Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 72 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
72
Dung lượng
1,74 MB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC - TRẦN THỊ MAI NGHIÊNCỨUSỬDỤNGHỆXÚCTÁCTẾBÀO E.COLI TÁITỔHỢPDỰATRÊNHỆTHỐNGCYP264B1ĐỂCHUYỂNHÓAMỘTSỐHỢPCHẤTSESQUITERPENE LUẬN VĂN THẠC SĨ CÔNG NGHỆ SINH HỌC THÁI NGUYÊN - 2015 Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC - TRẦN THỊ MAI NGHIÊNCỨUSỬDỤNGHỆXÚCTÁCTẾBÀO E.COLI TÁITỔHỢPDỰATRÊNHỆTHỐNGCYP264B1ĐỂCHUYỂNHÓAMỘTSỐHỢPCHẤTSESQUITERPENEChuyên ngành: Công nghệ sinh học Mã số: 60420201 LUẬN VĂN THẠC SĨ CÔNG NGHỆ SINH HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: TS LÝ THỊ BÍCH THỦY THÁI NGUYÊN - 2015 Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn LỜI CAM ĐOAN Tôi xin cam đoan kết nghiêncứu dƣới nhóm cộng nghiêncứu phòng Sinh hóa thực vật – Viện Công nghệ sinh học – Viện Hàn lâm Khoa học Công nghệ Việt Nam thực từ tháng năm 2014 đến tháng năm 2015 Thái Nguyên, ngày… tháng … năm 201… Học viên Trần Thị Mai Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn LỜI CẢM ƠN Để hoàn thành luận văn này, xin bày tỏ lòng biết ơn sâu sắc đến TS Lý Thị Bích Thủy – Nghiêncứu viên phòng Sinh hóa thực vật – Viên Công nghệ sinh học – Viện Hàn lâm Khoa học Công nghệ Việt Nam định hƣớng nghiên cứu, hƣớng dẫn tạo điều kiện kinh phí, hóachất thiết bị suốt thời gian thực luận văn phòng Tôi xin chân thành cảm ơn CN Đoàn Hữu Thanh cô chú, anh chị cán phòng Sinh hóa thực vật – Viện Công nghệ sinh học – Viện Hàn lâm Khoa học Công Nghệ Việt Nam nhiệt tình hƣớng dẫn, giúp đỡ đóng góp nhiều ý kiến quý báu để hoàn thành luận văn Tôi xin cảm ơn PGS.TS Nguyễn Vũ Thanh Thanh thầy cô giáo nhà trƣờng Đại học Khoa học – Đại học Thái Nguyên, thầy cô Viện Công nghệ sinh học – Viện Hàn lâm Khoa học Công nghệ Việt Nam tạo điều kiện thuận lợi cho suốt trình học tập Tôi xin cảm ơn Quỹ phát triển khoa học công nghệ quốc gia (NAFOSTED) cung cấp kinh phí để thực nghiêncứuđềtài mã số 106-NN.02-2013.57 Cuối cùng, xin bày tỏ lòng biết ơn sâu sắc tới gia đình bạn bè ngƣời bên tôi, động viên góp ý cho suốt trình học tập thực luận văn Bằng lòng biết ơn sâu sắc xin chân thành cảm ơn! Thái Nguyên, ngày… tháng … năm 201… Học viên Trần Thị Mai Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn CÁC TỪ VIẾT TẮT Chữ viết tắt Giải thích µg Micro gram µM Micromol µl Microlit AdR Adrenodoxin reductase Adx Adrenodoxin APS Amonium persulphate bp Base pair CYP Cytochrome P450 CPR Cytochrcome P450 reductase DNA Deoxyribonucleic acid dNTP Deoxyribonucleotide triphosphate FAD Flavin adenin dinucleotid Fdx Ferredoxin FdR Ferredoxin reductase Fldx Flavodoxin FMN Flavin mononucleotide GCMS Gas chromatography mass spectometry HPLC High pressure liquid chromatography IPTG Isopropyl-beta-D-thiogalactopyranoside kDa Kilo dalton KppG Kali phosphate glycerol LB Lysogeny broth Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn NMR Nuclear Magnetic Resonance NADH Nicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate PCB Polychlorinate biphenyl PCR Polymerase chain reaction SDS – PAGE Sodium dodecyl sulphate – polyacrylamide gel electrophoresis TB Terrific Broth TLC Thin layer chromatography v/p Vòng/phút Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN II MỤC LỤC .V DANH MỤC CÁC HÌNH VII DANH MỤC CÁC BẢNG IX MỞ ĐẦU CHƢƠNG TỔNG QUAN TÀI LIỆU 1.1 Cytochrome P450 1.1.1 