1. Trang chủ
  2. » Khoa Học Tự Nhiên

Vật lý phân tử và nhiệt học Giáo trình, bài giảng dành cho sinh viên Đại học, Cao đẳng

127 721 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 127
Dung lượng 1,65 MB

Nội dung

Vật lý phân tử và nhiệt học Giáo trình, bài giảng dành cho sinh viên Đại học, Cao đẳng là bộ tài liệu hay và rất hữu ích cho các bạn sinh viên và quý bạn đọc quan tâm. Đây là tài liệu hay trong Bộ tài liệu sưu tập gồm nhiều Bài tập THCS, THPT, luyện thi THPT Quốc gia, Giáo án, Luận văn, Khoá luận, Tiểu luận…và nhiều Giáo trình Đại học, cao đẳng của nhiều lĩnh vực: Toán, Lý, Hoá, Sinh…. Đây là nguồn tài liệu quý giá đầy đủ và rất cần thiết đối với các bạn sinh viên, học sinh, quý phụ huynh, quý đồng nghiệp và các giáo sinh tham khảo học tập. Xuất phát từ quá trình tìm tòi, trao đổi tài liệu, chúng tôi nhận thấy rằng để có được tài liệu mình cần và đủ là một điều không dễ, tốn nhiều thời gian, vì vậy, với mong muốn giúp bạn, giúp mình tôi tổng hợp và chuyển tải lên để quý vị tham khảo. Qua đây cũng gởi lời cảm ơn đến tác giả các bài viết liên quan đã tạo điều kiện cho chúng tôi có bộ sưu tập này. Trên tinh thần tôn trọng tác giả, chúng tôi vẫn giữ nguyên bản gốc. Trân trọng. ĐỊA CHỈ DANH MỤC TẠI LIỆU CẦN THAM KHẢO http:123doc.vntrangcanhan348169nguyenductrung.htm hoặc Đường dẫn: google > 123doc > Nguyễn Đức Trung > Tất cả (chọn mục Thành viên)

Trang 2

LỜI NÓI ĐẦU

Học phần Vật lý phân tử và nhiệt học gồm có hai phân môn: Vật lý phân tử (VLPT) và nhiệt động lực học (NĐLH).Trong VLPT người ta vận dụng quan điểm vi

mô và phương pháp thống kê, còn trong NĐLH người ta vận dụng quan điểm vĩ mô

và phương pháp nhiệt động lực học để nghiên cứu

Bài giảng gồm có 8 chương, trong đó hai phân môn VLPT và NĐLH được trình bày xen kẽ; các chương 2, 3, 4, 7 và 8 thuộc phân môn VLPT; còn chương 5 và chương 6 thuộc phân môn NĐLH Ngoài ra chương 1 là chương mở đầu, cung cấp cho sinh viên những khái niệm cơ bản trước khi nghiên cứu học phần

Tập bài giảng này được biên soạn dùng cho sinh viên sư phạm ngành Vật lý Trên cơ sở tham khảo các tài liệu, giáo trình kết hợp với kinh nghiệm giảng dạy của mình, người biên soạn đã sắp xếp lại các kiến thức một cách có hệ thống, khoa học, chi tiết với mong muốn giúp cho sinh viên dễ dàng trong việc tiếp thu kiến thức Sau mỗi chương có phần câu hỏi và bài tập cho sinh viên tự học

Mặc dù rất cố gắng nhưng trong quá trình biên soạn không thể không có những thiếu sót Rất mong nhận được những ý kiến đóng góp của các thầy cô, đồng nghiệp

và các bạn sinh viên để bài giảng hoàn thiện hơn Mọi ý kiến đóng góp xin gửi về địa chỉ email: ntkthu@pdu.edu.vn Xin chân thành cảm ơn!

Trang 3

CHƯƠNG 1 MỞ ĐẦU 1.1 Đối tượng và phương pháp nghiên cứu

1.1.1 Đối tượng nghiên cứu

Vật lý phân tử và nhiệt học nghiên cứu các hiện tượng liên quan đến các quá trình xảy ra bên trong vật là quá trình chuyển động nhiệt

1.1.2 Phương pháp nghiên cứu

Người ta sử dụng hai phương pháp:

Phương pháp thống kê: phân tích các quá trình xảy ra đối với từng phân tử, nguyên tử riêng biệt trên quan điểm vi mô, rồi dựa vào qui luật chung cho cả tập hợp các phân tử, từ đó giải thích các tính chất của vật

Phương pháp nhiệt động lực học: nghiên cứu sự biến đổi năng lượng vật từ dạng này sang dạng khác trên quan điểm vĩ mô Phương pháp dựa trên hai nguyên lý

cơ bản của nhiệt động học được rút ra từ thực nghiệm Từ đó, rút ra được những tính chất của vật trong các điều kiện khác nhau mà không cần chú ý đến cấu tạo phân tử

Trong học phần này chúng ta sẽ dùng cả hai phương pháp trên để nghiên cứu các vấn đề của chuyển động nhiệt

1.2 Hệ nhiệt động

1.2.1 Hệ nhiệt động

Hệ nhiệt động là một tập hợp các vật thể được bao bọc bởi một bề mặt chu vi Các vật thể có thể là các cá thể có kích thước vĩ mô, cũng có thể là các phân tử, nguyên tử có kích thước vi mô

Bề mặt chu vi có thể là thực, chẳng hạn như chu vi của một bình đựng khí, cũng có thể là ảo như bề mặt bao quanh một lượng chất lỏng chảy dọc theo một ống

Trang 4

Hệ có thể xem như được cấu tạo bởi nhiều hệ con Hệ con chịu ảnh hưởng của phần còn lại của hệ lên nó, nên trạng thái của hệ con luôn thay đổi

Hệ có trao đổi công mà không trao đổi nhiệt với khoảng ngoài thì được gọi là

hệ cô lập về nhiệt, ngược lại hệ có trao đổi nhiệt nhưng không tra đổi công thì được gọi là hệ cô lập về công Những hệ như vậy, ta gọi là hệ cô lập một phần

1.3 Trạng thái một hệ nhiệt động

1.3.1 Thông số trạng thái

Trạng thái của một hệ nhiệt động được xác định bởi một bộ các đại lượng vật

lý, các đại lượng này được gọi là thông số trạng thái của hệ

Ví dụ: Đối với một khối khí, trạng thái của nó được xác định khi biết áp suất p, nhiệt độ T, thể tích khối khí V Vậy p, V, T là các thông số trạng thái của khối khí

Hệ ở trạng thái cân bằng nhiệt động là trạng thái mà khi đó mọi nơi trong hệ đều có cùng một áp suất, cùng nhiệt độ

Về phương diện vĩ mô, ta có thể chia thông số trạng thái làm hai loại:

a Thông số quảng tính: là thông số mà độ lớn của nó tỉ lệ với khối lượng của

hệ Ví dụ: thể tích V

b Thông số cường tính: là thông số mà độ lớn của nó không phụ thuộc vào khối lượng của hệ Ví dụ: áp suất, nhiệt độ, mật độ…

1.3.2 Phương trình trạng thái

Các thông số trạng thái của hệ không hoàn toàn độc lập với nhau, mỗi thông số

là một hàm của các thông số còn lại

Phương trình trạng thái là hệ thức liên hệ các thông số trạng thái

Trang 5

Đối với một khối khí: F(p, V, T) = 0

Trong hệ SI: áp suất có đơn vị N/m2, Pa

Ngoài ra, áp suất còn có đơn vị: mmHg, atm, at…với

1.5 Nhiệt độ

1.5.1 Nhiệt độ

Nhiệt độ là đại lượng đặc trưng cho trạng thái của một vật Khái niệm trung tâm của nhiệt động lực học là nhiệt độ Khái niệm về nhiệt độ được xuất phát từ cảm giác nóng, lạnh Khi ta sờ tay vào vật, ta có thể biết vật này nóng, vật kia lạnh, vật này nóng hơn vật kia…Tuy nhiên, cảm giác chúng ta không phải luôn luôn đúng Chẳng hạn trong ngày mùa đông giá lạnh, khi ta sờ tay vào một thanh sắt ta cảm thấy lạnh hơn so với thanh gỗ, mặc dù cả hai đều có cùng nhiệt độ Sự cảm nhận khác nhau này

là do sắt dẫn nhiệt nhanh hơn so với gỗ Do vậy, để đo nhiệt độ, ta sử dụng nhiệt kế

Các tính chất của vật thông thường phụ thuộc vào nhiệt độ, khi nhiệt độ thay đổi thì bản chất của vật cũng thay đổi theo Ví dụ: độ dài, thể tích, điện trở, chiết suất…

Trang 6

Nhiệt độ là đại lượng có tính đặc biệt mà không đại lượng nào có được, đó là nhiệt độ không phải là đại lượng cộng tính

Nhiệt độ là một trong bảy đại lượng chuẩn cơ bản của hệ SI Nó có thể tăng lên

vô hạn nhưng lại không thể hạ thấp vô hạn Giới hạn của nhiệt độ thấp được chọn là không độ của thang đo Kenvin và nhiệt độ đó gọi là không độ tuyệt đối (0 K)

1.5.2 Nguyên lý thứ không của nhiệt động lực học

Thực nghiệm cho thấy: khi ta cho hai vật đồng chất A và B tiếp xúc ở một nơi hoàn toàn cách nhiệt (hệ cô lập) thì nhiệt sẽ được truyền từ vật nóng sang vật lạnh, làm cho vật nóng sẽ nguội dần và vật lạnh sẽ nóng dần Sau một thời gian đủ lâu, nhiệt độ hai vật bằng nhau, hệ đạt trạng thái cân bằng nhiệt Nếu hệ cô lập gồm nhều vật nóng lạnh khác nhau thì sau thời gian đủ lâu hệ cũng đạt cân bằng nhiệt

Từ đó ta có kết luận: “Hai vật cân bằng nhiệt với vật thứ ba thì chúng cân bằng nhiệt với nhau” Kết luận này được gọi là nguyên lý thứ không nhiệt động lực học

1.5.3 Thang đo nhiệt độ

Để đo được nhiệt độ ta phải chế tạo nhiệt kế theo các thang đo khác nhau

Để xây dựng một thang đo nhiệt giai, đầu tiên ta phải chọn một điểm cố định (ví dụ như điểm đóng băng hay điểm sôi của nước) và gọi đó là điểm chuẩn

Năm 1967, Hội nghị Quốc tế đã thỏa thuận chọn điểm ba (điểm tam trùng) của nước làm điểm chuẩn cố định và gán cho giá trị là 273 K

Kí hiệu: T3 = 273 K là nhiệt độ ở điểm tam trùng Ở nhiệt độ này các trạng thái cân bằng nhiệt của nước, nước đá và hơi nước cùng tồn tại

Nhiệt giai Kenvin (K) được chọn làm nhiệt giai quốc tế sử dụng trong khoa học cơ bản Ở nhiệt giai này, người ta quy định điểm tam trùng của nước là 273 K và

0 K là nhiệt độ không tuyệt đối

Nhiệt giai Celsius (còn gọi là nhiệt giai bách phân) lấy nhiệt độ nước đá đang tan là 00C và điểm sôi của nước là 1000C Chia khoảng cách trên nhiệt kế từ 00C đến

1000C thành 100 phần bằng nhau, mỗi phần 10C Như vậy, nếu TC là nhiệt độ trong thang nhiệt giai Celsius và T là nhiệt độ trong thang nhiệt giai Kenvin thì:

Trang 7

TC = T – 273,16 hoặc T = TC + 273 (1.2) Nhiệt giai Fahrenheit được dùng ở Anh, Mỹ và một vài nước khác Trong thang đo Fahrenheit, ứng với nhiệt độ đá đang tan là 320F và nhiệt độ sôi của nước là

Nhiệt kế lỏng: vật nhiệt kế là chất lỏng, đại lượng nhiệt kế là thể tích khối chất lỏng

Nhiệt kế cặp nhiệt điện: nhiệt kế này dựa vào nguyên lý hoạt động của cặp nhiệt điện Dòng nhiệt điện đặc trưng bởi nhiệt điện E được phát sinh khi có sự chênh lệch nhiệt độ hai mối hàn cặp nhiệt điện Loại nhiệt kế này được dùng để đo những nhiệt độ cao từ 3000C đến 20000

C tùy theo kim loại làm cặp nhiệt điện

Hỏa kế quang học: hoạt động dựa vào sự bức xạ của vật khi được nung nóng

và dựa vào các định luật bức xạ Hỏa kế quang học đo nhiệt độ từ 20000C đến

50000C

Trang 8

CÂU HỎI VÀ BÀI TẬP CHƯƠNG 1

1 Nhiệt độ là khái niệm vi mô hay vĩ mô?

2 Phương pháp thống kê khác phương pháp nhiệt động lực như thế nào?

3 Trong thực nghiệm các nhà khoa học chỉ thu được nhiệt độ thấp nhất là

0,000000002 K, còn nhiệt độ không tuyệt đối thì chưa thể thu được Vì sao các

nhà khoa học luôn cố gắng để thu được nhiệt độ thấp hơn nữa?

4 Một nhiệt giai Z có điểm đóng băng và điểm sôi của nước là -140Z và 650Z

a Hỏi độ biến thiên nhiệt độ T trong nhiệt giai Z ứng với độ biến thiên 530F là

bao nhiêu?

b Nhiệt độ trong nhiệt giai Fahrenheit ứng với nhiệt độ T = -980Z là bao nhiêu?

5 Để làm một nhiệt kế thủy ngân có khoảng đo từ 00C đến 2000C, người ta cần dùng một cần hình trụ dài, có thể tích trong là 24mm3 Tính:

a Thể tích của bầu nhiệt kế

b Khối lượng của thủy ngân

Cho khối lượng riêng của thủy ngân là 13,6g/cm3, hệ số nở biểu kiến của thủy ngân trong thủy tinh là

6 Một loại nhiệt giai Z mà điểm nước đá đang tan là -50Z và điểm nước đang sôi là

1050Z ở điều kiện chuẩn Hỏi:

a Khi nhiệt giai Celsius biến thiên 600C thì nhiệt giai Z biến thiên bao nhiêu?

b Nhiệt độ trong nhiệt giai Celsius là 600C thì nhiệt độ trong nhiệt giai Z là bao nhiêu?

c Tại nhiệt độ nào thì chỉ số trên hai nhiệt giai bằng nhau?

Trang 9

CHƯƠNG 2 CẤU TẠO NGUYÊN TỬ, PHÂN TỬ CỦA VẬT CHẤT 2.1 Thuyết nguyên tử, phân tử về cấu tạo chất

2.1.1 Thuyết nguyên tử và phân tử

Thuyết nguyên tử thời đó còn sơ sài nhưng lại là một phỏng đoán đúng đắn về cấu tạo gián đoạn của vật chất Tuy nhiên, thuyết này bị Nhà thờ chống đối và ngăn cấm trong một thời gian dài

Đến cuối thế kỉ XVII, thuyết nguyên tử mới được phục hồi khi Bôilơ (Robert Boyle, 1627-1691) – nhà vật lí và hóa học người Ailen đề ra thuyết hạt: “nguyên tố hóa học bao gồm những hạt vô cùng nhỏ, có hình dạng và kích thước nhất định và luôn chuyển động, những hạt này của các nguyên tố có khả năng kết hợp với nhau thành những hạt lớn hơn của vật thể phức tạp (ngày nay gọi là hợp chất).”

