HƯỚNG DẪN ĐỀ1 B ài 1 .Ta rút gọn x: Ta có: a) b) c) Suy ra: Như vậy: Tính A, ta có: (1) Thay x vào (1) ta được: Bài 2: n nguyên dương, ta có: Ở đó: và Suy ra (1) Lại có: Ở đó: và Suy ra (2) Từ (1) và (2) suy ra và ta có (đpcm.) Bài 3: Ta có: a) Dấu đẳng thức xảy ra khi và chỉ khi b) Ta có: =3 Dấu đẳng thức xảy ra khi và chỉ khi hay là Ta có: Với hoặc , ta có: Với hoặc , ta có: Với hoặc , ta có: Suy ra: Như vậy: Dấu đẳng thức xảy ra khi và chỉ khi Bài 4: Phương trình đã cho có thể biến đổi thành: a) Với a=1 phương trình đã cho trở thành: b) Mỗi phương trình , có nhiều nhất là 2 nghiệm. Để phương trình đã cho có 4 nghiệm thì mỗi phương trình như trên phải có đúng 2 nghiệm và các nghiệm đó khác 0. Như vậy, để phương trình ban đầu có 4 nghiệm, điều kiện cần và đủ là: *Với phương trình đã cho có 4 nghiệm là: Như thế: = Tuy nhiên và không đạt được giá trị nên S không có giá trị lớn nhất! Bài 5: a) Vì AF là tiếp tuyến của đường tròn (O) nên ta có: . Xét AFB và , ta có: FAB= FAC Suy ra AFB Suy ra: Suy ra E, F là các điểm nằm trên đường tròn (A, ) b) Vì AF là tiếp tuyến của đường tròn (O) nên ta có: (1) Mặt khác: (2) Và: (4 điểm A, E, I, F cùng nằm trên đường tròn đường kính AO) (3) Từ (1), (2), (3) suy ra được: . Suy ra EE’ // AB (Theo dấu hiệu góc đồng vị của hai đường thẳng song song) c) Xét và ta có: OAI = ANK= AIO=90 0 Suy ra OAI KAN (1) Mặt khác (2) Từ (1) và (2) suy ra AK.AI = AB.AC = const Suy ra K là điểm cố định Dễ dàng nhận thấy đường tròn ngoại tiếp tam giác ONI cũng chính là đường tròn ngoại tiếp tứ giác OIKN, suy ra tâm của đường tròn ngoại tiếp tam giác ONI nằm trên đường trung trực của KI là đường thẳng cố định. Từ đó ta có (đpcm). . ĐỀ 1 B ài 1 .Ta rút gọn x: Ta có: a) b) c) Suy ra: Như vậy: Tính A, ta có: (1) Thay x vào (1) ta được: Bài 2: n nguyên dương, ta có: Ở đó: và Suy ra (1) . đường thẳng song song) c) Xét và ta có: OAI = ANK= AIO =90 0 Suy ra OAI KAN (1) Mặt khác (2) Từ (1) và (2) suy ra AK.AI = AB.AC = const Suy ra K là điểm