Định nghĩa phân loại 1.1.2 Cấu trúc cytochrome P450 1.1.3 Cơ chế xúctác cytochrome P450 1.1.4 Ứng dụng cytochrome P450 1.2 NghiêncứuCYP264B1 10 1.3 Hợpchấtsesquiterpene 13 1.3.1 Định nghĩa nguồn gốc 13 1.3.2 Phân loại sesquiterpene 13 1.3.3 Vai trò ứng dụngsesquiterpene 15 1.4 HệxúctáctếbàoEcolitáitổhợpdựahệthống cytochrome P450 16 1.5 Tình hình nghiêncứu ứng dụnghệxúctáctếbàođểchuyểnhóasesquiterpene giới Việt Nam 19 CHƢƠNG VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊNCỨU 20 Vật liệu nghiêncứu 20 2.1.1 Vật liệu 20 2.1.2 Thiết bị thí nghiệm 21 2.1.3 Hóachất 22 2.1.4 Dung dịch đệm 22 2.1.5 Môi trƣờng 23 2.2 Phƣơng pháp nghiêncứu 24 2.2.1 Nuôi cấy E.coli 24 2.2.2 Biến nạp plasmid táitổhợp vào tếbào E.coli phƣơng pháp sốc Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn nhiệt 24 2.2.3 Kiểm tra có mặt gene CYP264B1, AdR Adx 25 2.2.4 Kiểm tra khả biểu gene 27 2.2.5 Kiểm tra khả chuyểnhóa nootkatone 30 2.2.6 Xác định điều kiện chuyểnhóa nootkatone tối ƣu 30 2.2.7 Chuyểnhóasốhợpchấtsesquiterpene 32 CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 34 3.1 Nhân dòng plasmid pETC4AA kiểm tra có mặt gene mã hóa CYP264B1, AdR Adx 34 3.2 Kiểm tra khả biểu gene 35 3.2.1 Khả biểu gene CYP264B1 35 3.2.2 Khả biểu Adx 36 3.3 Kiểm tra khả chuyểnhóa nootkatone hệxúctáctếbào C43DE3/CYP264B1-AdR-Adx 38 3.4 Xác định điều kiện chuyểnhóa nootkatone tối ƣu 39 3.4.1 Nghiêncứu ảnh hƣởng môi trƣờng lên khả chuyểnhóachất 39 3.4.2 Ảnh hƣởng mật độ tếbào lên khả chuyểnhóachất 41 3.4.3 Ảnh hƣởng nhiệt độ đến khả chuyểnhóachất 42 3.4.4 Ảnh hƣởng tốc độ lắc đến khả chuyểnhóachất 44 3.4.5 Lựa chọn nồng độ chất thích hợpđểchuyểnhóa 45 3.5 Sửdụnghệxúctáctếbào C43DE3/pETC4AA đểchuyểnhóasốhợpchấtsesquiterpene 47 3.5.1 Kết chuyểnhóa longipinene 48 3.5.2 Kết chuyểnhóa isolongifolene 50 3.5.3 Tinh nhận dạng sản phẩm chuyểnhóa 51 KẾT LUẬN VÀ ĐỀ XUẤT 54 TÀI LIỆU THAM KHẢO 55 PHỤ LỤC 60 Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn DANH MỤC CÁC HÌNH Nội dung Tên hình 1.1 Trang Cách gọi tên enzyme P450 Sơ đồ chu i vận chuyển điện tử hệthống cytochrome 1.2 P450 1.3 Cấu trúc không gian Cytochrome P450cam 1.4 Cấu tạo nhân heme enzyme cytochrome P450 Sắp xếp gene mã hóaCYP264B1 terpene cyclase 10 1.5 GeoA cụm gene myxobacterium Sorangium cellulosum So ce56 1.6 Cấu trúc nhóm sắt-lƣu huỳnh 11 1.7 Cấu trúc nhóm FAD 12 1.8 Mộtsốsesquiterpene phổ biến 13 1.9 MộtsốSesquiterpene mạch thẳng 14 1.10 Mộtsố sequiterpene mạch vòng đơn 14 1.11 Mộtsốsesquiterpene đa vòng 15 2.1 Plasmid pET C4AA 20 2.2 Sơ đồ nghiêncứuđềtài 24 3.1 Kết điện di sản phẩm PCR colony 34 3.2 Cấu trúc đa gene vector pETC4AA 35 Phổ hấp thụ ánh sáng vùng 400-500 nm dịch 36 3.3 chiết tếbào C43DE3/pETC4AA sau 24 cảm ứng 3.4 Kết điện di protein ngoại bào 37 Phân tích khả biểu Adx với kháng thể đặc hiệu 38 3.5 kỹ thuật Western blot Sắc ký đồ HPLC phân tích kết chuyểnhóa nootkatone 39 3.6 hệxúctáctếbào C43DE3/pETC4AA 3.7 Chuyểnhóa glycerol tếbào vi sinh vật 43 3.8 Cấu trúc longipinene isolongifolene 47 3.9 Sắc ký đồ GCMS chuyểnhóa longipinene 49 Sốhóa Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn 3.10 3.11 Sắc ký đồ GCMS chuyểnhóa isolongifolene 50 Sắc ký đồ sản phẩm chuyểnhóa longipinene (a) cấu 51 trúc dự đoán GCMS (b) Sắc ký đồ sản phẩm chuyểnhóa isolongifolene (a) cấu 3.12 trúc dự đoán GCMS (b) 3.13 Cấu trúc phân tử 15-hydroxy longipinene Sốhóa Trung tâm Học liệu – ĐHTN 52 52 http://www.lrc.tnu.edu.vn 3.5 Sửdụnghệxúctáctếbào C43DE3/pETC4AA đểchuyểnhóasốhợpchấtsesquiterpene Trong phần sửdụnghệxúctáctếbàođểchuyểnhóahợpchất sesquiterpenes longipinene isolongifolene Đây sesquiterpene có hoạt tính chống oxi hóa, kháng khuẩn [18], [12] Hình 3.8 Cấu trúc longipinene isolongifolene Quá trình chuyểnhóa đƣợc thực nhƣ điều kiện tối ƣu trên: Tếbào C43DE3/pETC4AA đƣợc nuôi lắc môi trƣờng TB lỏng 37οC mật độ quang dịch nuôi cấy OD600 nm = bổ sung 1mM IPTG hạ nhiệt độ nuôi cấy xuống 30οC Sau 24 giờ, tếbào đƣợc thu nhận ly tâm chuyển sang môi trƣờng KppG cho mật độ tếbào đạt 20 g/l, bổ sung 200 µM chất tiếp tục lắc 24 Sau đó, môi trƣờng chuyểnhóa đƣợc chiết lần thể tích chloroform đem phân tích GCMS Trong thí nghiệm sửdụnghệxúctác với điều kiện tối ƣu xác định trên, không phát thấy sản phẩm chuyểnhóa Đồng thời, kết phân tích dịch chiết môi trƣờng sau 24 chuyểnhóa có mặt chất đƣa vào (longipinene; isologifolene) Phân tích nguyên nhân, nhận thấy longipinene isologifolene sesquiterpenes hydrocacbon nên dễ bay Chính trình lắc, hợpchất thoát khỏi môi trƣờng nuôi cấy tiếp xúc đƣợc với hệxúc 47 táctếbào Do đó, câu hỏi đƣợc đặt là: làm để ngăn chặn trình bay sesquiterpenes tăng cƣờng tiếp xúc chúng với hệxúctáctế bào? Qua tham khảo nghiêncứu giới, nhận thấy sửdụng cyclodextrin để giải vấn đề [41], [42] Cyclodextrin (CDs) đƣợc biết đến từ lâu nhƣ chất làm tăng khả di chuyển qua màng sinh học hợpchất tan [30] Chúng không đƣợc sửdụng làm chất vận chuyển thuốc mà đƣợc sửdụngchuyểnhóa sinh học nhờ vào tính “thân thiện” chúng với vi sinh vật [42] Chẳng hạn, có mặt cyclodextrin, chuyểnhóa cholesterol thành androst-4-ene-3,17-dione Saccharomyces cerevisiae tăng tới 90% [5] Sở dĩ cyclodextrin có tính chất thú vị chúng có cấu trúc đặt biệt Cyclodextrin hợpchất đƣợc tạo thành từ phân tử đƣờng liên kết với tạo thành cấu trúc vòng (vòng oligosaccharides) Các đơn vị -D, glucosyl liên kết với theo liên kết → tạo thành hình nón cụt [43], [21] Một cyclodextrin điển hình đƣợc tạo thành 6-8 đơn vị đƣờng Mặt cyclodextrin k m ƣa nƣớc nên giữ đƣợc gốc không phân cực có kích thƣớc thích hợp khoang mà hình thành hay xáo trộn liên kết hóa trị Ngƣợc lại, mặt cyclodextrin có độ ƣa nƣớc đủ để làm cho chúng phức hợp chúng tan đƣợc nƣớc [32] Trong số loại cyclodextrin khác nhau, hydroxypropyl-β-cyclodextrin có hiệu để tăng cƣờng chuyểnhóa sinh học [41], [27] Do đó, sửdụnghợpchấtđể trợ giúp hệxúctáctếbào việc chuyểnhóahợpchấtsesquiterpene Nồng độ cyclodextrin ban đầu sửdụng cho chuyểnhóa 1% [30] Cơ chất cyclodextrin đƣợc hòa vào đệm KppG lắc trƣớc đƣợc bổ sung vào môi trƣờng chuyểnhóa 3.5.1 K t chuy n hóa longipinene Chuyểnhóa longipinene đƣợc thực theo điều kiện xác định Sau 24 chuyển hóa, môi trƣờng chuyểnhóa đƣợc chiết với thể tích ethyl acetate đem phân tích GC-MS Kết đƣợc trình bày hình 3.9 48 b a d c Hình 3.9 Sắc ký đồ GCMS chuyểnhóa longipinene Hình a: Sắc ký đồ GCMS longipinene tinh khiết Hình b: Sắc ký đồ GCMS chuyểnhóa longipinene in vitro hệthống CYP264B1(Sản phẩm chuyểnhóa in vitro đƣợc cung cấp Phòng Sinh hóa thực vật) Hình c: Sắc ký đồ GCMS chuyểnhóa longipinene in vivo Ecoli C43DE3/pET17b Hình d: Sắc ký đồ GCMS chuyểnhóa longipinene in vivo Ecoli C43DE3/pETC4AA Kết cho thấy longipinene có thời gian lƣu 10,35 phút (hình 3.9a) Chuyểnhóa longipinene in vitro CYP264B1 cho sản phẩm có thời gian lƣu 13,85 phút (hình 