Từ cơ sở của thuyết hạt, năm 1808 Đantơn (John Dalton,1766-1844) – nhà vật

lí và hóa học người Anh đã đưa ra thuyết nguyên tử có tính khoa học hơn: “Mọi vật chất đều được tạo thành từ nguyên tử, tất cả các nguyên tử của một nguyên tố đều giống nhau và đều có những tính chất đặc trưng của nguyên tố đó.”

b Thuyết phân tử

Trên cơ sở thuyết nguyên tử của Đantơn, năm 1811 Avôgađrô (1776 – 1856) – nhà hóa học và vật lí người Ý đã đưa ra thuyết phân tử: “Hạt nhỏ nhất của một chất có khả năng tồn tại độc lập, cấu tạo bởi ít nhất từ hai nguyên tử.” Cần chú ý rằng khi Avôgađrô đưa ra thuyết phân tử thì người ta chưa phát hiện ra khí trơ (mỗi phân tử khí trơ chỉ có một nguyên tử)

Trang 10

Trong thuyết nguyên tử của mình, Avôgađrô đã nêu ra rằng: “trong các thể tích bằng nhau của các chất khí khác nhau, ở cùng một nhiệt độ và áp suất, đều có số phân

tử như nhau”

Năm 1860, tại Hội nghị Hóa học quốc tế lần thứ nhất, học thuyết nguyên tử của Đantơn được chấp nhận, và cũng đưa ra định nghĩa phân tử: “Phân tử là phần tử nhỏ nhất của một chất có khả năng tồn tại độc lập.”

Tuy nhiên, thuyết nguyên tử và phân tử lúc đó vẫn chỉ là giả thuyết khoa học, chưa có bằng chứng về sự tồn tại của nguyên tử cũng như phân tử.Đến giữa thế kỉ

XX, khoa học lần đầu tiên nhìn thấy nguyên tử bằng kính hiển vi ion Sau đó lần lượt

là các loại kính hiển vi Tunen, kính hiển vi lực nguyên tử… ra đời, với độ phân giải cao, giúp ta càng thấy rõ nguyên tử

2.1.2 Cấu tạo bên trong nguyên tử

Nguyên tử được cấu tạo từ các hạt cơ bản:

- Electron (kí hiệu là e): có khối lượng me = 9,1.10-31kg, mang điện tích âm –e = 1,6.10-19C

- Proton (kí hiệu là p): có khối lượng mp = 1,672.10-27kg, mang điện tích dương +e = 1,6.10-19C

- Nơtron (kí hiệu là n): có khối lượng mn = 1,675.10-27kg, không mang điện tích Năm 1911, nhà vật lí người Anh là Rơzơpho (Ernest Rutherford, 1871-1937)

đã làm thí nghiệm và phát hiện ra hạt nhân nguyên tử (có kích thước khoảng 10-13

- Electron: mang điện tích âm, chuyển động xung quanh hạt nhân tạo thành đám mây điện tử

Trang 11

Khi nguyên tử trung hòa về điện, tổng điện tích âm bằng tổng điện tích dương Đường kính nguyên tử vào khoảng 1A0

. Kích thước nguyên tử của các nguyên

tố khác nhau là khác nhau tùy theo số proton, nơtron trong hạt nhân và số electron bao quanh

Số nguyên tử hay phân tử chứa trong 1 mol của mọi chất đều cùng một giá trị, được gọi là số Avôgađrô, kí hiệu NA, NA = 6,02.1023 mol-1

Khối lượng của một mol chất nào đó được gọi là khối lượng mol của chất đó,

2.2 Chuyển động nhiệt Chuyển động Brown

2.2.1 Chuyển động nhiệt

Thế nào là chuyển động nhiệt?

Trang 12

Chuyển động cơ học là xét quá trình thay đổi vị trí của các vật vĩ mô trong không gian mà không xét đến các quá trình xảy ra bên trong vật chất có liên quan đến cấu tạo của vật chất

Trong thực tế, có các dạng chuyển động không trông thấy, liên quan đến cấu tạo nguyên tử và phân tử của vật chất, chẳng hạn quá trình nóng chảy, bay hơi, khuếch tán… Các dạng chuyển động này khác với chuyển động cơ học Chúng được thể hiện dưới dạng chuyển động khác gọi là chuyển động nhiệt

Các nguyên tử, phân tử cấu tạo nên chất không đứng yên mà luôn luôn chuyển động hỗn loạn không ngừng bên trong chất Chuyển động này là chuyển động nhiệt

Sự kiện thực nghiệm chứng tỏ có tồn tại chuyển động nhiệt nói trên là chuyển động Braonơ

2.2.2 Mô tả chuyển động Brown

Năm 1827 nhà thực vật học người Anh Robert Brown đã quan sát sự chuyển động hỗn loạn không ngừng của các hạt phấn hoa nằm lơ lửng trong một cốc nước bằng kính hiển vi Lúc đầu Brown cho rằng các hạt

phấn hoa chỉ chuyển động lơ lửng trong cốc nước một

thời gian rồi lắng và chìm xuống đáy cốc, nhưng thực

tế lại cho thấy các hạt phấn hoa không lắng chìm mà

chuyển động không ngừng tạo nên qũy đạo là những đường gấp khúc không theo một trật tự nào cả

Đây là hiện tượng phổ biến đối với các hạt bé nhỏ trong chất lỏng hay chất khí Chuyển động này là chuyển động Brown và các hạt nhỏ bé này gọi là các hạt Brown

Quan sát chuyển động Brown ở các điều kiện khác nhau người ta rút ra một số kết luận:

- Kích thước hạt càng bé thì chuyển động Brown của nó càng tăng;

- Nhiệt độ môi trường càng tăng thì chuyển động Brown càng tăng

- Độ nhớt môi trường tăng thì chuyển động Brown giảm đi

2.2.3 Giải thích chuyển động Brown

Tại sao các hạt Brown lại chuyển động hỗn loạn không ngừng?

Trang 13

Lúc đầu người ta nghĩ rằng chuyển động này được gây ra bởi một “lực sống” nào đó của phấn hoa nhưng về sau người ta thấy rằng hiện tượng này cũng xảy ra đối với những hạt vô cơ nhỏ bé lơ lửng trong chất khí hay chất lỏng Như vậy cách giải thích này không phù hợp

Mãi đến nửa sau thế kỷ XIX, người ta mới giải thích một cách đúng đắn chuyển động Braonơ trên cơ sở va chạm của nguyên tử, phân tử cấu tạo nên chất lỏng hoặc chất khí và hạt Brown

- Các hạt Brown có kích thước rất bé (cỡ 1μm nên những va chạm của các )nguyên tử, phân tử môi trường vào một hạt Brown nào đó từ mọi phía và trong cùng khoảng thời gian là không cân bằng Do đó tổng xung lượng của các lực va chạm khác không Dưới tác dụng của xung lượng này, hạt Brown dịch chuyển theo một hướng nào đó

- Các nguyên tử, phân tử môi trường chuyển động hỗn loạn nên tổng xung lượng luôn thay đổi cả vê hướng và độ lớn nên quĩ đạo của hạt Brown là đường gãy khúc

