật lý

Các toán tử số hạt nằm trong căn nên không thuận lợi, vì vậy trong thực tế

người ta khai triển Taylor căn bậc hai :

1/ 2

2 1/ 2

Trang 20

Sau đó tùy theo khả năng và tùy theo bài toán, người ta giữ lại các bậc cần thiết theo các toán tử boson

Ngoài biểu diễn Holstein – Primakov còn có các biểu diễn qua các toán tử boson khavs mhuw biểu diễn Dyson-Maleev hay biểu diễn Schwinger boson mà ta không đề cập ở đây

2.1.3 Biểu diễn các toán tử Spin qua các toán tử chính tắc Fermion

Toán tử spin S có thể được viết dưới dạng sau:

Trang 21

Trong trường hợp S = 1 thì  thay vì là ma trận Pauli sẽ là các ma trận

Trong không gian Fock của các từ Fermion thì trên mỗi nút có 4 trạng thái:

Trạng thái có 1 spin lên: , 0 1, 0 i i 0

i chỉ có thể có 1 spin định xứ với hình chiếu spin lên (2.9b) hoặc xuống

(2.9c) Nếu định nghĩa số hạt Ferminon là:

Các trạng thái không chứa hạt (2.9a) (n  i 0) và chứa hai hạt (2.9d)

(n=2) không là trạng thái vật lý và cần phải loại bỏ trong quá trình tính

Trang 22

Điều kiện ràng buộc (2.11) còn được gọi là phép chiếu trong không gian Fock (2.9) của các toán tử fermion lên không gian con vật lý (2.9b)-(2.9c) Điều kiện ràng buộc này là trên từng nút, như vậy nếu như cách tiếp cận thông thường bằng cách đưa vào tham số Lagrange thi ta cần đưa vào N tham số (N là số nút mạng) Điều này là hoàn toàn không khả thi Vì vậy thông thường điều kiện (2.11) được làm yếu đi bằng cách xét trong gần đúng trường trung bình, khi ràng buộc một hạt trên một nút được thay bằng ràng buộc trung bình nhiệt động:

Giá trị của  thường được xác định trong gần đúng trường trung bình

Để xét một cách chính xác điều kiện rang buộc mà không dùng tham số Lagrange, Popov-Fedotov đã đề xuất một cách tiếp cận khác như sau: Xét tổng thống kê:

Trang 23

( ) 2

ˆ (

1 ˆ P 1

i i i

Từ (2.19) ta suy ra có thể mô tả vec tơ riêng của H bằng giá trị n i trên mỗi

Ta có vecto riêng của H ký hiệu là , 1, 2, ;

n   n n n  thỏa mãn phương trình:

.1 0 2 ( 1, ) 2 .0 2 2

n

N n

Trang 24

Khi thu được (2.21) ta đã sử dụng (2.19) và ta kí hiệu lại

có thể có 1 spin định xứ với hình chiếu spin S = 1, S = -1 hoặc S = 0 nghĩa

là ứng với trạng thái (2.22b) trong không gian Fock của các fermion Ngoài

ra, do Hamiltonian (2.1) có đối xứng hạt-lỗ trống nên các trạng thái vật lý (2.22b) và (2.22c) tương ứng với: n  i 1.Các trạng thái có hai fermion tương đương với các trạng thái có một fermion và cũng là các trạng thái vật lý Các trạng thái không chứa hạt (2.22a) (n  i 0) và chứa ba hạt (2.22d) (ni = 3) không là trạng thái vật lý và cần phải loại bỏ trong quá trình tính toán, nghĩa là trên mỗi nút luôn phải áp đặt điều kiện ràng buộc (2.11) Tương tự như khi SƯ=1/2 để tính chính xác điều kiện ràng buộc có một fermion trên mỗi nút, Popov-Fedotov đưa vào toán tử chiếu []:

Trang 25

i

S S S

n i i

i

ni n

N

n N

bỏ các trạng thái phi vật lý trên mỗi nút, tức là tính được chính xác điều kiện ràng buộc Việc đưa vào toán tử chiếu (2.15) và (2.23) tương đương

với việc gán cho hệ một thế hóa học ảo

Trang 26

Áp dụng các quy tắc chung của phương pháp tích phân phiếm hàm cho hệ nhiều hạt, tổng thống kê (2.21) hoặc viết dưới dạng sau:

Cho S=1/2:

* ,

* ( ) (0)

1

,

i i

S N

Trang 27

Trong đó tần số Matsubara cho Fermion  F 2n 1

Biến đổi (2.35) tương ứng với việc ta dịch chuyển đạo hàm theo thời gian

ảo       và thay đổi điều kiện biên của biến Grassmann thông thường

Biểu diễn (2.35) với tần số Matsubara cải biến (2.34) và (2.36) là cơ

sở để nhiều tác giả áp dụng hình thức luận Popov – Fedotov cho các hệ cụ thể [13-17]

Ngày đăng: 20/06/2017, 16:08

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w