3.9b) Khi đƣa longipinene vào môi trƣờng KppG C43DE3/pET17b không thấy xuất sản phẩm có thời gia lƣu 13,85 phút (hình 3.9c) Ngƣợc lại, sản phẩm lại xuất môi trƣờng KppG C43DE3/pETC4AA sau bổ sung chất (hình 3.9d) Điều chứng tỏ longipinene đƣợc chuyểnhóahệxúctáctếbào C43DE3/pETC4AA 49 35 K ả ch nh i ngifolene Chuyểnhóa isolongifolene đƣợc thực theo điều kiện xác định mục 3.4 Sau 24 chuyển hóa, môi trƣờng chuyểnhóa đƣợc chiết với thể tích ethyl acetate đem phân tích GC-MS Kết đƣợc trình bày hình 3.10 a b c d Hình 3.10 Sắc ký đồ GCMS chuyểnhóa isolongifolene Hình 3.10a: Sắc ký đồ GCMS isolongifolene tinh khiết Hình 3.10b Sắc ký đồ GCMS kết chuyểnhóa isolongifolene in vitro hệthống CYP264B1(Sản phẩm chuyểnhóa in vitro đƣợc cung cấp Phòng Sinh hóa thực vật) Hình 310c: Sắc ký đồ GCMS chuyểnhóa isolongipinene in vivo Ecoli C43DE3/pET17b Hình 3.10d Sắc ký đồ GCMS kết chuyểnhóa longipinene in vivo Ecoli C43DE3/pETC4AA 50 Kết cho thấy isolongifolene có thời gian lƣu 10,87 phút (hình 3.10a) Chuyểnhóa isolongifolene in vitro CYP264B1 cho sản phẩm có thời gian lƣu 13,57 phút (hình 3.10b) Khi đƣa isolongifolene vào môi trƣờng KppG C43DE3/pET17b không thấy xuất sản phẩm có thời gian lƣu 13,57 phút (hình 3.10c) Tuy nhiên, sản phẩm lại xuất môi trƣờng KppG C43DE3/pETC4AA sau bổ sung isolongifolene (hình 3.10d) Điều chứng tỏ isolongifolene đƣợc chuyểnhóahệxúctáctếbào C43DE3/pETC4AA Tinh ạch v nhận ạng ản hẩ ch nh Để có lƣợng sản phẩm chuyểnhóa đủ để gửi nhận dạng NMR, chuyểnhóa longipinene isolongifolene đƣợc thực lít môi trƣờng KppG với nồng độ chất 200 µM (tƣơng đƣơng với 40,8 mg) Sau chuyển hóa, môi trƣờng đƣợc chiết thể tích ethyl acetate cô đặc máy hút chân không nhƣ mô tả phần phƣơng pháp Sản phẩm cô đặc (3 ml) đƣợc đƣa lên cột silicagel để phân tách với hệdung môi n-hexan : ethyl acetate (95:5) Các phân đoạn đƣợc kiểm tra phƣơng pháp TLC với mẫu đối chứng sản phẩm chuyểnhóa in vitro chấtCYP264B1 Các phân đoạn chứa sản phẩm đƣợc tập hợp lại kiểm tra độ tinh phƣơng pháp GCMS Sản phẩm, sau đƣợc cô đặc lại máy cô quay chân không trƣớc gửi phân tích phƣơng pháp NMR Kết kiểm tra sản phẩm tinh longipinene isolongipine GCMS đƣợc thể hình 3.11 3.12 a b Hình 3.11 Sắc ký đồ sản phẩm chuyểnhóa longipinene (a) cấu trúc dự đoán GCMS (b) 51 a b Hình 3.12 Sắc ký đồ sản phẩm chuyểnhóa isolongifolene (a) cấu trúc dự đoán GCMS (b) Kết hình 3.11 cho thấy: Sản phẩm chuyểnhóa longipinene có độ tinh cao (hình 3.11a) Khi so sánh với thƣ viện phổ khối NIST 2.0 (National Institute of Standards and Technology), sản phẩm có độ tƣơng đồng cao (63%) với chất có công thức phân tử C15H24O, có tên 2-(4a,8-Dimethyl1,2,3,4,4a,5,6,7-octahydro-naphthalene-2γ)1-prop-2-en-1-ol, có cấu trúc phân tử đƣợc minh họa hình 3.11b) Kết hình 3.12 cho thấy: Sản phẩm chuyểnhóa isolongifolene có độ tinh cao (hình 3.12a) Khi so sánh với thƣ viện phổ khối NIST 2.0, sản phẩm có độ tƣơng đồng cao (89%) với chất có công thức phân tử C15H24O có tên 9-hydroxy-isolongifolen, cấu trúc phân tử đƣợc minh họa hình 3.12b) Từ lít môi trƣờng chuyểnhóa longipinene, thu dƣợc 11mg sản phẩm sau tinh Sản phẩm đƣợc gửi phân tích cấu trúc phƣơng pháp NMR Kết phân tích cho thấy, sản phẩm 15 hydroxy-longipinene, có cấu trúc phân tử đƣợc minh họa hình 3.13 Hình 3.13 Cấu trúc phân tử 15-hydroxy longipinene Đối với chuyểnhóa isolongifolene, lƣợng sản phẩm thu đƣợc sau tinh 52 chƣa đủ để phân tích