Vì sao chuyển động Brown lại không xảy ra đối với những hạt lớn? Khối lượng

hạt lớn đáng kể, số va chạm của các phân tử môi trường vào hạt từ mọi phía là rất lớn nên nói chung chúng bù trừ lẫn nhau, tổng xung lượng của chúng có thể khác không song rất nhỏ, không đủ để gây ra một biến thiên động lượng đáng kể cho hạt hạt không chuyển động

Tóm lại, nguyên nhân của chuyển động Brown là chuyển động nhiệt của phân

tử (hay nguyên tử) của môi trường Ngược lại, chuyển động Brown là sự kiện thực

nghiệm chứng tỏ sự tồn tại chuyển động nhiệt của các hạt cấu tạo nên môi trường

2.3 Lực tương tác nguyên tử và phân tử

2.3.1 Lực tương tác nguyên tử và phân tử

Các hạt cấu tạo nên vật chất chuyển động hỗn loạn không ngừng, vậy tại sao các vật vẫn giữ được kích thước và hình dạng? Sở dĩ như vậy là nhờ giữa các phân tử tồn tại lực tương tác Nếu không có lực tương tác này thì do chuyển động nhiệt các chất đều ở trạng thái khí, vì lúc đó các nguyên tử, phân tử chuyển động hỗn loạn và bay tung về mọi phía

Trang 14

Mặt khác, quan sát thực tế, ta thấy rằng: một khối chất lỏng có thể tích xác định, còn một vật rắn thì lại có hình dạng và kích thước xác định Như vậy, giữa các nguyên tử, phân tử có lực hút Nhờ lực hút này các nguyên tử, phân tử được giữ lại trong một thể tích xác định

Tuy nhiên nếu giữa các nguyên tử, phân tử chỉ tồn tại lực hút thì các chất đều ở trạng thái đặc cứng, đó là trạng thái mà các nguyên tử, phân tử sít cạnh nhau, thể tích của khối chất là tối thiểu Trong khi đó, thực tế ta vẫn thấy có thể nén được khối lỏng

và một vật rắn có thể chịu biến dạng nén Vậy giữa các nguyên tử, phân tử còn có lực đẩy và giữa chúng còn có khoảng trống Như vậy, giữa các nguyên tử hay phân tử có lực tương tác, lực tương tác này bao gồm cả lực hút và lực đẩy

Khi giữa các nguyên tử,

phân tử (các hạt) có lực tương

tác thì giữa chúng tồn tại thế

năng tương tác, đó là một hàm

phụ thuộc vào khoảng cách giữa

hai hạt Sau đây ta sẽ khảo sát

thế năng tương tác giữa hai hạt

Et(r):

Xét hai hạt cách nhau một

khoảng r, giữa chúng có thế năng

tương tác Et(r)

Công của lực tương tác ⃗ làm khoảng cách giữa hai hạt biến thiên một khoảng

dr bằng độ giảm thế năng tương tác giữa chúng

⃗ ⃗⃗⃗⃗ -

+ Khi r lớn, lực tương tác F nhỏ, không đáng kể thì Et = 0

+ Nếu hai hạt xích lại gần nhau một khoảng dr thì lực hút sinh công dương (vì lực hút cùng chiều với dr) dAh > 0 thì dEth < 0: thế năng Eth giảm và có giá trị âm Còn lực đẩy sinh công âm dAđ < 0 (vì lực đẩy ngược chiều với dr) thì dEtđ > 0: thế năng E tăng và có giá trị dương

Et

r(1)

(2)(3) r

0

Trang 15

Đường cong (1) biểu diễn thế năng ứng với lực đẩy, đường cong (2) biểu diễn thế năng ứng với lực hút, còn đường cong (3) biểu diễn thế năng tổng hợp (tổng của hai thế năng nói trên)

Từ đồ thị ta thấy sự biến thiên độ lớn của Eth và Etđ có những đặc điểm sau:

- So với thế năng của lực hút Eth thì thế năng lực đẩy Etđ giảm nhanh hơn khi hai hạt ra xa nhau (r tăng) và tăng nhanh hơn khi hai hạt đến gần nhau (r giảm)

- Đường cong tổng hợp (3) có một cực tiểu ứng với khoảng cách r0 giữa hai hạt

Đồ thị này cho chúng ta một khái niệm chung về dạng đường biểu diễn sự biến thiên của lực hút, lực đẩy, lực tương tác tổng hợp theo khoảng cách r giữa hai hạt nhân nguyên tử Còn bản thân lực tương tác thì rất khác nhau và phức tạp Ngay đối với một chất thì lực tương tác cũng có thể khác nhau tùy theo chất đó ở trạng thái nào

Lực tương tác là cơ sở để tạo ra các liên kết nguyên tử hay phân tử Độ bền vững của liên kết được đặc trưng bằng năng lượng liên kết, đó là năng lượng được giải phóng khi hình thành liên kết (thường lấy dấu âm) Ngược lại sự phá vỡ liên kết luôn gắn liền với sự thu nhận năng lượng (thường lấy dấu dương), về trị số tuyệt đối

nó bằng năng lượng tỏa ra khi hình thành liên kết Có những loại liên kết sau: liên kết ion, liên kết cộng hóa trị, liên kết kim loại, liên kết hidrô…

- Lực hút giữa các hạt: liên kết các hạt thành những tập hợp chặt chẽ, có cấu trúc xác định Yếu tố này được đặc trưng bằng thế năng tương tác giữa các hạt

Ở trạng thái rắn: thế năng tương tác giữa các hạt lớn hơn động năng chuyển động nhiệt của các hạt Do đó, các hạt sắp xếp thành những cấu trúc xác định Mỗi hạt hầu như không còn khả năng chuyển động tịnh tiến mà chỉ có khả năng dao động

Trang 16

quanh vị trí cân bằng Khoảng cách giữa hai vị trí cân bằng gần nhau xấp xỉ bằng r0(ứng với cực tiểu của thế năng tương tác tổng hợp)

Ở trạng thái khí: động năng chuyển động nhiệt lớn hơn thế năng tương tác giữa các hạt Vì vậy các hạt chuyển động gần như tự do và chiếm toàn bộ thể tích của bình đựng Trong khi chuyển động nhiệt, các phân tử khí có thể va chạm với nhau và với thành bình

Ở trạng thái lỏng: sự chênh lệch giữa động năng chuyển động nhiệt và thế năng tương tác không lớn lắm, do đó các hạt của chất lỏng vẫn có thể dịch chuyển, quay, dao động nhưng không thể thoát khỏi vùng tác dụng của lực Van dec van Vì vậy, chất lỏng có thể tích xác định nhưng không có hình dạng xác định

Có thể coi trạng thái lỏng là trạng thái trung gian giữa trạng thái khí và trạng thái rắn nên chất lỏng có một số tính chất giống trạng thái rắn và có một số tính chất giống trạng thái khí Chẳng hạn khối lỏng có thể tích xác định, điều này giống như chất rắn, song nó lại có hình dạng của bình đựng, điều này giống với chất khí

Trang 17

CÂU HỎI VÀ BÀI TẬP CHƯƠNG 2

1 Điều kiện gì để quan sát được chuyển động Brown? Giải thích? Nêu một số ví dụ

về chuyển động Brown trong thực tế

2 Hãy cho biết vai trò của lực tương tác giữa các phân tử (nguyên tử) đối với trạng

thái tồn tại của các chất

3 Một vật lưu niệm có diện tích bề mặt ngoài là 25cm3 được mạ một lớp bạc dày

1 Hỏi có bao nhiêu nguyên tử bạc chứa trong lớp bạc đó?

4 Hòa tan đều 0,002g muối ăn NaCl vào 1 lít nước Nếu lấy thìa múc ra 3cm3 nước muối đó thì có bao nhiêu phân tử muối trong thìa? Cho biết khối lượng riêng của muối là 2,1.103 kg/m3

