1. Trang chủ
  2. » Giáo án - Bài giảng

ĐẠO HÀM - GIẢI NHẤT HỘI THI GVG

16 455 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 12,46 MB

Nội dung

       Ng­êi thùc hiÖn: TrÇn thanh DuÈn Chóc mõng c¸c thÇy c« gi¸o Chóc mõng c¸c thÇy c« gi¸o vÒ dù héi gi¶ng thay s¸ch gi¸o khoa 11 vÒ dù héi gi¶ng thay s¸ch gi¸o khoa 11 N¡M HäC: 2007 -2008 N¡M HäC: 2007 -2008 Bài 1. định nghĩa và ý nghĩa của đạo hàm Giới nội dung bài dạy Trong tiết 1 chúng ta học các phần sau 1.đạo hàm tại một điểm 1)các bài toán dẫn đến kháI niệm đạo hàm 2)định nghĩa đạo hàm tại một điểm 3)cách tính đạo hàm bằng định nghĩa 4) quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số 2. Mục đích học sinh nắm được đ/n đạo hàm tại một điểm , cách tính đạo hàm theo định nghĩa và quan hệ giữa đạo hàm với tính liên tục Bài 1. định nghĩa và ý nghĩa của đạo hàm Kiểm tra bài cũ Bài 1. Cho hàm số 2 )( xxf = 1 )1()( lim x fxf 1 x Tìm Bài 2. Cho hàm số Lời giải . Cho hàm số ta có 2 )( xxf = ( ) ( ) ( )( ) 1111 11)1( 2 2 +== == xxxfxf f ( ) ( ) 011 1 1)( += xdox x fxf ( ) ( ) ( ) 21lim 1 1 lim =+= x x fxf nên vậy 1 x ( ) xxf = ( ) ( ) x fxf 0 lim Khi đó a.Là 1 b. Là -1 c. không tồn tạic. không tồn tại 0x 1x Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM a) Bài toán tìm vận tốc tức thời Bài toán; Cho chuyển động tăng dần đều có ( ) )/(2,/0 2 0 smasmv == thay vào các công thức ta có ( ) 0 0 2 0 2 2 ,.2, tt tt tt vtvttss tbt += ==== 0 t Điền vào ô trống bảng sau Thời gian(giây) t=2.5 t=2.9 t=2.99 Thời gian(giây) =3 =3 =3 0 t 0 t 0 t v tb v 6 6 6 5.5 5.9 5.99 Ta nhận thấy t càng gần thì càng gần 0 t tb v 0 v Giới hạn hữu hạn (nếu có ) được gọi là vận tốc tức thời của chuyển động tại thời điểm 0 t ( ) ( ) 0 0 lim tt tsts 0 tt Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM a) Bài toán tìm vận tốc tức thời Giới hạn hữu hạn (nếu có ) được gọi là vận tốc tức thời của chuyển động tại thời điểm 0 t ( ) ( ) 0 0 lim tt tsts 0 tt b) Bài toán tim cường độ tức thời ( cũng tương tự bài toán tìm vận tốc tức thời ) .SGK NX . Nhiều bài toán trong Vật lí, Hoá học, đưa đến việc tìm giới hạn dạng ,trong đó y=f(x) là một h/s đã cho .Giới hạn hữu hạn trên trong toán học gọi là kháI niệm đạo hàm ( ) ( ) 0 0 lim xx xfxf 0 xx Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm ( ) ( ) )(lim 0 , 0 0 ts tt tsts = ( ) ( ) ( ) 12 1 1 lim , f x fxf == Ta đặt các giới hạn hữu hạn Khi đó ta nói là đạo hàm của hàm số s(t) tại điểm ( ) 0 , ts 0 t Khi đó ta nói là đạo hàm của hàm số f(x) tại điểm 1 ( ) 21 , = f Tương tự em hãy định nghĩa đạo hàm của hàm số f(x) tại điểm 0 x Định nghĩa Cho h/s y=f(x) xác định trên khoảng (a;b) và );( 0 bax Nếu tồn tại giới hạn (hữu hạn) ( ) ( ) 0 0 lim xx xfxf 0 xx 0 tt 1 x thì giới hạn đó được gọi là đạo hàm của hàm số y=f(x) tại điểm và kí hiệu là (hoặc 0 x )( 0 ' xf ( ) 0 , xy ) ,tức là ( ) ( ) ( ) 0 0 0 , lim xx xfxf xf = 0 xx Vậy có đạo hàm tại điểm ? ( ) xxf = 0 0 = x Không Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm Định nghĩa Cho h/s y=f(x) xác định trên khoảng (a;b) và );( 0 bax Nếu tồn tại giới hạn (hữu hạn) ( ) ( ) 0 0 lim xx xfxf 0 xx thì giới