NMR (dƣới mg) Nguyên nhân trình tinh chƣa tối ƣu, dẫn đến lƣợng sản phẩm bị nhiều sau trình Hiện nay, tiến hành tinh để nhận dạng sản phẩm chuyểnhóa isolongifolene NMR 53 KẾT LUẬN VÀ ĐỀ NGHỊ KẾT LUẬN Qua thí nghiệm đƣợc trình bày trên, đềtài rút số kết luận sau: Điều kiện đểhệxúctáctếbào C43DE3/pETC4AA hoạt động tối ƣu - Môi trƣờng biểu hiện: TB - Môi trƣờng chuyển hóa: KppG - Mật độ tế bào: 20 g/l - Nhiệt độ biểu chuyểnhóa chất: 30oC - Tốc độ lắc: 180 v/p - Nồng độ chất: 200 µM Sửdụng thành công hệxúctáctếbào E.coli C43DE3/pETC4AA đểchuyểnhóahợpchất sesquiterpenes longipinene isolongifolene Kết chuyểnhóahợpchất cho thấy chúng đƣợc chuyểnhóa thành sản phẩm Tinh xác định đƣợc cấu trúc sản phẩm chuyểnhóa longipinene phƣơng pháp NMR, sản phẩm có công thức phân tử C15H24O đƣợc nhận dạng 15-OH-longipinene Đã tinh sản phẩm chuyểnhóa isolongifolene, sản phẩm có độ tƣơng đồng cao (89%) với 9-hydoxy isolongifolene, có công thức phân tử C15H24O Sản phẩm tiếp tục đƣợc chuyểnhóa tinh để gửi phân tích phƣơng pháp NMR ĐỀ NGHỊ Tiếp tục tinh để nhận dạng sản phẩm chuyểnhóa isolongifolene Chúng gợi ý thêm sốsesquiterpene thú vị có hàm lƣợng cao hoạt tính dƣợc học tinh dầu đểchuyểnhóahệxúctáctếbào C43DE3/pETC4AA nhƣ: caryophyllene (chiếm 19,22% tinh dầu ngải cứu); selinene (chiếm 68,54% tinh dầu cúc tần); curcumen có dầu nghệ, có tácdụng diệt khuẩn, làm vết thƣơng chóng thành sẹo, chữa loét tá tràng; zingiberen thành phần chủ yếu dầu gừng Đánh giá so sánh hoạt tính sinh học sesquiterpene sản phẩm chuyểnhóa chúng qua khả chống ô xi hóa, kháng viêm, kháng khuẩn… 54 TÀI LIỆU THAM KHẢO Tài liệu tiếng việt Đào Hùng Cƣờng Huỳnh Thị Thanh Hƣơng (2009), “Nghiên cứu xác định thành phần terpenoid tinh dầu rái Đại Lộc – Quảng Nam”, Tạp ch hoa học Công nghệ, Đại học Đà Nẵng 6(35) Nguyễn Thị Ngọc Dao (2011), Cytochrome – P450, NXB Khoa học tự nhiên Công nghệ Hà Nội, 17-41, 167-185 Nguyễn Thị Ngọc Dao, Đái Duy Ban, Nguyễn Thị Bích Nhi (1985), “Tách chiết làm phần cytochrome P450”, Báo cáo nghiêncứu khoa học – Trung tâm Sinh lý Hóa sinh Người Động vật – Viện Khoa học Việt Nam 1975-1985, Hà Nội, 370-374 Nguyễn Văn Tuyến, Trần Văn Lộc, Nguyễn Đức Vinh, Đặng Thị Tuyết Anh Trần Văn Sung (2012), “Nghiên cứu tổng hợp sesquitecpen lacton thuộc khung pseudoguainolide với hệ vòng -lacton -metyl”, Tạp chí Hóa học 50 (4B):83-86 Tài liệu tiếng anh Bar R (1989), “Cyclodextrin aided bioconversions and fermentations”, Trends Biotechnol 7:2– Bernhardt R (1996), “Cytochrome P450 : structure, function, and generation of reative oxygen species”, Rev Physiol Biochem Pharmacol, 127, pp, 137-221 Bernhardt R (2006), “Cytochromes P450 as versatile biocatalysts”, J Biotechnol.124:128-145 Chu SS, Jiang GH, Liu ZL (2011), Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis, Pest Manag Sci 67:1253-1257 Denisov IG, Makris TM, Sligar SG, and Schlichting I (2005), “Structure and chemistry of cytochrome P450”, Chem Rev 105:2253–2278 10 Ewen KM, Hannemann F, Khatri Y, Perlova O, Kappl R, Krug D, Hüttermann J, Müller R, Bernhardt R (2009), “Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450”, J Biol Chem 284:28590–28598 11 Fraga BM (2006), “Natural sesquiterpenoids”, Nat Prod Rep 23:943–72 55 12 Gabriela Paun, Saadia Zrira, Amale Boutakiout, Oana Ungureanu, Demetra Simion, Ciprian Chelaru and Gabriel Lucian Radu (2013), “Chemical composition, antioxidant and