5 Xác định lượng chất và số phân tử chứa trong 1,5kg khí CO2

6 Tính số nguyên tử có trong 1dm3 đồng Cho biết khối lượng mol của đồng là 0,0635kg/mol và khối lượng riêng của đồng là 9000kg/m3

7 Trường hợp nào sau đây có lượng chất nhiều nhất?

a 5cm3 bạc b 1cm3 vàng

b 10cm3 nhôm c 20cm3 graphit Cho biết khối lượng riêng của bạc, vàng, nhôm, graphit lần lượt là: 10,5g/cm3; 19,3g/cm3; 2,7g/cm3; 1,6g/cm3

Trang 18

CHƯƠNG 3 THUYẾT ĐỘNG PHÂN TỬ CHẤT KHÍ 3.1 Khí lí tưởng

Giá trị của hằng số a phụ thuộc vào khối lượng m, nhiệt độ T của khối khí

Từ (3.1) suy ra p = Va Dưới dạng này ta thấy p là một hàm tỉ lệ nghịch với V Trong hệ tọa độ p – V, đường biểu diễn của hàm nói trên là một hàm hypebon, gồm hai nhánh đối xứng nhau qua

O Do p, V chỉ có giá trị dương nên

đồ thị biểu diễn định luật

Bôilơ-Mariôt chỉ là một nhánh dương của

đường hypebon Vì dọc theo đường

biểu diễn, nhiệt độ không đổi nên

đường biểu diễn được gọi là đường

đẳng nhiệt

Khi nhiệt độ tăng thì đường

biểu diễn dịch ra xa gốc tọa độ

Trang 19

p0 và cắt trục hoành tại giá trị -2730C (hình 3.3) Tại mọi điểm trên đường biểu diễn

có cùng giá trị thể tích Đường này được gọi là đường đẳng tích

c Định luật Gay-Luyxăc

Phát biểu: Khi áp suất của một khối khí không đổi thì thể tích tỉ lệ với nhiệt độ tuyệt đối của nó

Đường biểu diễn của hàm V theo T là một đường thẳng đi qua gốc tọa độ trong

hê tọa độ (V-T) (hình 3.4) hoặc đường thẳng cắt trục tung tại V0 và cắt trục hoành tại -2730C (hình 3.5) Dọc theo đường biểu diễn này áp suất không thay đổi, đường này gọi là đường đẳng áp

Hình 3.3

p

Trang 20

Áp dụng định luật Bôilơ cho quá trình

Hình 3.6

Trang 21

Phương trình (3.8) được nhà vật lí người Pháp Clapêrôn (1799-1864) tìm ra năm 1834 và có tên là phương trình Clapêrôn

c Phương trình Clapêrôn – Menđêlêep

Vào năm 1874, nhà bác học người Nga Menđêlêep đã mở rộng phương trình Clapêrôn thành phương trình trạng thái viết cho một lượng khí bất kì Phương trình này gọi là phương trình Clapêrôn – Menđêlêep

Nhân hai vế của phương trình (3.9) với số mol n, ta được:

; với V = nV : thể tích của n mol

Đây là phương trình Clapêrôn – Menđêlêep

3.1.4 Khí lí tưởng trong trọng trường – Công thức phong vũ biểu

Trang 22

Khi không có trường lực ngoài tác dụng lên phân tử khí thì mật độ phân tử khí

là đồng nhất taị mọi điểm, hay nói cách khác khối lượng riêng của khí là đồng nhất

Nếu có trường lực ngoài tác dụng, chẳng hạn như trọng trường thì khối lượng riêng của khí sẽ như thế nào?

Chuyển động nhiệt làm cho các phân tử phân bố đều, còn lực trọng trường làm cho các phân tử bị kéo xuống mặt đất Dưới tác dụng của hai nguyên nhân trên làm cho mật độ các phân tử khí giảm dần theo chiều cao (càng lên cao mật độ càng giảm)

và do đó khối lượng riêng cũng giảm dần

Để chứng minh điều này, ta xét một cột khí thẳng đứng đặt trong trọng trường

có diện tích đáy bằng 1 đơn vị diện tích Ở trạng thái cân bằng nhiệt, nhiệt độ là đồng nhất tại mọi điểm trong cột khí

Xét một lớp khí mỏng nằm giữa hai mặt ngang z và z+dz

Độ giảm áp suất của khí giữa hai mặt ngang nói trên bằng

trọng lượng của lớp khí mỏng đó, nghĩa là:

trong đó: là khối lượng riêng của khí phụ thuộc vào độ cao z; g

là gia tốc trọng trường; dấu trừ (-) cho biết áp suất giảm khi z tăng

b Công thức phong vũ biểu

Từ phương trình Clapêrôn – Menđêlêep: , ta suy ra:

Thay vào (3.11), ta được:

trong đó, p0 là áp suất tại gốc chiều cao z = 0

Công thức (3.12) là công thức phong vũ biểu, công thức này cho phép xác định

độ cao trong khí quyển nếu biết p và p

0

z

z z+dz

Hình 3.7

Trang 23

3.1.5 Mẫu cơ học của chất khí lí tưởng

Khí lí tưởng là khí tuân theo chính xác các định luật thực nghiệm và tồn tại ở trạng thái khí trong mọi nhiệt độ Khái niệm khí lí tưởng là sự lí tưởng hóa đối tượng khảo sát nhằm làm đơn giản bài toán mà không làm mất đi các đặc trưng của đối tượng Để nghiên cứu chất khí bằng con đường lí thuyết, người ta đưa ra một mô hình gọi là mẫu cơ học của chất khí lí tưởng, đó là sự lí tưởng hóa các khí thực với những tính chất đặc trưng chung của chúng Để mô tả chuyển động của các hạt cấu tạo nên chất khí, người ta dùng cơ học Niutơn và cũng một lúc xem xét một số lớn các hạt nên người ta áp dụng phương pháp thống kê Trong phương pháp này, ta không quan tâm đến các giá trị riêng rẽ gắn với từng hạt mà dùng các giá trị trung bình đối với toàn bộ các hạt có trong hệ

Nội dung của mẫu cơ học chất khí lí tưởng gồm:

a) Khí được cấu tạo bởi những phân tử chuyển động không ngừng

b) Trong một thể tích bất kì dù nhỏ cũng chứa một số lớn phân tử khí

c) Kích thước phân tử là nhỏ so với khoảng cách giữa chúng

d) Các phân tử khí chỉ tương tác với nhau lúc va chạm, ngoài ra có thể bỏ qua tương tác giữa chúng Những va chạm của phân tử khí với nhau hay với thành bình là những va chạm đàn hồi

đ) Không có phương nào là ưu tiên đối với chuyển động của phân tử khí Hay nói cách khác, chuyển động của các phân tử khí là đẳng hướng

3.2 Phương trình cơ bản của thuyết động học chất khí

Xét một lượng khí đựng trong một bình hình lập phương cạnh l Các phân tử

va chạm vào thành bình và va chạm lẫn nhau (hình 3.7)

Xét một phân tử khí có khối lượng m0 ở vị trí M đến đập vào thành bình EFGH tại N với vận tốc v⃗⃗⃗ không vuông góc với thành bình Gọi v1 1x,v1y, v1z lần lượt là hình chiếu của v⃗⃗⃗ lên các trục tọa độ 1

Sau khi va chạm, phân tử sẽ bật ra với vận tốc v ⃗⃗⃗⃗ Do va chạm là đàn hồi nên 1hình chiếu của v⃗⃗⃗⃗ lên trục Ox sẽ đổi dấu, còn các hình chiếu lên trục Oy, Oz vẫn giữ 1

