1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

NGHIÊN CỨU CHẾ TẠO VÀ CÁC TÍNH CHẤT VẬT LÝ CỦA HỆ GỐM ĐA THÀNH PHẦN TRÊN CƠ SỞ PZT VÀ CÁC VẬT LIỆU SẮT ĐIỆN CHUYỂN PHA NHÒE

149 342 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 149
Dung lượng 3,71 MB

Nội dung

Header Page of 89 I HC HU TRNG I HC KHOA HC Lời -cảm ơn Trớc tiên, xin by tỏ lời cảm ơn chân thnh v tri ân sâu sắc đến ThầyLấGiáo TS Phan Đình Giớ tận IPGS VNG tình hớng dẫn v truyền đạt cho nhiều kiến thức quý báu, giúp thực tốt đề ti luận án ny NGHIấN Tôi CU TOcảm VơnCC TNH CHT xin CH chân thnh quí thầy cô giáo VT Khoa Lí VậtGM Lý, Trờng Đại học Khoa học Huế dạy tạo V CA H A THNH PHN TRấN C dỗ, SvPZT điềuVT kiện LIU thuận lợiST cho IN trongCHUYN trình thực hiệnNHềE đề ti CC PHA Bên cạnh nhận đợc quan tâm tạo điều kiện v giúp đỡ Trờng Cao đẳng Công nghiệp Huế, Khoa Công nghệ Hóa - Môi trờng v động viên bạn bè Chuyờn ngnh: Vt lý Cht rn đồng nghiệp Mó s: 62.44.01.04 Cuối cùng, lòng biết ơn trân trọng dnh cho Gia đình đặc biệt l B Nội, Vợ Con v ngời thân bên tôi, Nviên TIN VTgiúp Lí thực tốt hỗ trợ vật chấtLUN v động tinhSthần, đề ti luận án.Ngi hng dn khoa hc: PGS TS Phan ỡnh Gi Huế, 2014 Lê Đại Vơng HU, 2014 i Footer Page of 89 Header Page of 89 Lời cảm ơn Trớc tiên, xin by tỏ lời cảm ơn chân thnh v tri ân sâu sắc đến Thầy Giáo PGS TS Phan Đình Giớ tận tình hớng dẫn v truyền đạt cho nhiều kiến thức quý báu, giúp thực tốt đề ti luận án ny Tôi xin chân thnh cảm ơn quí thầy cô giáo Khoa Vật Lý, Trờng Đại học Khoa học Huế dạy dỗ, v tạo điều kiện thuận lợi cho trình thực đề ti Bên cạnh nhận đợc quan tâm tạo điều kiện v giúp đỡ Trờng Cao đẳng Công nghiệp Huế, Khoa Công nghệ Hóa - Môi trờng v động viên bạn bè đồng nghiệp Cuối cùng, lòng biết ơn trân trọng dnh cho Gia đình đặc biệt l B Nội, Vợ Con v ngời thân bên tôi, hỗ trợ vật chất v động viên tinh thần, giúp thực tốt đề ti luận án Huế, 2014 Lê Đại Vơng ii Footer Page of 89 Header Page of 89 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca tụi, c thc hin ti Phũng thớ nghim Vt lý cht rn, Khoa Vt lý, Trng i hc Khoa hc Hu di s hng dn ca PGS TS Phan ỡnh Gi Cỏc s liu v kt qu lun ỏn l trung thc v cha tng cụng b bt c cụng trỡnh no khỏc Tỏc gi lun ỏn Lờ i Vng iii Footer Page of 89 Header Page of 89 DANH MC CC Kí HIU V CH VIT TT PT PbTiO3 PZ PbZrO3 PZT PbZr1-xTixO3 PZN Pb(Zn1/3Nb2/3) PMnN Pb(Mn1/3Nb2/3) PNN Pb(Ni1/3Nb2/3) PZT-PZN Pb(Zr,Ti)O3 Pb(Zn1/3Nb2/3) PZT-PMnN Pb(Zr,Ti)O3 Pb(Mn1/3Nb2/3) PZT-PMnS Pb(Zr,Ti)O3 Pb(Mn1/3Sb2/3) PZT-PSN-PMnN Pb(Zr,Ti)O3 Pb(Sb1/2Nb1/2) Pb(Mn1/3Nb2/3) PZT-PZN-PMN Pb(Zr,Ti)O3 Pb(Zn1/3Nb2/3) Pb(Mg1/3Nb2/3) PZT-PZN-PMnN Pb(Zr,Ti)O3 Pb(Zn1/3Nb2/3) Pb(Mn1/3Nb2/3) TC Nhit Curie (oC) Tm Nhit ng vi hng s in mụi cc i (oC) BX Bin t ỏp in dng xuyn BG Bin t ỏp in Langevin Cs in dung ca mu ER Ergodic relaxor NER Non ergodic relaxor TB Nhit Burn Tf Nhit ụng cng HWHM bỏn rng ca vch Raman BO Phng phỏp trn cỏc ụxớt v trớ B iv Footer Page of 89 Header Page of 89 % kl Phn trm lng kp H s liờn kt in c theo phng bỏn kớnh kt H s liờn kt in c theo phng b dy Qm H s phm cht c hc d31 H s ỏp in theo phng ngang P phõn cc Pr phõn cc d Ps phõn cc t phỏt E in trng EC in trng khỏng t Tha s xp cht Zm Giỏ tr cc tiu ca tng tr nhũe Hng s in mụi Gúc nhiu x tan Tn hao in mụi v Footer Page of 89 Header Page of 89 MC LC M U CHNG 1: TNG QUAN Lí THUYT V CC VN NGHIấN CU 1.1 Cu trỳc perovskite ABO3 1.2 c trng st in thụng thng 1.2.1 Hin tng tn ti phõn cc t phỏt cỏc tinh th st in 1.2.2 Nhit Curie v s chuyn pha 10 1.2.3 ng tr st in 12 1.2.4 Cu trỳc ụmen st in 16 1.3 c trng st in chuyn pha nhũe 18 1.4 Tng quan tỡnh hỡnh nghiờn cu gm ỏp in trờn c s PZT 24 1.4.1 Vt liu PZT pha n 24 1.4.2 Vt liu PZT pha phc 27 1.5 Ph tỏn x Raman 31 1.6 Kt lun chng .33 CHNG 2: TNG HP VT LIU, CU TRC V VI CU TRC CA H GM PZT PZN PMnN 34 2.1 Tng hp h vt liu PZT PZN PMnN .34 2.2 Cu trỳc v vi cu trỳc ca h vt liu PZT PZN PMnN 41 2.2.1 Cu trỳc v vi cu trỳc ca nhúm vt liu MP 41 2.2.2 Cu trỳc v vi cu trỳc ca nhúm vt liu MZ 