antibacterial activity of essential oils from moroccan aromatic herbs”, Rev Roum Chim., 58(11-12), 891-897 13 Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007), “Cytochrome P450 systems-biological variations of electron transport chains”, Biochim Biophys Acta, 1770(3):330-44 14 Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T and Ishimura Y (1989), “Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single”, Proc Natl Acad Sci USA 86:7823–7827 15 Jörg Degenhardt, Tobias G Köllner, Jonathan Gershenzon (2009), Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry, 1621-1637 16 Khatri Y, Hannemann F, Perlova O, Müller R, Bernhardt R (2011), “Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum So ce56”, FEBS Lett, 585:1506– 1513 17 Kimata Y, Shimada H, Hirose T, Ishimura Y (1995), “Role of Thr-252 in cytochrome P450cam: a study with unnatural amino acid mutagenesis”, Biochem Biophys Res Commun 208:96–102 18 Kowsalya Rangasamy and Elangovan Namasivayam (2014), “In vitro Antioxidant and Free Radical Scavengin Activity of Isolongifolene”, Asian Journal of Biological Science Doi: 10.3923/ajbs.2014 19 Laemmli UK (1970), “Cleavage of structural proteins during the assembly of the head of bacteriophage T4”, Nature, 1970;227:680–5 20 Lamb DC, Lei L, Warrilow AG, Lepesheva GI, Mullins JG, Waterman MR and Kelly SL (2009), “The first virally encoded cytochrome P450”, J Virol 83:8266– 8269 21 Larsen KL (2002), “Large cyclodextrins”, J Inclusion Phenom Macro 43:1–13 22 Legault J and Pichette A (2007), “Potentiating effect of beta-caryophyllene on 56 anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel”, J Pharm Pharmacol 59(12):1643-7 23 Liu Q, Majdi M, Cankar K, Goedbloed M, Charnikhova T, Verstappen FW, de Vos RC, Beekwilder J, van der Krol S, Bouwmeester HJ (2011), “Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana”, PLoS One 6(8):e23255 24 Loeber DE, Russell SW, Toube TP, Weedon BCL, and Diment J (1971), “Carotenoids and related compounds Part XXVIII Syntheses of zeaxanthin, βcryptoxanthin, and zeinoxanthin ( -cryptoxanthin)”, J Chem Soc 404–408 25 Luo DQ, Wang F, Bian XY, Liu JK (2005), “Rufuslactone, a New Antifungal Sesquiterpene from the Fruiting Bodies of the Basidiomycete Lactarius rufus”, J Antibiot 58(7): 456-459 26 Ly TT, Khatri Y, Zapp J, Hutter MC, Bernhardt R (2012), “CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase” Appl Microbiol Biotechnol 95(1):123-33 27 Mahato SB, Garai S (1997), Advances in microbial steroid biotransformation, Steroids 62:332–45 28 Mansuy D (1998), The great diversity of reactions catalyzed by cytochromes P450, Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:5–14 29 Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989), “A conserved residue of cytochrome P450 is involved in heme-oxygen stability and activation”, J Am Chem Soc 111:9252–9253 30 Másson M, Loftssona T , Mássonb G, Stefánsson E (1999), “Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing”, Journal of Controlled Release 59:107–118 31 McGarvey DJ and Croteau R (1995), Terpenoid Metabolism, The Plant Cell 7:1015–1026 32 Munoz-Botella S, del Castillo B, Martin MA (1995), Cyclodetrin properties and applications of inclusion complex formation, Ars Pharm 36:187–98 33 Nelson D.R (2009), The cytochroem P450 homepage, Hum Genomics, 4(1), 57 pp, 59-65 34 Nonaka Y, Murakami H, Yabusaki