hạn đó được gọi là đạo hàm của hàm số y=f(x) tại điểm và kí hiệu là (hoặc 0 x )( 0 ' xf ( ) 0 , xy ) ,tức là ( ) ( ) ( ) 0 0 0 , lim xx xfxf xf = 0 xx Chú ý : ( ) ( ) 0 0 lim xx xfxf 0 xx Nếu tồn tại giới hạn (hữu hạn) thì ta mới viết ( ) ( ) ( ) 0 0 0 , lim xx xfxf xf = 0 xx Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm Định nghĩa );( 0 bax Nếu tồn tại giới hạn (hữu hạn) ( ) ( ) 0 0 lim xx xfxf 0 xx thì giới hạn đó được gọi là đạo hàm của hàm số y=f(x) tại điểm và kí hiệu là (hoặc 0 x )( 0 ' xf ( ) 0 , xy ) ,tức là ( ) ( ) ( ) 0 0 0 , lim xx xfxf xf = 0 xx Cho h/s y=f(x) xác định trên khoảng (a;b) và Ví dụ1. Cho ( ) 2 )( lim 0 0 = xx xfxf 0 xx thì ta có ( ) 1. 0 , =xfA ( ) 2. 0 , = xfB ( ) 2. 0 , =xfC Ví dụ 2. ( ) ( ) 3 2 2 lim = + x fxf Cho 2x thì ta có ( ) 23. , =fA ( ) 32. , =fB ( ) 32. , =fC Ví dụ 3. Cho ( ) ( ) += 0 0 lim xx xfxf 0 xx thì ta có ( ) += 0 , . xfA C.Cả Avà B sai ( ) = 0 , . xfB Ví dụ 4. Cho f(x) và ( ) 75 , =f thì A.5 ( ) ( ) 5 5 lim x fxf 5 x Có giá trị là B.7 C.12 CHON ĐáP áN ĐúNG ( ) 2. 0 , = xfB ( ) 32. , = fC C. Cả Avà B sai B.7 Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm ( ) ( ) ( ) 0 0 0 , lim xx xfxf xf = 0 xx Chú ý; Đại lượng đư ợc gọi là số gia của đối số tại 0 xxx = 0 x Đại lượng ( ) ( ) ( ) ( ) 000 xfxxfxfxfy +== được gọi là số gia tương ứng của hàm số (*) Kết hợp với (*) ta có ( ) x y xy = lim 0 , 0x Ví dụ 5. Tính của các hàm số sau theo và y x 0 x ( ) 2 xxfy == Lời giải ( ) 00 )( xfxxfy += ( ) ( ) 0 2 0 2 0 2. xxxxxx +=+= Để x càng gần thì hiệu càng nhỏ 0 x 0 xx )( 0 xxxhay += Bài 1. định nghĩa và ý nghĩa của đạo hàm I -ĐạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm ( ) x y xy = lim 0 , 0x Ví dụ 6. Cho hàm số 2 xy = Hãy tính bằng định nghĩa ( ) 0 , xy Lời giải ( ) 00 )( xfxxfy += ( ) ( ) 0 2 0 2 0 2. xxxxxx +=+= Ta có xxxxxx +== 00 đặt ( ) ( ) 02 2 0 0 += + = xdoxx x xxx x y ( ) 00 22limlim xxx x y =+= 0 x 0 x nên ( ) 00 , 2xxy = Vậy Em hãy nêu các bước tính đạo hàm h/s y=f(x) bằng định nghĩa? ( theo ) ( ) x y xy = lim 0 , 0 x ( ) 00 )( xfxxfy += 3. CáCH TíNH ĐạO HàM BằNG ĐịNH NGHĩA Để tính đạo hàm của hàm số y=f(x) tại điểm bằng định nghĩa ,ta có quy tắc sau đây 0 x Bước1: giả sử là số gia của đối số tại ,tính x 0 x x y ( ) 00 )( xfxxfy += Bước 2: Lập tỉ số Bước 3: Tìm x y lim 0 x [...]... không có đạo hàm tại x0 = 0 ,nhưng hàm số f(x) lại liên tục tại x0 = 0 Vậy theo em từ nhận xét các h/s trên em chọn nhận xét nào trong các nhận xét sau A h/s f có đạo hàm tại điểm đó x0thì liên tục tại B h/s f liên tục tại điểm hàm tại điểm đó x0 thìđạo C h/s f không có đạo hàm tại điểm liên tục tại điểm đó x0 thi Bài 1 định nghĩa và ý nghĩa của đạo hàm tóm tắt bài học 1.