44 2.3 Cỏc phng phỏp nghiờn cu tớnh cht ca vt liu 49 2.3.1 Phng phỏp nghiờn cu tớnh cht in mụi 49 2.3.2 Phng phỏp nghiờn cu tớnh cht ỏp in 51 vi Footer Page of 89 Header Page of 89 2.3.3 Phng phỏp nghiờn cu tớnh cht st in 55 2.4 Kt lun chng 57 CHNG 3: NGHIấN CU TNH CHT IN MễI, ST IN V P IN CA H GM PZT-PZN-PMnN 58 3.1 Tớnh cht in mụi ca h vt liu PZT- PZN-PMnN 59 3.1.1 Hng s in mụi ca cỏc nhúm mu MP, MZ nhit phũng 59 3.1.2 S ph thuc ca hng s in mụi theo nhit 60 3.1.3 S ph thuc ca tớnh cht in mụi vo tn s ca trng ngoi 64 3.2 Tớnh cht st in ca h vt liu PZT- PZN-PMnN 68 3.2.1 nh hng ca nng PZT v t s Zr/Ti n tớnh cht st in ca h vt liu PZT PZN PMnN ti nhit phũng 68 3.2.2 nh hng ca nhit n tớnh cht st in ca h vt liu PZT PZN PMnN 70 3.3 Tớnh cht ỏp in ca h vt liu PZT- PZN-PMnN 73 3.4 Kt lun chng .79 CHNG 4: NGHIấN CU NH HNG CA Fe2O3, CuO N CC TNH CHT CA H GM PZT-PZN-PMnN 81 4.1 nh hng ca Fe2O3 n cỏc tớnh cht ca h gm PZT-PZN-PMnN 81 4.1.1 nh hng ca Fe2O3 n cu trỳc, vi cu trỳc ca h gm PZTPZNPMnN 81 4.1.2 nh hng ca Fe2O3 n tớnh cht in mụi ca h gm PZT-PZN-PMnN 84 4.1.3 nh hng ca Fe2O3 n tớnh cht ỏp in ca h gm PZT-PZN-PMnN 91 4.1.4 nh hng ca Fe2O3 n tớnh cht st in ca h gm PZT-PZN-PMnN 94 4.2 nh hng ca CuO n hot ng thiờu kt v cỏc tớnh cht in ca h gm PZTPZNPMnN 96 4.2.1 nh hng ca CuO n hot ng thiờu kt ca h gm PZTPZNPMnN 96 4.2.2 nh hng ca CuO n tớnh cht in ca h gm PZTPZNPMnN 101 vii Footer Page of 89 Header Page of 89 4.3 Th nghim ch to mỏy siờu õm trờn c s bin t ỏp in PZT-PZNPMnN 112 4.4 Kt lun chng 115 KT LUN V KIN NGH 116 DANH MC CC CễNG TRèNH NGHIấN CU 118 TI LIU THAM KHO 120 viii Footer Page of 89 Header Page of 89 DANH MC CC BIU BNG Bng 1.1 Giỏ tr ca tha s xp cht t i vi mt s hp cht kiu perovskite Bng 2.1 Cỏc kt qu tớnh toỏn kớch thc ht, hng s mng v mt gm trung bỡnh ca nhúm mu MP t vic phõn tớch SEM v nhiu x Tia X 42 Bng 2.2 Cỏc kt qu tớnh toỏn kớch thc ht, hng s mng v mt gm trung bỡnh ca nhúm mu MZ t vic phõn tớch SEM v nhiu x tia X 46 Bng 2.3 Cỏc h s a thc ca (2.14) v (2.15) 54 Bng 3.1 Cỏc giỏ tr trung bỡnh ca hng s in mụi v tn hao in mụi tan ca cỏc nhúm mu MP, MZ nhit phũng ti tn s 1kHz 59 Bng 3.2 Cỏc giỏ tr ca hng s in mụi cc i max, nhit ng vi hng s in mụi cc i Tm v nhũe ca cỏc nhúm mu MP, MZ o ti tn s 1kHz 63 Bng 3.3 Cỏc thụng s thu c t vic lm khp s liu vi cỏc h thc Vogel Fulcher 68 Bng 3.4 Cỏc thụng s c trng cho tớnh cht st in ca gm PZT-PZNPMnN ti nhit phũng: phõn c d Pr, in trng khỏng EC 69 Bng 3.5 Cỏc thụng s c trng cho tớnh cht st in ca gm PZT-PZNPMnN theo nhit : phõn c d Pr, in trng khỏng EC 72 ix Footer Page of 89 Header Page 10 of 89 Bng 3.6 Cỏc giỏ tr trung bỡnh ca h s liờn kt in c kp, k31, kt, h s ỏp in d31 v h s phm cht c hc Qm ca gm PZT-PZN-PMnN 76 Bng 3.7 So sỏnh cỏc tớnh cht ca gm ó ch to vi gm ca cỏc cụng trỡnh khỏc 79 Bng 4.1 Cỏc kt qu tớnh kớch thc ht v mt gm ca nhúm mu MF t vic phõn tớch SEM 83 Bng 4.2 Cỏc giỏ tr trung bỡnh ca hng s in mụi v tn hao in mụi tan ca cỏc mu MF nhit phũng ti tn s 1kHz 84 Bng 4.3 Cỏc giỏ tr ca hng s in mụi cc i max, nhit ng vi hng s in mụi cc i Tm v nhũe ca cỏc mu MF ti tn s 1kHz 88 Bng 4.4 Cỏc giỏ tr trung bỡnh ca h s liờn kt in c kp, kt, k31, h s ỏp in d31 v h s phm cht c hc Qm ca gm PZT-PZN-PMnN pha Fe2O3 92 Bng 4.5 Cỏc thụng s c trng cho tớnh cht st in ca gm PZT-PZNPMnN pha Fe2O3: phõn c d Pr, in trng khỏng EC 95 Bng 4.6 So sỏnh cỏc tớnh cht ca gm ó ch to vi gm ca cỏc cụng trỡnh khỏc cú cựng loi Fe2O3 95 Bng 4.7 Mt gm, hng s in mụi, tn hao tan, h s kp ca mu M01150 97 Bng 4.8 Cỏc kt qu tớnh toỏn kớch thc ht, thụng s mng v mt gm ca nhúm mu MC t vic phõn tớch SEM v nhiu x tia X 104 x Footer Page 10 of 89 Header Page 135 of 89 nú th hin tn hao in mụi gim; h s phm cht Qm tng, bờn cnh ú Fe2O3 cng lm gia tng kớch thc ht gm ci thin ỏng k cỏc tớnh cht in mụi, ỏp in v st in ca vt liu Chỳng tụi ó xỏc nh c nng Fe2O3 ti u l 0,25 % kl Ti nng ny gm cú tớnh cht in mụi, st in v ỏp in tt nht: = 1400; max = 24920; tan = 0,003; d31 = 155 pC/N; kp = 0,64; kt = 0,51; Pr = 37 àC/cm2 v Qm = 1450 - Vi mc ớch lm gim nhit thiờu kt, chỳng tụi ó thnh cụng vic pha CuO vo h vt liu PZT PZN PMnN v ó gim ỏng k nhit thiờu kt ca vt liu Vi nng 0,125 % kl CuO, nhit thiờu kt ca gm ó gim t 1150 oC xung cũn 850 oC Nh vy nhit thiờu kt ca gm ó gim 300 oC so vi mu khụng cú CuO Cỏc thụng s c trng cho tớnh cht in mụi, ỏp in ca vt liu t giỏ tr tt nht ng vi mu cú nng CuO l 0,125 % kl, thiờu kt ti nhit 850 oC: mt gm l 7,91 g/cm3, hng s in mụi = 1179, tn hao in mụi tan = 0,006, h s liờn kt in c kp= 0,55 Chỳng tụi ó ch to thnh cụng mỏy siờu õm cú cụng sut trung bỡnh (40 W), tn s lm vic ca mỏy l 40,26 kHz da trờn cỏc bin t c ch to t h gm PZT PZN PMnN + 0,10 % kl CuO - Mc dự chỳng tụi ó thnh cụng vic ch to bin t ỏp in dng xuyn ghộp theo kiu Langevin s dng cho mỏy siờu õm, nhng cỏc kt qu cng ch dng li mc th nghim Lnh vc ny cn phi c nghiờn cu sõu hn, rng hn cho nhiu loi ng dng hn Bờn cnh ú, vic thay th cỏc nguyờn t khỏc (K, Na, Ba, Bi) vo v trớ A ca cu trỳc ABO3 thay cho Pb l cng l hng mi ca ti nhm xõy dng mt h vt liu mi thõn thin vi mụi trng v ngi 117 Footer Page 135 of 89 Header Page 136 of 89 DANH MC CC CễNG TRèNH NGHIấN CU 1) Phan ỡnh Gi v Lờ i Vng (2011), Tớnh cht in mụi, st in ca gm PZT-PZN-PMnN Tp khoa hc, i hc Hu, S 65, tr 53-61 2) Phan ỡnh Gi v Lờ i Vng (2011), nh hng ca nng PMnN n cu trỳc v cỏc tớnh cht ỏp in ca gm PZT-PZN-PMnN Tp khoa hc, i hc Hu, S 65, tr 63-71 3) Phan ỡnh Gi, Nguyn Th Bớch Hng, Lờ i Vng (2012), nh hng ca t s nng Zr/Ti n cỏc tớnh cht vt lý ca h gm PZT-PZN-PMnN Tp Khoa hc v Cụng ngh 50 (1A),tr 112-118 4) Phan ỡnh Gi, Nguyn Vn Quý, Lờ i Vng (2012), S ph thuc nhit ca mt s tớnh cht vt lý ca h gm PZT-PZN-PMnN Tp Khoa hc v Cụng ngh 50 (1A), tr 235-240 5) Phan ỡnh Gi, Lờ i Vng, Nguyn Th Trng Sa (2013), nh hng ca thi gian thiờu kt n mt s tớnh cht ca h gm ỏp in PZT-PZN-PMnN thiờu kt nhit thp, Tp khoa hc, i hc Hu, Tp 87, S 9, (2013), tr 45-51 6) Phan ỡnh Gi, Lờ i Vng v Nguyn Quang Long (2013), Nghiờn cu, ch to mỏy siờu õm trờn c s h gm PZT - PZN PMnN, Hi ngh ton quc ln th Vt lý k thut v ng dng (CAEF-2013), Hu, 8-12 thỏng 10 nm 2013 7) Phan ỡnh Gi, Lờ i Vng, H Th Thanh Hoa, nh hng ca CuO n nhit thiờu kt ca gm ỏp in PZT-PZN-PMnN, Hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th (SPMS-2013) Thỏi Nguyờn 46/11/2013 (ó c Tp Khoa hc v Cụng ngh 50 nhn ng 5/6/2014) 8) Lờ i Vng, Vn Qung, Phan ỡnh Gi (2013), nh hng ca nhit thiờu kt n cu trỳc v cỏc tớnh cht in ca gm PZT-PZN-PMnN pha Fe2O3, Tp khoa hc, i hc Hu, Tp 87, S 9, (2013), tr 225-231 9) Lờ i Vng, H Th Thanh Hoa, Nguyn Th Thu H, Phan ỡnh Gi (2012), nh hng ca ch n mt s tớnh cht vt lý ca h gm PZT-PZNPMnN Tp khoa hc, i hc Hu, Tp 73, s 4, tr 253-261 118 Footer Page 136 of 89 Header Page 137 of 89 10) Phan Dinh Gio, Le Dai Vuong and Nguyen Phan Nhu Y (2012), Effect of PZT content on the structure and electrical properties of PZT-PZN-PMnN ceramics The 6th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2012) - October 30-November 02, 2012 - Ha Long City, Vietnam 11) Le Dai Vuong, Phan Dinh Gio, Truong Van Chuong, Dung Thi Hoai Trang, Duong Viet Hung, Nguyen Trung Duong (2013), Effect of Zr/Ti ratio content on some physical properties of the low temperature sintering PZT-PZN-PMnN ceramics International Journal of Materials and Chemistry, Vol 3(2), pp: 3943 12) Le Dai Vuong, Phan Dinh Gio, Nguyen Thi Kieu Lien (2013), Physical properties of PZT-PZN-PMnN ceramics were fabricated by B-site oxide mixing technique, Journal of science, Hue University, Vol 84, No.6, pp: 93-99 13) Le Dai Vuong, Phan Dinh Gio, Nguyen Truong Tho, and Truong Van Chuong (2013), Relaxor Ferroelectric Properties of PZT-PZN-PMnN Ceramics Indian Journal of Engineering & Materials Sciences, Vol 20, pp: 555-560 14) Le Dai Vuong, Phan Dinh Gio (2013) Effect of Li2CO3 addition on the sintering behavior and physical properties of PZT-PZN-PMnN ceramics, International Journal of Materials Science and Applications, Vol 2(3), pp: 8993 15) Le Dai Vuong, Phan Dinh