Trang 24

nguyên vì chúng song song với mặt EFGH Nghĩa là:

v’1x = -v1x, v’1y = v1y, v’1z = v1z Khi đó, động lượng của phân tử

sẽ biến thiên một lượng:

P =mov 1x-mov1x=-2mov1x

Theo định lý động lượng thì độ

biến thiên động lượng trong một

khoảng thời gian bằng xung lượng của

lực tác dụng trong khoảng thời gian đó

P =f 1t1=-2m0v1x; với f 1 : lực do thành bình tác dụng lên

phân tử; t1: thời gian va chạm

Theo định luật III Niutơn thì

phân tử cũng tác dụng lên thành bình

một lực f1=-f 1 có xung lượng: f1t1=2m0v1x

Sau khi bật trở lại, phân tử sẽ va chạm vào thành bình ABCD Trước khi đến thành bình ABCD, phân tử này có thể va chạm vào các thành bình trên hoặc dưới hoặc trước hoặc sau Tại các va chạm này, chỉ có hình chiếu v1y và v1z bị đổi dấu, còn thành phần –v1x vẫn giữ nguyên vì nó song song với các thành bình này

Thật ra, ngoài va chạm với các thành bình, phân tử khí mà ta xét còn có thể va chạm với các phân tử khác, làm cho vận tốc của nó bị thay đổi và có thể nó không đi đến thành bình bên trái ABCD Tuy nhiên các phân tử là giống hệt nhau và chúng chuyển động hỗn loạn nên nếu do va chạm mà phân tử này bị đổi hướng không đến thành bình ABCD thì nó lại đẩy phân tử khác đến thành bình bên trái Tính chung lại thì tình hình sẽ giống như chính phân tử mà ta xét sau khi bật ra từ thành bình bên phải EFGH sang thành bình bên trái ABCD

Trang 25

Tóm lại để đơn giản, ta có thể coi phân tử dạng xét chuyển động qua lại giữa hai thành bình phải EFGH và phải ABCD mà không va chạm với các phân tử khí khác

Gọi là thời gian giữa hai va chạm liên tiếp Trong khoảng thời gian này,

phân tử này sẽ vượt qua quãng đường dài 2l Ta có:

t1= 2l

v1xMặt khác, vì trong khoảng thời gian này, phân tử chỉ va chạm vào thành bình phải một lần nên lực trung bình của phân tử tác dụng lên thành bình là:

Trang 26

Áp suất do các phân tử khí tác dụng lên thành bình:

p =F̅S=13m0NVv̅ =2 1

với : mật độ phân tử khí, m0 là khối lượng một phân tử

Công thức (3.20) thường được gọi là phương trình cơ bản của thuyết động học chất khí Phương trình này không phụ thuộc vào hình dạng của bình đựng

3.3 Động năng trung bình của chuyển động tịnh tiến của phân tử khí

3.3.1 Động năng trung bình của chuyển động tịnh tiến của phân tử khí

 Động năng trung bình của chuyển động tịnh tiến của phân tử khí tỉ lệ với nhiệt

độ tuyệt đối của khí, hay nói cách khác thì nhiệt độ tuyệt đối của khí được xác định qua động năng trung bình của chuyển động tịnh tiến của phân tử khí

Trang 27

 Nhiệt độ càng cao thì ̅ càng cao Vậy nhiệt độ là thước đo cường độ chuyển động nhiệt của các phân tử khí Vì vậy ̅ còn gọi là động năng chuyển động nhiệt của phân tử

3.3.2 Các hệ quả

Từ (3.23) hoặc (3.24) ta có thể suy ra một số hệ quả quan trọng sau:

a Vận tốc căn quân phương

Vận tốc của các phân tử rất khác nhau và đối với một phân tử thì vận tốc của

nó cũng thay đổi sau va chạm Các phân tử khí trong hệ chuyển động nhiệt hỗn loạn ở mọi giá trị vận tốc, nghĩa là vận tốc của phân tử có thể lấy các giá trị biến thiên liên

Trang 28

tục nên không thể xác định số phân tử có vận tốc với giá trị nhất định mà chỉ có thể xác định số phân tử có vận tốc nằm trong một khoảng nào đó Như vậy sự phân bố số phân tử trong hệ theo vận tốc sẽ như thế nào?

Năm 1859, dựa trên lý thuyết xác suất va mẫu cơ học khí lí tưởng, Maxwell đã tìm ra định luật phân bố phân tử theo tốc độ (theo độ lớn vận tốc)

Xét một lượng khí ở nhiệt độ xác định T, gồm N phân tử, mỗi phân tử có khối lượng là m0

Gọi dN là số phân tử có tốc độ nằm trong khoảng từ v đến v + dv với dv << v

dN = Nf v dv (3.29) Xác suất để phân tử khí có tốc độ nằm trong khoảng v đến v + dv

Trang 29

Đồ thị của hàm f(v) có dạng như hình 3.8 Nó có các đặc điểm sau:

 Diện tích giới hạn bởi đường biểu diễn và trục hoành có giá trị bằng 1

 Đường biểu diễn có một cực đại tại vxs, đây là tốc độ mà tại đó xác suất đạt cực đại, có nghĩa là khả năng để hạt có vận tốc bằng vxs là lớn nhất Khi nhiệt độ tăng, đường biểu diễn dịch sang phải, vxs tăng đồng thời f(vxs) giảm

 Đường biểu diễn không đối xứng qua đường thẳng đứng đi qua cực đại của nó

 Khi v 0 hay khi v thì giá trị của f(v) tiến tới 0, nghĩa là số phân tử có tốc

Tốc độ có xác suất cực đại vxs là tốc độ ứng với cực đại của hàm phân bố f(v)

vxs được tìm từ điều kiện cực đại của f(v): df(v)

Trang 30

Áp dụng phương pháp tích phân từng phần, ta tính được:

c Tốc độ căn quân phương

Kí hiệu vc: tốc độ căn quân phương

do của mỗi loại phân tử khí Sau đây ta sẽ khảo sát số bậc tự do của mỗi loại khí

 Khí đơn nguyên tử: là loại khí mà mỗi phân tử chỉ gồm một nguyên tử (He, Ar, Ne ): có 3 bậc tự do (ứng với chuyển động tịnh tiến)

Trang 31

 Khí lưỡng nguyên tử: là loại khí mà mỗi phân tử gồm hai nguyên tử (N2, H2,

O2…): gồm 3 bậc tự do ứng với chuyển động tịnh tiến và 3 bậc tự do ứng với chuyển động quay

Ta thường bỏ qua sự quay của phân tử quanh trục đi qua tâm hai nguyên tử vì momen quán tính của phân tử quanh trục là quá nhỏ nên số bậc tự do là: i = 5

 Khí đa nguyên tử: là loại khí mà mỗi phân tử được cấu tạo từ 3 nguyên tử trở lên (CO2, H2O, CH4, NH3…)

Mỗi phân tử được xem như vật rắn

Số bậc tự do: i = 6

3.5.2 Nguyên lý phân bố đều năng lượng theo bậc tự do

Chuyển động hỗn loạn của các phân tử khí không chỉ gồm có chuyển động tịnh tiến mà còn có các dạng chuyển động quay…, và không có dạng chuyển động nào được ưu tiên hơn Từ đó, người ta đưa ra nguyên lý sau:

“Mỗi bậc tự do của phân tử ứng với cùng một năng lượng trung bình” Đây là nội dung của nguyên lý phân bố đều năng lượng theo bậc tự do

Theo (3.24) thì động năng trung bình của chuyển động tịnh tiến của một phân

tử là: ̅ =32kT

Mà chuyển động tịnh tiến có 3 bậc tự do nên động năng trung bình ứng với một bậc tự do là 1

2kT Nếu phân tử có i bậc tự do thì động năng trung bình của một phân tử khí là

Trang 32

CÂU HỎI VÀ BÀI TẬP CHƯƠNG 3

1 Từ phương trình trạng thái khí lí tưởng, tìm lại các định luật Bôilơ – Mariôt và

4 Hai phòng có kích thước bằng nhau, thông với nhau bằng một cửa mở Tuy nhiên,

nhiệt độ trung bình trong hai bình được duy trì tại các giá trị khác nhau Trong phòng nào có nhiều không khí hơn?