Y, Kuramitsu S, Kagamiyama H, Yamano T, Okamoto M (1987), Molecular cloning and sequence analysis of full-length cDNA for mRNA of adrenodoxin oxidoreductase from bovine adrenal cortex, Biochem Biophys Res Commun 1987 Jun 30;145(3):1239-47 35 Omura T and Sato R (1964), “The Carbon Monoxide-Binding Pigment of Liver Microsomes”, Ii Solubilization, Purification, and Properties J Biol Chem 239:2379–85 36 Pylypenko O, Schlichting I (2004), “Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s”, Annu Rev Biochem 73:991–1018 37 Ringle M, Khatri Y, Zapp J, Hannemann F, Bernhardt R (2012), “Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions”, Appl Microbiol Biotechnol 2012 Dec 20 38 Sahdev S, Khattar SK, and Saini KS (2008), Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies, Mol Cell Biochem 307:249–264 39 Sakaki T (2012), Practical Application of Cytochrome P450 Biol, Pharm Bull 35(6) 844–849 40 Shirano Y and Shibata D (1990), Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level, FEBS Lett 271:128–130 41 Singer Y, Shity H, and Bar R (1991), Microbial transformations in a cyclodextrin medium Part Reduction of androstenedione to testosterone by Saccharomyces cerevisiae Appi Microbiol Biotechnol 35:731–737 42 Singh M, Sharma R, Banerjee UC (2002), Biotechnological applications of cyclodextrins, Biotechnology Advances 20:341–359 43 Szejtli J (1998), “Introduction and General Overview of Cyclodextrin Chemistry”, Chem Rev 98:1743–1753 44 Takahashi S, Yeo YS, Zhao Y, O'Maille PE, Greenhagene BT, Noel JP, Coates RM, Chappell J (2007), “Functional characterization of premnaspirodiene 58 oxygenease, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates” J Biol Chem 282(43):3174454 45 Urlacher VB, Lutz-Wahl S, Schmid RD (2004), “Microbial P450 enzymes in biotechnology”, Appl Microbiol Biotechnol 64:317–325 46 Urlacher VB, Girhard M (2012), Cytochrome P450 monooxygenases: an update on perspectives for synthetic application, Trends Biotechnol 30(1):26-36 47 Urlacher VB, Makhsumkhanov A, Schmid RD (2006), Biotransformation of beta-ionone by engineered cytochrome P450 BM-3, Appl Microbiol Biotechnol 70:53–9 48 Volonte F, Marinelli F, Gastaldo L, Sacchi S, Pilone MS, Pollegioni L, and Molla G (2008), Optimization of glutaryl-7- aminocephalosporanic acid acylase expression in E.coli, Protein Expr Purif 61:131–137 49 Walton AZ, Stewart JD (2004), Understanding and Improving NADPHDependent Reactions by NongrowingEscherichia coliCells, Biotechnol Prog 2004;20:403–11 50 Yu F, Okamoto S, Harada H, Yamasaki K, Misawa N, Utsumi R (2011), Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8hydroxy-α humulene in zerumbone biosynthesis, Cell Mol Life Sci 68:1033– 1040 51 Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008), Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2), J Biol Chem 283(13):8183-9 59 PHỤ LỤC I Vector pET17b II Trình tự gene mã hóa cho CYP264B1, AdR Adx Trình t gene mã hóa cho CYP264B1 atgggcactcaagaacaaaccccccagatctgtgtggtgggcagtggcccagctggcttttacacggcccagcacctg ctaaagcaccactcccgggcccacgtggatatctacgagaaacagctggtgcccttcggcctggtgcgctttggcgtgg cgcctgaccaccccgaggtcaagaatgttatcaacacctttacccagacggcccgctctgaccgctgtgccttctatggc aacgtggaggtgggcagggatgtgactgtgcaggagctgcaggacgcctaccacgccgtggtgctgagctatgggg cagaggaccatcaggccctggatatccctggtgaggagttgcccggcgtgttctcggcccgggcctttgtgggctggta