Gio (2014), Structure and electrical properties of Fe2O3-Doped PZTPZNPMnN ceramics, Journal of Modern Physics,Vol 5, pp: 1258-1263 16) Le Dai Vuong, Phan Dinh Gio, Vo Thi Thanh Kieu (2014), Raman scattering spectra and dielectric relaxation behavior of PZT-PZN-PMnN ceramics, International Journal of Chemistry and Materials Research, Vol 2(6), pp: 48-55 17) Phan Dinh Gio, Le Dai Vuong, Ho Thi Thanh Hoa (2014), Electrical Properties of CuO-Doped PZT-PZN-PMnN Piezoelectric Ceramics Sintered at Low Temperature, Journal of Materials Science and Chemical Engineering, Vol 2, pp: 20-27 119 Footer Page 137 of 89 Header Page 138 of 89 TI LIU THAM KHO Ting Vit [1] Trng Vn Chng (2002), Ch to v nghiờn cu cỏc tớnh cht vt lý ca gm ỏp in h PbTiO3 pha La, Mn, Lun ỏn Tin s khoa hc vt liu, H Ni [2] Lờ Quang Tin Dng (2014), Nghiờn cu ch to thit b siờu õm cụng sut tng hp vt liu TiO2 cu trỳc nanụ, Lun ỏn Tin s Vt lý, HKH Hu [3] Phan ỡnh Gi (2007), Nghiờn cu cỏc tớnh cht vt lý ca gm st in hai, ba thnh phn trờn c s PZT pha La, Mn, Fe, Lun ỏn Tin s Vt lý, HKH Hu [4] Thõn Trng Huy (2014), Ch to v nghiờn cu cỏc tớnh cht vt lý ca gm ỏp in nhiu thnh phn [(1-x)Pb(Zr,Ti)O3 xPb(Mn1/3Nb2/3)O3] (PZTPMnN) pha t him, Lun ỏn Tin s khoa hc vt liu, H Ni [5] Nguyn ỡnh Tựng Lun (2011), Ch to v nghiờn cu cỏc tớnh cht vt lý ca gm ỏp in nhiu thnh phn (1-x)Pb(ZrzTi1-z)O3 - xPb[(Sb1/2Nb1/2)y(Mn1/3Nb2/3)1-y]O3, Lun ỏn Tin s Vt lý, HKH Hu [6] Nguyn ỡnh Tựng Lun, Trng Vn Chng, ng Anh Tun, Phan Thanh H, on Nam Hu, Vi cu trỳc v cỏc tớnh cht in mụi ca gm st in relaxo PZT-PMnN-PSbN, Tp Khoa hc Cụng ngh, Vin Khoa hc Vt liu, H Ni, 2012 [7] Nguyn ỡnh Tựng Lun, Thõn Trng Huy, Trng Vn Chng, Lờ Vn Hng, Nghiờn cu v biờn pha hỡnh thỏi ca h gm ỏp in PZT PbMnSbN, Tp Khoa hc Cụng ngh, Vin Khoa hc Vt liu, H Ni, 2012 120 Footer Page 138 of 89 Header Page 139 of 89 Ting Anh [8] Bau ăerle D and Pinczuk A (1976), Low Frequency Vibrational Modes and the Phase Transitions of Rhombohedral PbTi1-xZrxO3, Solid State Comm., 19,116971 [9] Beere W (1975), A unifying theory of the stability of penetrating liquid phases and sintering pores, Acta Metall 23, pp:131-138 [10] Bokov A.A, Ye Z G (2006), Recent progress in relaxor ferroelectrics with perovskite structure, Journal of materials science, pp 41 3152 [11] Burns G and Scott B A (1973), Lattice Modes in Ferroelectric Perovskites: PbTiO3, Phys Rev B, 7, 3088 [12] Burns G., Sanjurjo J A., and Lopez-Cruz E (1984), High-Pressure Raman Study of Two Ferroelectric Crystals Closely Related to PbTiO3, Phys Rev B, 30,7170 [13] Chao X., Ma D., Gu R., Yang Z (2010), Effects of CuO addition on the electrical responses of the low-temperature sintered Pb(Zr0.52Ti0.48)O3 Pb(Mg1/3Nb2/3)O3 Pb(Zn1/3Nb2/3)O3 ceramics, Journal of Alloys and Compounds 491, pp: 698702 [14] Chao X., Yang L., Pan H., Yang Z (2012), Fabrication, temperature stability and characteristics of Pb(ZrxTiy)O3 Pb(Zn1/3Nb2/3)O3 Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics bimorph, Ceramics International 38, pp: 33773382 [15] Chen C Y., Lin H L (2004), Piezoelectric properties of Pb(Mn1/3Nb2/3)O3 PbZrO3 PbTiO3 ceramics with sintering aid of 2CaOFe2O3 compound, Ceramics International 30, pp: 20752079 [16] Chung K., Lee D., Yoo J., Jeong Y., Lee H., Kang H (2005), Piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3 Pb(Mn1/3Nb2/3)O3 Pb(Zr0.48Ti0.52 )O3 ceramics with the sintering temperature and the amount of CuO addition, Sensors and Actuators A 121, pp: 142147 121 Footer Page 139 of 89 Header Page 140 of 89 [17] T.V Chuong, L.Q.T Dung, N.D.T Luan and T.T Huy (2011), Application of ultrasound for nanomaterials synthesis, Int J Nanotechnol., Vol 8, Nos 3, pp:291-299 [18] Damjanovic D (1998), Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep Prog Phys 61, Printed in the UK, pp 1267-1324 [19] Dilsom A Sanchez, Nora Ortega, Ashok Kumar, G Sreenivasulu, Ram S Katiyar, J F Scott, Donald M Evans, Miryam A A., Schilling A, and J M Gregg (2013), Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr,Ti)1-xO3 [M =Ta, Nb], Journal of applied physics 113, 074105 [20] Du J., Qiu J, Zhu K., Ji H (2013), Microstructure, temperature stability and electrical properties of ZnO-modi fied Pb(Ni1/3Nb2/3)O3 Pb(Fe1/2Nb1/2 )O3 Pb(Zr0.3Ti 0.7)O3 piezoelectric ceramics, Ceramics International 39, pp: 9385 9390 [21] Du J.Z., Qiu J.H., Zhu K.J., Ji H.L., Pang X.M., Luo J (2012), Effects of Fe2O3 Addition on Microstructure and Piezoelectric Properties of 0.55Pb(Ni1/3Nb2/3) 0.45Pb(Zr0.3Ti0.7)O3 Ceramics, J Materials Letters, 66 (1): 153 155 [22] Le Quang Tien Dung, Truong Van Chuong and Do Phuong Anh (2011), The effect of TiO2 nanotubes on the sintering behavior and properties of PZT ceramics, Adv Nat Sci.: Nanosci Nanotechnol 2, 025013-5 [23] Fan G.F., Shi M.B., Lu W.Z., Wang Y.Q., Liang F (2014), Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics, Journal of the European Ceramic Society 34, pp: 2328 122 Footer Page 140 of 89 Header Page 141 of 89 [24] Fan H and Kim H-E (2001), Effect of Lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Nb0.53)0.5)O3 ceramics Journal.J Am Ceram Soc 84 (3), pp 636-638 [25] Fan H and Kim H-E (2002), Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobatelead zirconate titanate, Journal of applied physics, Vol 91(1), pp: 317-322 [26] Fang B., Sun R., Shan Y., Tezuka K., Imoto H (2007), On the feasibility of synthesizing complex perovskite ferroelectric ceramics via a B-site oxide mixing route, J Mater Sci 42, pp: 92279233 [27] Frantti J., Fujioka Y., Puretzky A., Xie Y., Ye Z G (2013), J Appl Phys 113, 174104 [28] Fu J., Zuo R (2013), Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg,Ti)O3PbZrO3PbTiO3 ferroelectric ceramics Acta Materialia 61, pp: 36873694 [29] Gao F., Cheng L., Hong R., Liu J., Wang C and Tian C (2009), Crystal structure and piezoelectric (0.2 x)Pb(Zn1/3Nb2/3)O3 properties of 0.8Pb(Zr0.52Ti0.48)O3 xPb(Mn1/3Nb2/3)O3 ceramic, Ceramics International 35, pp 17191723 [30] Phan Dinh Gio, Vo Duy Dan, (2008), Some dielectric, ferroelectric, piezoelectric x)]O3 properties of 0.35Pb(Zn1/3Nb2/3)O3-0.65Pb(ZrxTi1- ceramics, Journal of Alloys and Compounds, vol 449, 1-2, 24-27 [31] Phan Dinh Gio, Le Dai Vuong, Nguyen Van Hung, Duong Viet Hung (2012), Effect of MnO2 addition on dielectric, ferroelectric and piezoelectric properties of PLZT- PZN ceramics, Journal of science, Hue University, Vol 77, No 8, pp 25-31 123 Footer Page 141 of 89 Header Page 142 of 89 [32] Haertling G.H.& C.E Land (1971), Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications, J of the American ceramic society, Vol 54, No 1, pp 1-9 [33] Han H-S, Park E-C, and Lee J-S (2011), Low-Firing Pb(Zr,Ti)O3 -Based Multilayer Ceramic Actuators Using Ag Inner Electrode, Transactions On Electrical And Electronic Materials, Vol 12, No 6, pp 249-252 [34] Hou Y D., Zhua M K., Tian C S., Yan H (2004), Structure and electrical properties of PMZNPZT quaternary ceramics for piezoelectric transformers, Sensors and Actuators A 116, pp: 455460 [35] Hou Y-D., Chang L-M., Zhu M-K, Song X-M., and Yan H (2007), Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the lowtemperature sintered 0.5PZN0.5PZT systems, Journal of applied physic 102, 084507 [36] Hu Z., Ma B., Liu S., Narayanan M., Blachandran U (2014) Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios, Ceramics International 40, pp: 557562 [37] Huang L., Bulou A., Kassiba A., Zeng J., Fu D., Errien N., Zheng L.,and Li G (2013), Origin of temperature independent piezoelectric coefficient in Pb(Mg1/3Nb2/3)O3 - BaTiO3 - PbTiO3 ceramics, Journal Of Applied Physics 114, 074105 [38] IEEE Standard on Piezoelectricity, ANSI/IEE Standard 176, 1987 [39] Jaffe H (1961), IRE Stanards on Piezoelectric Crystal, Proc IRE 49, p.p 1161-1169 [40] Jaffe B., W R Cook and H Jaffe (1971), Piezoelectric ceramics, Academic Press, Newyork [41] Jeong Y., Yoo J., Lee S., Hong J (2007), Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3Pb(Ni1/3Nb2/3)O3 