ĐỀ THI CUỐI KỲ CHÍNH QUY HKI -2014-2015 Môn Thi: Giải tích Ngày thi: 31/01/2015 Thời gian: 90 phút Đại Học Bách Khoa TP.Hồ Chí Minh Khoa Khoa Học Ứng Dụng Bộ môn Toán - Ứng dụng CA Hình thức thi: TỰ LUẬN x2 − 2x + Câu 1: Khảo sát vẽ đồ thị hàm số y = x2 − Câu 2: Tìm tất giá trị m > để tích phân I = +∞ Câu 3: Tính tích phân suy rộng sau: I = Câu 4: Cho miền phẳng D : y ≥ 0, y ≤ x3 + x dx hội tụ x2 + arctan xm √ x3 x dx +1 √ 3x, x2 + y ≤ Tính thể tích vật thể tạo D quay quanh trục Ox Câu 5: Tìm nghiệm phương trình: xy − y(2y ln x − 1) = 0, thỏa điều kiện y(1) = Câu 6: Tìm nghiệm phương trình y + 2y + y = cos x Câu 7: Giải hệ phương trình : x (t) = 7x(t) + 3y(t) − 2, y (t) = 3x(t) − y(t) + 8t Đề gồm câu Sinh viên không sử dụng tài liệu Chủ nhiệm môn PGS.TS.Nguyễn Đình Huy Đáp án CA x2 − 2x + TXD: x = ±2 TCĐ: x = ±2, TCN: y = x2 − x2 − 5x + y =2 Cực đại (1, 0), cực tiểu (4, 43 ) (x − 4)2 ) x −∞ −2 1) y= BBT: f (x) + || +∞ f (x) || − + −∞ || −∞ || − +∞ +∞ + Vẽ ĐT x3 + x dx m x + arctan x Hàm f (x) ≥ 0, ∀x ∈ (0, 2], Ta so sánh x → 0+ Lưu ý: Không nhận xét f dương trừ 0.25đ x3 α > : f ∼ = Suy Tp PK x x3 x3 α = : f ∼ Suy Tp PK 2x2 x3 α < : f ∼ α = α Suy HT α − < ↔ α < x 3 x −3 Vậy I hội tụ < α < √ +∞ +∞ +∞ 2t2 dt √ x π 3 ) Tính I = x ⇒ I = = dx Đặt t = = arctan t 3 x +1 t +1 √ ) Tính Vx , D : y ≥ 0, y ≤ 3x, x2 + y2 ≤ √ 8π 2 √ Vx = π x dx + − x2 dx = ) Tìm m > để HT: I = ) Tìm nghiệm phương trình vi phân xy − y(2y ln x − 1) = thỏa điều kiện y(1) = ln x y + y=2 y Đặt z = y −1 x x ln x ln x + Ta pt z − z = −2 =⇒ z = x +C x x x Thay điều kiện: C = −1 Vậy nghiệm y = (ln x + 1) − x ) Giải y + 2y + y = cos x Nghiệm ytn = C1 e−x + C2 xe−x yr = A cos x + B sin x =⇒ A = 0, B = Vậy y = C1 e−x + C2 xe−x + sin x x (t) = 7x(t) + 3y(t) − 2, y (t) = 3x(t) − y(t) + 8t Cách 1: Khử x, ta pt y − 6y + 16y = −56t + 23 11 =⇒ y(t) = C1 e−2t + C2 e8t + t − Suy x = −C1 e−2t + C2 e8t − t + 16 Cách 2: Khử y, ta pt x − 6x + 16x = 24t − Cách 3: Dùng TR - VTR ) Giải hệ phương trình vi phân P = −1 3 ,D = −2 0 , P −1 = P 10 X Y = P −1 x y → X Y −2t = C1 e + 65 t − 12 8t 1 C2 e80 − 10 t + 16 → x y =P X Y ...Đáp án CA x2 − 2x + TXD: x = 2 TCĐ: x = 2, TCN: y = x2 − x2 − 5x + y =2 Cực đại (1, 0), cực tiểu (4, 43 ) (x − 4 )2 ) x −∞ 2 1) y= BBT: f (x) + || +∞ f (x) ||... =⇒ y(t) = C1 e−2t + C2 e8t + t − Suy x = −C1 e−2t + C2 e8t − t + 16 Cách 2: Khử y, ta pt x − 6x + 16x = 24 t − Cách 3: Dùng TR - VTR ) Giải hệ phương trình vi phân P = −1 3 ,D = 2 0 , P −1 =... I hội tụ < α < √ +∞ +∞ +∞ 2t2 dt √ x π 3 ) Tính I = x ⇒ I = = dx Đặt t = = arctan t 3 x +1 t +1 √ ) Tính Vx , D : y ≥ 0, y ≤ 3x, x2 + y2 ≤ √ 8π 2 √ Vx = π x dx + − x2 dx = ) Tìm m > để HT: I