định nghĩa đạo hàm tại một... KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm f ( x ) f ( x0 ) x x0 x x0 f , ( x0 ) = lim y , ( x0 ) = lim y x x 0 3 CáCH TíNH ĐạO HàM BằNG ĐịNH NGHĩA Để tính đạo hàm của hàm số y=f(x) tại điểm x0 bằng định nghĩa ,ta có quy tắc sau đây Bước1: giả sử x là số gia của đối số tại x0 ,tính y = f ( x0 + x) f ( x0 ) Bước 2: Lập tỉ số y x y Bước 3: Tìm lim x 0 x 1 Vi dụ 7 Tính đạo hàm của hàm số f... Lời giải Gỉa sử số gia của đối số tại x0 =2 Ta có y = f ( 2 + x ) f ( 2) x 1 1 2 (2 + x) = = = ( 2 + x ) 2 ( 2 + x ) 2 2 + x 2 y 1 ( do x 0) = x (2 + x)2 lim x 0 y 1 1 = lim = x x 0 ( 2 + x ) 2 4 Vậy f , ( 2) = 1 4 Bài 1 định nghĩa và ý nghĩa của đạo hàm I - ạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm y , y ( x0 ) = lim x 0 x 3 CáCH TíNH ĐạO. .. ĐạO HàM BằNG ĐịNH NGHĩA Bước1: giả sử x là số gia của đối số tại x0 ,tính y = f ( x0 + x) f ( x0 ) Bước 2: Lập tỉ số y x Bước 3: Tìm lim x 0 y x 4 Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của h/s Định lí 1(sgk) a) y=f(x) gián đoạn x0 thì không có đạo hàm tại điểm đó b)h/s liên tục tại một điểm có thể không có đạo hàm tại điểm đó Ta có f ( x ) = 1 có , 1 f ( 2) = 4 x hàm số trên có đạo hàm. .. nghĩa đạo hàm tại một điểm y y ( x0 ) = lim x 0 x , 2 CáCH TíNH ĐạO HàM BằNG ĐịNH NGHĩA Bước1: giả sử x là số gia của đối số tại x0 ,tính y = f ( x0 + x) f ( x0 ) Bước 2: Lập tỉ số y x y Bước 3: Tìm lim x 0 x 3 Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của h/s Định lí 1(sgk) a) y=f(x) gián đoạn x thì không có 0 đạo hàm tại điểm đó b)h/s liên tục tại một điểm có thể không có đạo hàm tại... ) là 1 A.2 B 3 B.3 C.5 D.6 x 2 + 2 x với x>0 Bài 5 Cho h/s f ( x ) = 4 với x 0 A Có đạo hàm f , ( 0) , B B không có đạo hàmf ,f( 0()0) Không có đạo hàm Tự luận x 2 + m.x + 1 , Bài 6 CMR y ( 2 ) không đổi với y = x ( m t/s) Bài 7 Nêu một số trường hợp h/s y=f(x) không có đạo hàm tại điểm x0 Bài 8 Tính đạo hàm các h/s sau 1x tại x0 = 2 a) f ( x ) = 1+x b) f ( x ) = x 3 3x tại x0 = 1 xin trân trọng... có đạo hàm tại điểm x 0 thì ta có A f(x) không xác định tại điểm x0 B h/s f(x) không có giới hạn tại điểm x0 C h/s f(x) có giới hạn hữu hạn tại điểm x0 C f ( 2) f ( 2 + x ) =1 x x 0 Bài 2 Cho h/s f(x) và lim khi đó f , ( 2) A.1 B .-1 C.2 Bài 3 Cho h/s f ( x ) = x có áp dụng định nghĩa đạo hàm tính đạo hàm của h/s trên tại điểm 0 đư x0 = ợc không ? A có B không Bài 1 định nghĩa và ý nghĩa của đạo hàm. .. y ( x0 ) = lim x 0 x , 2 CáCH TíNH ĐạO HàM BằNG ĐịNH NGHĩA Bước1: giả sử x là số gia của đối số tại x0 ,tính y = f ( x0 + x) f ( x0 ) Bước 2: Lập tỉ số y x Bước 3: Tìm lim x 0 y x 3 Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của h/s Định lí 1(sgk) a) y=f(x) gián đoạn x0 thì không có đạo hàm tại điểm đó b)h/s liên tục tại một điểm có thể không có đạo hàm tại điểm đó CủNG cố và bài tập về... nghĩa của đạo hàm Ví dụ Cho hàm số ( f ( x) = x3 2x ) f ( x ) f ( 1) = x 3 2 x 13 2.1 = x 3 2 x + 1 f ( x ) f (1) x 3 2 x + 1 = x 1 x 1 f ( x ) f (1) lim x 1 x 1 =1 xét tại điểm x0 = 1 y = f ( 1 + x ) f (1) = (1 + x ) 2(1 + x ) (13 2.1) 3 = (x) 3 + 3(x) 2 + x y (x) 3 + 3(x) 2 + x = = ( x ) 2 + ( x ) + 1 x x lim x 0 y x =1 Bài 1 định nghĩa và ý nghĩa của đạo hàm I - ạO HàM TạI MộT . và ý nghĩa của đạo hàm I - ạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm 3. CáCH TíNH ĐạO HàM BằNG ĐịNH. của đạo hàm I - ạO HàM TạI MộT ĐIểM 1.CáC BàI TOáN DẫN ĐếN KHáI NIệM ĐạO HàM 2.định nghĩa đạo hàm tại một điểm ( ) x y xy = lim 0 , 0x Ví dụ 6. Cho hàm

Ngày đăng: 03/07/2013, 21:51

TỪ KHÓA LIÊN QUAN

w