124 Footer Page 142 of 89 Header Page 143 of 89 Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3, Sensors and Actuators A: Physical, Vol 135, pp: 215219 [42] Jiang X.P., Fang J.W., Zeng H.R., Chu B.J., Li G.R., Chen D.R., Yin Q.R (2000), The influence of PbZrO3/PbTiO3 ratio on diffuse phase transition of Pb(Zn1/3Nb2/3)O3 PbZrO3 PbTiO3 system near the morphotropic phase boundary , Materials Letters 44, pp: 219222 [43] John R Ferraro, Kazuo Nakamoto and Chris W Brown (2003), Introductory Raman Spectroscopy, Elsevier [44] Kang S H., Ahn C W., Lee H J & Kim I W., Park E C & Lee J S (2008), Dielectric and pyroelectric properties of Li2CO3 doped 0.2Pb(Mg1/3Nb2/3)O3 0.5Pb(Zr0.48Ti0.52)O3 0.3Pb(Fe1/3Nb2/3)O3 ceramics, J Electroceram 21, pp: 855858 [45] Kim M S., Jeon S., Jeong S J., Kim I S., and Song J S (2008), Effect of CuO Additions on Microstructures and Electromechanical Properties of 0.4Pb(Mg1/3Nb2/3)O3 - 0.25PbZrO3 - 0.35PbTiO3 Ceramics, Electronic Materials Letters, Vol 4, No pp 189-192 [46] Kim Y H., Ryu H., Cho Y K., Lee H J, and Nahm S., (2013), TEM Observations on 0.65Pb(Zr0.42Ti0.58)O3-0.35Pb(Ni0.33Nb0.67)O3 Ceramics with CuO Additive, J Am Ceram Soc., Vol 96 (1), pp: 312317 [47] Kingon A and j Brian Clark (1983), Sintering of PZT Ceramics: I, Atmosphere Control, Journal of the American Ceramic Society, Vol 66, No 4, pp: 253-256 [48] Kitaguchi H., Takada J., Oda K., and Miura Y (1990), Equilibrium phase diagram for the system PbO-CaO-CuO, J Mater Res., Vol 5, No 5, pp: 929-231 [49] Kumar A and Mishra S.K (2014), Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics, 125 Footer Page 143 of 89 Header Page 144 of 89 International Journal of Minerals, Metallurgy and Materials, Vol 21 (2), pp: 175 [50] Lee J Y., Choi J W., Kang M G., Kim S J., Ko T K Yoon S J (2009), Effect of CuO addition on sintering temperature and piezoelectric properties of 0.05Pb(Al0.5Nb0.5)O3 0.95Pb(Zr0.52Ti0.48)O3 + 0.7 wt.% Nb2 O5 + 0.5 wt.% MnO2 ceramics, J Electroceram, Vol 23, pp:572 575 [51] Lee J S., Choia M S., Hung N V., Kima Y S, Kim I W., Park E C., Jeong S J., Song J S (2007), Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of PZT-based ceramics, Ceramics International 33, pp: 12831286 [52] Li B., Li G., Zhang W Z., Ding A (2005), Influence of particle size on the sintering behavior and high-power piezoelectric properties of PMnNPZT ceramics, Materials Science and Engineering B 121, pp: 9297 [53] Li J (2013), Effect of CuO addition on structure and electrical properties of low temperature sintered quaternary piezoelectric ceramics, Bull Mater Sci., Vol 36, No 5, pp 877881 [54] Li Jin, Zhanbing He, and Dragan D (2009), Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary not correlate with high properties, Applied Physics Letters 95, 012905 [55] Liao Q, Chen X., Chu X., Fei Zeng, Guo D (2013), Effect of Fe doping on the structure and electric properties of relaxor type BSPT-PZN piezoelectric ceramics near the morphotropic phase boundary, Sensors and Actuators A 201, pp: 222229 [56] Luo N., Li Q., Xia Z (2011), Effect of Pb(Fe1/2Nb1/2)O3 modification on dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3Pb(Zr0.52Ti0.48)O3 ceramics, Materials Research Bulletin 46, pp: 13331339 [57] Nguyen Dinh Tung Luan, Le Dai Vuong, Bui Cong Chanh (2013), Microstructure, Ferroelectric and Piezoelectric Properties of PZT-PMnSbN 126 Footer Page 144 of 89 Header Page 145 of 89 Ceramics, International Journal of Materials and Chemistry, Vol 3(3): 5158 [58] Nguyen Dinh Tung Luan, Le Dai Vuong (2014), Study Structure, Microstructure and Temperature Dependence of Some Physical Properties of ZnO Doped PZTPMSN Ceramics, International Journal of Engineering and Innovative Technology, Vol (8), pp: 48-52 [59] Nguyen Dinh Tung Luan, Le Dai Vuong, Truong Van Chuong, and Nguyen Truong Tho (2014), Structure and Physical Properties of PZTPMnNPSN Ceramics Near The morphological Phase