5 Khái niệm nhiệt độ có thể áp dụng cho chân không hay không?

6 Ta thường nói rằng ta nhìn thấy hơi nước thoát ra từ vòi một ấm đun nước đang

sôi Tuy nhiên bản thân hơi nước là khí không màu Vậy tại sao ta nhìn thấy nó?

7 Một thùng A chứa khí lý tưởng ở áp suất 5.105 Pa và nhiệt độ 300K Nó được nối với thùng B (có thể tích gấp

10 Một lượng khí Ôxi ở nhiệt độ 1000C và áp suất 105 Pa được nén đẳng nhiệt đến

áp suất 1,5.105 Pa Cần làm lạnh đẳng tích lượng khí Ôxi này đến nhiệt độ nào để

Trang 33

áp suất của nó giảm đến áp suất ban đầu? Biểu thị quá trình nêu trên trong hệ tọa

độ p-V

11 Một bình đựng Ôxi nén để hàn có dung tích 20 lít Ôxi trong bình có nhiệt độ là

270C và áp suất 20 atm (1atm = 1,013 105 Pa) Tính khối lượng Ôxi chứa trong bình Hỏi áp suất của Ôxi trong bình là bao nhiêu nếu một nửa lượng khí Ôxi đã được dùng và nhiệt độ lúc đó là 200C

12 Trong một bình có dung tích 2m3 chứa hỗn hợp khí N2 và NO Xác định khối lượng của khí NO nếu khối lượng của hỗn hợp bằng 14kg, nhiệt độ 300K và áp suất 0,6 106 N/m2

13 Một mol khí lý tưởng thực hiện theo chu trình 1-2-3-4-1 cho trên đồ thị (Hình 1)

Biết P1=1atm, T1=300K, T2 = 600K, T3 = 1200K Xác định các thông số còn lại ở mỗi trạng thái Vẽ đồ thị hệ trục tọa độ p-V

14 Có một mol khí Hêli chứa trong xilanh đậy kín bởi Pittông, khí biến đổi trạng

thái từ 1 đến 2 theo đồ thị (Hình 2) Cho V1=3 lít, V2=1 lít, p1=8,2 atm, p2 = 16,4 atm Tìm nhiệt độ cao nhất mà khí đạt được trong quá trình biến đổi

15 Có 10 kg khí đựng trong một bình ở áp suất 107Pa Giảm lượng khí m ở trong bình thì áp suất của khí của khí trong bình bằng 2,5.106 Pa Tìm lượng khí m đã lấy ra Coi quá trình là đẳng nhiệt

16 Có một lượng khí chứa trong một bình kín ở nhiệt độ 270C Tìm áp suất của khối khí nếu có một nửa lượng khí thoát ra khỏi bình và nhiệt độ của bình hạ xuống

120C Cho biết áp suất ban đầu của khối khí là 40at

Trang 34

17 Có 10g khí oxy ở nhiệt độ 100C và áp suất 3 at Hơ nóng khối khí tới thể tích 10l

và vẫn giữ cho áp suất khối khí không đổi Tính:

a Thể tích V1 của khối khí trước khi hơ nóng

b Nhiệt độ T2 của khối khí sau khi hơ nóng

c Khối lượng riêng của khối khí trước khi hơ nóng

d Khối lượng riêng của khối khí sau khi hơ nóng

18 Một khối khí có số bậc tự do i = 5 chứa trong bình có thể tích 10l, áp suất của

khối khí trong bình là 10-11 mmHg, nhiệt độ khối khí là 100C

a Tính động năng trung bình và mật độ của các phân tử khí trong bình

b Nếu mật độ của phân tử khí trong bình tăng gấp đôi, nhưng áp suất vẫn giữ như

cũ thì nhiệt độ khí trong bình bằng bao nhiêu? Thể tích khối khí khi đó bằng bao nhiêu?

c Tính nội năng của khối khí trong bình trong hai trường hợp trên

23 Chứng minh rằng vận tốc trung bình số học và vận tốc căn quân phương của các

phân tử khí tỷ lệ với p/ , trong đó p là áp suất khí, còn  là mật độ khí

24 Hai đường cong phân bố Maxwell ứng với nhiệt độ T1 và T2 = 2T1 cắt nhau tại giá trị nào của tốc độ v? (Tính tốc độ v lớn gấp bao nhiêu lần tốc độ có xác suất cực đại vxs2 ứng với nhiệt độ T2)

25 Tìm số phần trăm phân tử oxy ở 00C có vận tốc từ 100 m/s đến 110 m/s

Trang 35

CHƯƠNG 4 CÁC HIỆN TƯỢNG ĐỘNG HỌC TRONG CHẤT KHÍ

Các phân tử khí luôn chuyển động hỗn loạn và không ngừng Trong quá trình chuyển động, chúng va chạm nhau, truyền động năng và năng lượng cho nhau để đưa

hệ đến cân bằng nhiệt độ Khi có sự không đồng đều về mật độ khí, hoặc nhiệt độ, hoặc vận tốc định hướng thì sự va chạm phân tử sẽ làm mất dần sự không đồng đều

đó Lúc đó trong khối chất sẽ xuất hiện các quá trình mà ta gọi chung là các hiện tượng truyền như hiện tượng khuếch tán, hiện tượng nội ma sát, hiện tượng dẫn nhiệt

4.1 Quãng đường tự do trung bình

4.1.1 Khái niệm quãng đường tự do trung bình

Trong khi chuyển động, các phân tử khí va chạm nhau, khi đó vận tốc của chúng thay đổi cả về hướng lẫn độ lớn Do đó quĩ đạo của các phân tử là những đường gấp khúc Giữa hai lần va chạm liên tiếp, đoạn đường được coi là thẳng nên quãng đường này được gọi là quãng đường tự do Kí hiệu:

Vậy quãng đường tự do là quãng đường giữa hai lần va chạm liên tiếp của phân tử

Đối với mỗi phân tử, quãng đường tự do là khác nhau, do đó người ta đưa ra khái niệm quãng đường tự do trung bình ̅ Quãng đường tự do trung bình là trung bình của các quãng đường tự do của các phân tử

4.1.2 Thiết lập công thức tính quãng đường trung bình

Để đơn giản ta giả sử trong khối khí chỉ có phân tử A đang khảo sát là chuyển động còn các phân tử khác thì đứng yên Coi phân tử A như quả cầu có đường kính hiệu dụng d = 2r Trong khi chuyển động, A sẽ va chạm với những phân tử nào có tâm cách đường đi của nó một đoạn bé hơn d Để tính quãng đường tự do trung bình

ta cần tìm số va chạm trung bình của phân tử A trong một đơn vị thời gian

Gọi v̅ là vận tốc trung bình của phân tử A, vì vậy đoạn đường mà A đi được trong một đơn vị thời gian là s = v̅

