Bài tập Xác Suất thống kê Bài tậpxstk .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
BÀI TẬP XÁC SUẤT THỐNG KÊ Bài 1: Có 30 đề thi có 10 đề khó, 20 đề trung bình Tìm xác suất để: a) Một Học sinh bắt đề gặp đề trung bình b) Một Học sinh bắt hai đề, đề trung bình Giải a) Gọi A biến cố Học sinh bắt đề trung bình: C120 20 P(A) = = = C30 30 b) Gọi B biến cố học sinh bắt đề trung bình đề khó Gọi C biến cố học sinh bắt đề trung bình Gọi D biến cố học sinh bắt hai đề, đề trung bình C120 C110 + C220 200 + 190 P(D) = = = 0,896 Khi đó: C30 435 Bài 2: Có hai lớp 10A 10 B lớp có 45 học sinh, số học sinh giỏi văn số học sinh giỏi toán cho bảng sau Có đoàn tra Hiệu trưởng nên mời vào lớp để khả gặp em giỏi môn cao nhất? Giỏi Văn Toán Văn Toán Lớp 10A 10B 25 30 20 25 30 10 Giải Gọi V biến cố học sinh giỏi Văn, T biến cố học sinh giỏi Toán Ta có: Lớp 10A 25 30 20 P(V + T) = P(V) + P(T) − P(VT) = + − = 45 45 45 Lớp 10B: 25 30 10 P(V + T) = P(V) + P(T) − P(VT) = + − =1 45 45 45 Vậy nên chọn lớp 10B Bài 3: Lớp có 100 Sinh viên, có 50 SV giỏi Anh Văn, 45 SV giỏi Pháp Văn, 10 SV giỏi hai ngoại ngữ Chọn ngẫu nhiên sinh viên lớp Tính xác suất: a) Sinh viên giỏi ngoại ngữ b) Sinh viên không giỏi ngoại ngữ hết c) Sinh viên giỏi ngoại ngữ d) Sinh viên giỏi môn Anh Văn Giải a) Gọi A biến cố Sinh viên giỏi Anh Văn Gọi B biến cố Sinh viên giỏi Pháp Văn Gọi C biến cố Sinh viên giỏi ngoại ngữ 50 45 10 P(C) = P(A + B) = P(A) + P(B) − P(AB) = + − = 0,85 100 100 100 b) Gọi D biến cố Sinh viên không giỏi ngoại ngữ hết P(D) = − P(C) = − 0,85 = 0,15 c) P(AB + AB) = P(A) + P(B) − 2P(AB) = d) P(AB) = P(A) − P(AB) = 50 45 10 + − = 0,75 100 100 100 50 10 − = 0, 100 100 Bài 4: Trong hộp có 12 bóng đèn, có bóng hỏng Lấy ngẫu nhiên không hoàn lại ba bóng để dùng Tính xác suất để: a) Cả ba bóng hỏng b) Cả ba bóng không hỏng? c) Có bóng không hỏng? d) Chỉ có bóng thứ hai hỏng? Giải Gọi F biến cố mà xác suất cần tìm Ai biến cố bóng thứ i hỏng 1 a) P(F) = P ( A1A A ) = P ( A1 ) P ( A /A1 ) P ( A / A1A ) = = 12 11 10 220 b) P(F) = P ( A1 A A3 ) = P ( A1 ) P ( A /A1 ) P ( A3 / A1 A ) = c) P(F) = − P ( A1A A ) = − 21 = 12 11 10 55 219 = 220 220 d) P(F) = P ( A1 A A3 ) = P ( A1 ) P ( A /A1 ) P ( A3 / A1A ) = 9 = 12 11 10 55 Bài 5: Một sọt Cam có 10 trái có trái hư Lấy ngẫu nhiên ba trái a) Tính xác suất lấy trái hư b) Tính xác suất lấy trái hư c) Tính xác suất lấy trái hư d) Tính xác suất lấy nhiều trái hư Giải Gọi X số trái hư ba trái lấy X : H ( 10,4,3) a) P(X = 3) = C34 = = 0,03 C10 120 C14C62 60 = 0,5 b) P(X = 1) = = C10 120 C36 c) P(X ≥ 1) = − P(X < 1) = − = 0,83 C10 d) P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0,97 Bài 6: Một gia đình có 10 người Giả sử xác suất sinh trai, gái Tính xác suất: a) Không có trai b) Có trai gái c) Số trai từ đến Giải 1 Gọi X số trai 10 người Ta có: X : B 10, 2 10 5 1 1 a) P(X = 0) = C = 1024 2 2 10 63 1 1 = 0,25 b) P(X = 5) = C = 256 10 5 1 1 1 1 1 1 c) P(5 ≤ X ≤ 7) = C + C10 + C10 2 2 2 2 2 2 10 = 582 = 0,6 1024 Bài 7: Trọng lượng gói đường (đóng máy tự động) có phân phối chuẩn Trong 1000 gói đường có 70 gói có trọng lượng lớn 1015 g Hãy ước lượng xem có gói đường có trọng lượng 1008 g Biết trọng lượng trung bình 1000 gói đường 1012 g Giải Gọi X trọng lượng trung bình gói đường (g) X : N ( 1012g,σ2 ) 1015 − 1012 P(X > 1015) = 0,07 = 0,5 − φ σ 3 ⇒ φ = 0,43 ≈ 0, 4306 ⇒ = 1,48 ( tra bảng F) σ σ ⇒σ= = 2,0325 1, 48 1008 − 1012 Vậy P(X < 1008) = 0,5 + φ = 0,5 − φ ( 1,97 ) = 2,0325 = 0,5 − 0, 4756 = 0,0244 = 2,44% Do 1000 gói đường có khoảng 1000x0,0244 = 24,4 gói đường có trọng lượng 1008 g Bài 8: Lãi suất (%) đầu tư vào dự án năm 2000 coi đại lượng ngẫu nhiên có phân phối chuẩn Theo đánh giá ủy ban đầu tư lãi suất cao 20% có xác suất 0,1587, lãi suất cao 25% có xác suất 0,0228 Vậy khả đầu tư mà không bị thua lỗ bao nhiêu? Giải Gọi X lãi suất đầu tư vào dự án X : N ( µ, σ2 ) , µ, σ2 chưa biết 20 − µ P(X > 20) = 0,5 − φ σ = 0,1587 P(X > 25) = 0,5 − φ 25 − µ = 0,0228 σ 20 − µ 20 − µ φ σ = 0,3413 = φ ( 1) σ = µ = 15 ⇔ ⇔ ⇔ φ 25 − µ = 0, 4772 = φ ( ) 20 − µ = σ = σ σ − 15 Để có lãi thì: P(X > 0) = 0,5 − φ = 0,5 + φ ( 3) = 0,5 + 0,4987 = 0,9987 Bài 9: Nhà máy sản xuất 100.000 sản phẩm có 30.000 sản phẩm loại 2, lại sản phẩm loại KCS đến kiểm tra lấy 500 sản phẩm để thử Trong trường hợp chọn lặp chọn không lặp Hãy tính xác suất để số sản phẩm loại mà KCS phát ra: a) Từ 145 đến 155 b) Ít 151 Giải Trường hợp chọn lặp: Gọi X số sản phẩm loại có 500 sản phẩm đem kiểm tra Ta có: X : B(500;0,3) Do n = 500 lớn, p = 0,3 ( không 1) Nên ta xấp xỉ theo chuẩn: X : N(150;105) 155 − 150 145 − 150 a) P ( 145 ≤ X ≤ 155 ) = φ − φ = 105 105 = φ ( 4,87 ) + φ ( 4,87 ) = 0,5 + 0,5 = 150 − 150 − 150 b) P ( ≤ X ≤ 150 ) = φ − φ = + φ ( 14,6 ) = 0,5 105 105 Trường hợp chọn lặp: X : H(100.000;30.000;500) X có phân phối siêu bội Do N = 100.000 >> n = 500 nên ta xấp xỉ theo nhị thức X : B(500;0,3) với p = 30.000 = 0,3 100.000 Kết giống Bài 10: Tuổi thọ loại bóng đèn biết theo quy luật chuẩn với độ lệch chuẩn 100 1) Chọn ngẫu nhiên 100 bóng để thử nghiệm, thấy bóng tuổi thọ trung bình 1000 Hãy ước lượng tuổi thọ trung bình bóng đèn xí nghiệp sản xuất với độ tin cậy 95% 2) Với độ xác 15 Hãy xác định độ tin cậy 3) Với độ xác 25 độ tin cậy 95% cần thử nghiệm bóng? Giải Áp dụng trường hợp: n ≥ 30, σ biết 1) n = 100, x = 1000, γ = − α = 95%, σ = 100 2φ(t) = − α = 95% = 0,95 ⇔ φ(t) = 0,475 nên t α = 1,96 σ 100 = 1000 − 1,96 = 980,4 n 100 σ 100 a2 = x + tα = 1000 + 1,96 = 1019,6 n 100 a1 = x − t α Vậy với độ tin cậy 95% tuổi thọ trung bình bóng đèn mà xí nghiệp sản xuất vào khoảng (980,4 ; 1019,6) 2) ε = 15,n = 100 tα = 15 100 = 1,5 ⇒ φ ( t α ) = φ ( 1,5 ) = 0,4332 (bảng F) 100 Vậy độ tin cậy γ = − α = 2φ ( t α ) = 0,8664 = 86,64% 3) ε = 25, γ = 95%, σ = 100 Do γ = 95% nên t α = 1,96 ( 1,96 ) 1002 t 2α σ2 n = +1= + = [ 61,466] + = 61 + = 62 ε 25 Bài 11: Trọng lượng bao bột mì cửa hàng lương thực đại lượng ngẫu nhiên có phân phối chuẩn Kiểm tra 20 bao, thấy trọng lượng trung bình bao bột mì là: 48 kg, phương sai mẫu điều chỉnh s = ( 0,5kg ) 1) Với độ tin cậy 95% ước lượng trọng lượng trung bình bao bột mì thuộc cửa hàng 2) Với độ xác 0,26 kg, xác định độ tin cậy 3) Với độ xác 160 g, độ tin cậy 95% Tính cở mẫu n? Giải 1) Áp dụng trường hợp: n < 30, σ chưa biết n = 20, x = 48, γ = 95%,s = 0,5 γ = 0,95 ⇒ t19 α = 2,093 (tra bảng H) a1 = x − t nα−1 a = x + t nα−1 s 0,5 = 48 − 2,093 = 47,766 n 20 s 0,5 = 48 − 2,093 = 48,234 n 20 Vậy với độ tin cậy 95%, trọng lượng trung bình bao bột mì thuộc cửa hàng (47,766; 48,234) kg 2) ε = 0, 26, n = 20 t nα−1 = 0,26 20 = 2,325 ≈ 2,3457 0,5 Tra bảng H ⇒ γ = 97% Vậy với độ xác 0,26 kg độ tin cậy 97%