Boundary, Advances in Materials Science and Engineering, Volume 2014, Article ID 821404, pages [60] Mao J B., Zhou J., Zheng H Q., Sun H J., Chen W (2010), Effects of Fe2O3 Doping on the Properties of PMnS-PZN-PZT Piezoelectric Ceramic, Journal of synthetic crystals, Vo1 39 No 1, pp: 72-76 [61] Miclea C., Tanasoiu C., Miclea C.F., Amarande L., Gheorghiu A., Sima F.N (2005), Effect of iron and nickel substitution on the piezoelectric properties of PZT type ceramics, J Eur Ceram Soc 25, pp: 2397 2400 [62] Miclea C., Tanasoiu C., Miclea C.F., Amarande L., Gheorghiu A., Spanulescu I., C Plavitu, Miclea C.T., Cioangher M.C., Trupina L., Iuga A (2007), Effect of lead content on the structure and piezoelectric properties of hard type lead titanatezirconate ceramics, Journal of the European Ceramic Society 27, pp: 40554059 [63] Molak A., Talik E., Kruczek M., Paluch M., Ratuszna A., Ujma Z (2006), Characterisation of Pb(Mn1/3Nb2/3)O3 ceramics by SEM, XRD, XPS and dielectric permittivity tests, Materials Science and Engineering B 128, pp:1624 [64] Muanghlua R., Niemchareon S., Vittayakorn W C and Vittayakorn N (2008), Effects of Zr/Ti Ratio on the Structure and Ferroelectric Properties 127 Footer Page 145 of 89 Header Page 146 of 89 in PZT-PZN-PMnN Ceramics Near the Morphotropic Phase Boundary, Advanced Materials Research Vols 55-57, pp 125-128 [65] Nam C H., Park H Y., Seo I T., Choi J H., Nahm S., Lee H G (2011), Effect of CuO on the sintering temperature and piezoelectric properties of MnO2-doped 0.75Pb(Zr0.47Ti0.53)O3 0.25Pb(Zn1/3Nb2/3)O3 ceramics, Journal of Alloys and Compounds, Vol 509, pp: 36863689 [66] Nam C., Park H Y, Seo I T, Choi J H, Joung M R, and Nahm S (2011), Low-Temperature Sintering and Piezoelectric Properties of 0.65Pb(Zr0.42Ti0.58)O3 - 0.35Pb(Ni0.33Nb0.67)O3 Ceramics, J Am Ceram Soc 94 (10), pp: 34423448 [67] Necira Z., Boutarfaia A., Abba M., Menasra H., Abdessalem N (2013), Effects of Thermal Conditions in the Phase Formation of Undoped and Doped Pb(Zr1xTix)O3 Solid Solutions, Materials Sciences and Applications, Vol 4, pp: 319-323 [68] Pirc R and Blinc R (2007), Vogel-fulcher freezing in relaxor ferroelectrics, Physical review b 76, pp: 020101:1-3 [69] Samara G A and Venturini E L (2006), Ferroelectric relaxor crossover in ompositionally disordered perovskites, Phase Transitions, Vol 79, pp 2140 [70] Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solution of PbZrO3 and PbTiO3, J Phys Soc Jpn., 8(5): 615 [71] Shi L., Zhang B., Liao Q., Zhu L., Zhao L., Zhang D., Guo D (2014), Piezoelectric properties of Fe2O3 doped BiYbO3 -Pb(Zr,Ti)O3 high Curie temperature ceramics, Ceramics International 40, pp: 2763 2769 [72] Smolenskii, G A and A I Agranovskaya (1959), Dielectric polarization of a number of complex compounds, Sov Phys Solid State 1, 1429-1437 [73] Uchino K (1991), Relaxor ferroelectrics, Journal of the ceramic society of Japan, 99 (10), pp 829-835 128 Footer Page 146 of 89 Header Page 147 of 89 [74] Vittayakorn N, Rujijanagul G, and Tunkasiri T (2003), Perovskite phase formation and ferroelectric properties of the lead nickel niobatelead zinc niobatelead zirconate titanate ternary system, J Mater Res., Vol 18, No 12, pp: 2882- 2889 [75] Le Dai Vuong, Phan Dinh Gio (2013), Effect of Li2CO3 addition on the sintering behavior and physical properties of PZT-PZN-PMnN ceramics, International Journal of Materials Science and Applications, Vol 2(3): 8993 [76] Wang J., Wang G., Nie H., Chen X., Cao F., Dong X., Gu Y., and He H (2013), Low-Temperature Sintering and Electric Properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 Ferroelectric Ceramics with CuO Additive, J Am Ceram Soc., pp: 14 [77] Wang L., Mao C., Wang G., Du G., Liang R., and Dong X (2013), Effect of CuO Addition on the Microstructure and Electric Properties of LowTemperature Sintered 0.25PMN 0.40PT 0.35PZ Ceramics, J Am Ceram Soc., Vol 96(1), pp: 2427 [78] Wintotai P., Udomkan N., Meejoo S (2005), Piezoelectric properties of Fe2O3 -doped (1 - x) BiScO3 xPbTiO3 ceramics, Sensors and Actuators A 122 (2) 257263 [79] Wu N.N., Song X.M., Hou Y D., Zhu M.K., Wang C & Yan H (2009), Relaxor behavior of (1x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics, Chinese Science Bulletin, vol 54 (7), pp: 1267-1274 [80] Wu Tao, Sun Q., Ma W, Liu Z (2013), Effect of CuO on the sintering temperature and properties of SrCO3 and MnO2 - doped PMS-PZT piezoelectric ceramics for multilayer piezoelectric transformers, J Electroceram, Vol 31, pp: 28-34 [81] Xu Y (1991) Ferroelectric materials and their applications, Elsevier Science Publisher, North Holland, Tokyo-Paris-New York 129 Footer Page 147 of 89 Header Page 148 of 89 [82] Yan Y., Cho K-H., Maurya D., Kumar A., Kalinin S., Khachaturyan A., and Priya S (2013), Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3PbZrO3-PbTiO3, Applied physics letters 102, 042903 [83] Yan Y., Xu Y., Feng Y (2014), Effect of Mn doping on the piezoelectric properties of 0.82Pb(Zr1/2Ti1/2)O3 0.03Pb(Mn1/3Sb2/3)O3 0.15Pb(Zn1/3Nb2/3)O3 ferroelectric ceramics, Ceramics International 40, pp: 5897 5903 [84] Yoo J, Lee I., Lee S, Kim K., Yoon H., and Lee S (2007), Piezoelectric and dielectric properties of low temperature sintering PMN-PZN-PZT ceramics according to the amount of PbO, Integrated Ferroelectrics, Vol 93, pp: 62 71 [85] Yoo J and Lee S (2009), Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/3)0.12(ZrxTi1-x)0.86O3 System Ceramics, Transactions on Electrical and Electronic Materials, Vol 10, No 4, pp:121-124 [86] Yoo J., Kim D., Song H., Paik D S and Kang D H (2008), Effect of Calcination Temperature on the Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 Piezoelectric Characteristics Pb(Zr0.50Ti0.50)O3 of Ceramics, Integrated Ferroelectrics, Vol 96, pp: 1118 [87] Yoo J., Lee I, & Paik D S & Park Y.-W (2009), Piezoelectric and dielectric properties of low temperature sintering Pb(Mn1/3Nb2/3)O3 Pb(Zn1/3Nb2/3)O3 Pb(Zr0.48Ti0.52)O3 ceramics with variation of sintering time, J Electroceram 23, pp: 519 523 [88] Yoo S-Y, Ha J-Y, Yoon S-J., Choi J-W (2013), High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators, Journal of the European Ceramic Society 33, pp: 1769 1778 130 Footer Page 148 of 89 Header Page 149 of 89 [89] Yoon S-J., Choi J-W and Choi J-Y (2010), Influences of Donor Dopants on the Properties of PZT-PMS-PZN Piezoelectric Ceramics Sintered at Low Temperatures, Journal of the Korean Physical Society, Vol 57 (4), pp 863867 [90] Zeng X., Ding A., Liu T., Deng G., Zheng X., and Cheng W., (2006), Excess ZnO Addition in Pure and La-Doped PZNPZT Ceramics, J Am Ceram Soc., Vol 89 (2), pp 728730 [91] Zhu M K., Lu P X., Hou Y D., Song X M., Wang H, and Yan H (2006), Analysis of Phase Coexistence in Fe2O3 - Doped 0.2PZN0.8PZT Ferroelectric Ceramics by Raman Scattering Spectra, J Am Ceram Soc., Vol 89 (12), pp: 37393744 [92] Zhu M K., Lu P X., Hou Y D., Wang H, and Yan H (2005), Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN 0.8PZT ceramics, J Mater Res., Vol 20, No 10, pp: 2670 - 2675 [93] Zheng M.,Hou Y., Ge H., Zhu M and Yan H (2013), Effect of sintering temperature on internal-bias field and electric properties of 0.2PZN0.8PZT ceramics, Phys Status Solidi A 210, No 2, 261266 131 Footer Page 149 of 89 ... ỏp in ca gm PZT- PZN-PMnN vo nng PZT (a) v Zr/Ti (b) 77 Hỡnh 4.1 Gin nhiu x tia X ca gm PZTPZNPMnN pha Fe2O3 82 Hỡnh 4.2 Hng s mng (a) v nng pha t giỏc (b) ca gm PZTPZN PMnN pha Fe2O3... Vogel Fulcher ca cỏc mu MP: MP65 (0,65 mol PZT) , MP70 (0,7 mol PZT) , MP75 (0,75 mol PZT) , MP80 (0,8 mol PZT) , MP85 (0,85 mol PZT) v MP90 (0,9 mol PZT) 67 Hỡnh 3.6 ng thc nghim v ng lm... mu MP: MP65 (0,65 mol PZT) , MP70 (0,7 mol PZT) , MP75 xiv Footer Page 14 of 89 Header Page 15 of 89 (0,75 mol PZT) , MP80 (0,8 mol PZT) , MP85 (0,85 mol PZT) v MP90 (0,9 mol PZT) 64 Hỡnh

Ngày đăng: 07/03/2017, 08:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w