Trang 36

Số va chạm trung bình của phân tử A với các phân tử khác trong một đơn vị thời gian sẽ bằng số phân tử khí nằm trong hình trụ có đường kính đáy 2d và chiều dài

v̅:

z̅ = n0V = n0 d2v̅; (4.1) với n0 là mật độ phân tử, V là thể tích hình trụ

Thực tế các phân tử khác cũng chuyển động, vì vậy số va chạm sẽ nhiều hơn

Vì vậy ta sẽ thay tốc độ trung bình v̅ bằng tốc độ trung bình tương đối ̅ :

z

̅ = n0 d2v̅̅̅ tđ (4.2)

Ta sẽ tính tốc độ trung tương đối như sau:

Khi hai phân tử đều chuyển động thì động năng trung bình của mỗi phân tử là

̅ Tổng động năng của hai phân tử là ̅

Nếu xét tương đối, tức là coi một phân tử đứng yên, một phân tử chuyển động thì phân tử chuyển động sẽ mang toàn bộ năng lượng ̅ = 2 ̅

Trang 37

này sang bình kia mà không va chạm nhau

Độ lớn của quãng đường tự do trung bình có ý nghĩa quan trọng trong nhiều dụng cụ và hiện tượng vật lí Thí dụ như trong đèn điện tử, trong ống phóng điện tử, trong hiện tượng ion hóa do va chạm, trong các máy gia tốc…

4.2 Các hiện tượng truyền

4.2.1 Hiện tượng khuếch tán

Hiện tượng khuếch tán là hiện tượng truyền các phân tử chất khí từ nơi có mật

độ cao (khối lượng riêng lớn) sang nơi có mật độ thấp (khối lượng riêng bé) làm cho khối chất đồng nhất về mật độ, và do đó đồng nhất về áp suất

Gọi M là khối lượng khí đã truyền qua diện tích S trong thời gian t Khối lượng khí này đã từ nơi có khối lượng riêng lớn 1 sang nơi có khối lượng riêng

bé Các phân tử được truyền theo phương vuông góc với S

Giả sử các phân tử được truyền theo phương x Khi đó

Theo định luật Fick: “Khối lượng khí truyền qua một diện tích thì tỉ lệ với diện tích đó, với thời gian truyền và với độ biến thiên khối lượng riêng trên một đơn vị độ dài theo phương vuông góc với S

Trang 38

Vậy D tỉ lệ nghịch với áp suất p và tỉ lệ thuận với T3/2 Như vậy, áp suất càng nhỏ, nhiệt độ càng cao thì quá trình khuếch tán càng mạnh

Ở nhiệt độ cao, chất khí có thể khuếch tán qua cả kim loại

Hệ số khuếch tán thực chất là khối lượng khí khuếch tán trong một đơn vị thời gian qua một đơn vị diện tích, khi độ biến thiên khối lượng trên một đơn vị độ dài là một đơn vị

Gọi là khoảng cách giữa hai lớp khí có vận tốc v1 và v2 Trong quá trình chuyển động theo cùng một phương sẽ xuất hiện các phân tử khí ở hai lớp khí nhảy sang nhau Số phân tử khí từ lớp 1 sang lớp 2 bằng số phân tử khí từ lớp 2 sang lớp 1 Như vậy ở mặt tiếp xúc giữa hai lớp khí, số phân tử khí ở lớp chuyển động nhanh có động năng lớn hơn truyền cho lớp chuyển động chậm thông qua va chạm Các phân tử

ở lớp chuyển động chậm nhận thêm năng lượng và chuyển động nhanh lên, còn lớp chuyển động nhanh thì bị mất năng lượng nên chuyển động chậm lại Điều này dẫn đến hiện tượng giữa hai lớp xuất hiện các lực nội ma sát

Thực nghiệm chứng tỏ rằng: “Lực nội ma sát F tỉ lệ với diện tích tiếp xúc S giữa hai lớp khí và độ biến thiên vận tốc theo phương vuông góc với S

Biểu thức của định luật: F=- v⃗

Trang 39

Thuyết động học phân tử đã chứng minh rằng:

Vì và ̅ đều phụ thuộc vào nhiệt độ nên cũng phụ thuộc vào nhiệt độ

4.2.3 Hiện tượng truyền nhiệt

Hiện tượng truyền nhiệt lượng làm cho chất khí đồng nhất về nhiệt độ được gọi là hiện tượng truyền nhiệt (hoặc hiện tượng dẫn nhiệt)

Hiện tượng truyền nhiệt xảy ra khi có sự chênh lệch nhiệt độ trong hệ, khi đó dòng nhiệt sẽ truyền từ nơi có nhiệt độ cao sang nơi có nhiệt độ thấp Nguyên nhân của hiện tượng này là do chuyển động nhiệt của các phân tử ở nơi có nhiệt độ cao dịch chuyển đến nơi có nhiệt độ thấp, và thông qua va chạm các phân tử ở nơi có nhiệt độ cao sẽ truyền nhiệt lượng cho các phân tử ở nơi có nhiệt độ thấp làm cho các phân tử có nhiệt độ thấp nóng lên còn các phân tử nhiệt độ cao sẽ lạnh đi

Từ thực nghiệm, Fourier đã đưa ra định luật về quá trình truyền nhiệt như sau:

“Nhiệt lượng truyền qua một diện tích tỉ lệ với , với thời gian truyền nhiệt và

độ biến thiên nhiệt độ theo phương vuông góc với ”

Biểu thức: -

với X là hệ số truyền nhiệt (đơn vị là J m.độ.s) và

là sự biến thiên nhiệt độ trên một đơn vị chiều dài theo phương truyền nhiệt

Thuyết động học phân tử đã chứng minh:

Trang 40

; (4.12) với có thể là các đại lượng như khối lượng khí, nhiệt lượng, lực nội ma sát và

có thể là các đại lượng như khối lượng riêng trong quá trình khuếch tán, vận tốc trong quá trình nội ma sát và nhiệt độ trong quá trình truyền nhiệt Còn k là hệ số tỉ lệ đóng vai trò là hệ số khuếch tán, hệ số nội ma sát và hệ số truyền nhiệt

Phương trình (4.12) gọi là phương trình truyền

Ngày đăng: 03/05/2017, 09:38

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Bùi Trọng Tuân, Nhiệt học, Nhà xuất bản Đại học Sƣ phạm (2005) Sách, tạp chí
Tiêu đề: Nhiệt học
Nhà XB: Nhà xuất bản Đại học Sƣ phạm (2005)
2. David Halliday – Robert Resnick – Jearl Walker, Cơ sở vật lí tập ba, Nhà xuất bản giáo dục (2002) Sách, tạp chí
Tiêu đề: Cơ sở vật lí tập ba
Nhà XB: Nhà xuất bản giáo dục (2002)
3. Nguyễn Xuân Chi – Đặng Quang Khang, Vật lí đại cương tập 1, Nhà xuất bản Đại học Bách Khoa Hà Nội (2000) Sách, tạp chí
Tiêu đề: Vật lí đại cương tập 1
Nhà XB: Nhà xuất bản Đại học Bách Khoa Hà Nội (2000)
4. Nguyễn Huy Sinh, Giáo trình nhiệt học, Nhà xuất bản giáo dục (2006) Sách, tạp chí
Tiêu đề: Giáo trình nhiệt học
Nhà XB: Nhà xuất bản giáo dục (2006)
5. Vũ Thanh Khiết, Giáo trình nhiệt động lực học và vật lý thống kê, Nhà xuất bản Đại học Quốc gia Hà Nội (2008) Sách, tạp chí
Tiêu đề: Giáo trình nhiệt động lực học và vật lý thống kê
Nhà XB: Nhà xuất bản Đại học Quốc gia Hà Nội (2008)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w