caatgggcttcctgagaaccgggagctggccccggacctgagctgtgacacagccgtgattctggggcaggggaatg tggctctggacgtggcccggatcctgctgaccccccccgaccacctggagaaaacggacatcactgaggccgccctg ggagccctgagacagagtcgggtgaagacggtgtggatcgtgggccgacgtggacccctacaagtggccttcaccat aaaggagcttcgggagatgattcagttaccaggaactcggcccatgttggatcctgcggatttcttgggtctccaggaca gaatcaaggaggccgctcgcccgaggaagcggctgatggaactgctgcttcgaacagccacggagaagccagggg tggaggaggctgcccgccgggcatcagcctcccgtgcctggggcctccgcttcttccgaagcccgcagcaggtcctg ccctcgccagatgggcggcgggcggcaggcatccgcctggcagtcaccagactggagggcattggagaggccacc 60 cgggcagtgcccactggggatgtggaggacctcccctgtgggctggtgctgagcagcattgggtataagagccgccc catcgaccccagtgtgccctttgaccccaagctcggggttgtccccaatatggagggccgggttgtggatgtgccaggc ctctactgcagcggctgggtgaagcggggacccacaggtgtcatcaccaccaccatgaccgacagcttcctcaccgg ccagattctgctacaggacctgaaggccgggcacctgccgtctggccccaggccgggctctgcattcatcaaggccct gctggacagccgaggggtctggcccgtgtctttctcggactgggagaaactggatgctgaggaggtgtcccggggcc aggcctcggggaagcccagagagaagctgctggatcctcaggagatgctgcggctgctggggcactga Trình t gene mã hóa cho AdR atgggcactcaagaacaaaccccccagatctgtgtggtgggcagtggcccagctggcttttacacggcccagcacctg ctaaagcaccactcccgggcccacgtggatatctacgagaaacagctggtgcccttcggcctggtgcgctttggcgtgg cgcctgaccaccccgaggtcaagaatgttatcaacacctttacccagacggcccgctctgaccgctgtgccttctatggc aacgtggaggtgggcagggatgtgactgtgcaggagctgcaggacgcctaccacgccgtggtgctgagctatgggg cagaggaccatcaggccctggatatccctggtgaggagttgcccggcgtgttctcggcccgggcctttgtgggctggta caatgggcttcctgagaaccgggagctggccccggacctgagctgtgacacagccgtgattctggggcaggggaatg tggctctggacgtggcccggatcctgctgaccccccccgaccacctggagaaaacggacatcactgaggccgccctg ggagccctgagacagagtcgggtgaagacggtgtggatcgtgggccgacgtggacccctacaagtggccttcaccat aaaggagcttcgggagatgattcagttaccaggaactcggcccatgttggatcctgcggatttcttgggtctccaggaca gaatcaaggaggccgctcgcccgaggaagcggctgatggaactgctgcttcgaacagccacggagaagccagggg tggaggaggctgcccgccgggcatcagcctcccgtgcctggggcctccgcttcttccgaagcccgcagcaggtcctg ccctcgccagatgggcggcgggcggcaggcatccgcctggcagtcaccagactggagggcattggagaggccacc cgggcagtgcccactggggatgtggaggacctcccctgtgggctggtgctgagcagcattgggtataagagccgccc catcgaccccagtgtgccctttgaccccaagctcggggttgtccccaatatggagggccgggttgtggatgtgccaggc ctctactgcagcggctgggtgaagcggggacccacaggtgtcatcaccaccaccatgaccgacagcttcctcaccgg ccagattctgctacaggacctgaaggccgggcacctgccgtctggccccaggccgggctctgcattcatcaaggccct gctggacagccgaggggtctggcccgtgtctttctcggactgggagaaactggatgctgaggaggtgtcccggggcc aggcctcggggaagcccagagagaagctgctggatcctcaggagatgctgcggctgctggggcactga Trình t gene mã hóa cho Adx atgagcagctcagaagataaaataacagtccactttataaaccgtgatggtgaaacattaacaaccaaaggaaaaattggtga ctctctgctagatgttgtggttcaaaataatctagatattgatggttttggtgcatgtgagggaaccttggcttgttctacctgtcac ctcatctttgaacagcacatatttgagaaattggaagcaatcactgatgaggagaatgacatgcttgatctggcatatggactaa cagatagatcgcggttgggctgccagatctgtttgacaaaggctatggacaatatgactgttcgagtaccttaa 61 ... ứng dụng sesquiterpene 15 1.4 Hệ xúc tác tế bào E coli tái tổ hợp dựa hệ thống cytochrome P450 16 1.5 Tình hình nghiên cứu ứng dụng hệ xúc tác tế bào để chuyển hóa sesquiterpene giới Việt... - TRẦN THỊ MAI NGHIÊN CỨU SỬ DỤNG HỆ XÚC TÁC TẾ BÀO E. COLI TÁI TỔ HỢP DỰA TRÊN HỆ THỐNG CYP264B1 ĐỂ CHUYỂN HÓA MỘT SỐ HỢP CHẤT SESQUITERPENE Chuyên ngành: Công nghệ sinh học Mã số: 60420201 LUẬN... nhƣ: isolongifolene, cadinene, selinene… Hình 1.11 Một số sesquiterpene đa vòng 1.3.3 Vai trò ứng dụng sesquiterpene Sesquiterpene hợp chất thuộc nhóm terpene chứa đơn vị isoprene với công thức