ỨNG DỤNG CHƯƠNG TRÌNH RM TRONG PHÂN TÍCH TÍNH TOÁN KẾT CẤU CẦU

205 359 0
ỨNG DỤNG CHƯƠNG TRÌNH RM TRONG PHÂN TÍCH TÍNH TOÁN KẾT CẤU CẦU

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Professional Bridge Engineering Software NG DNG CHNG TRèNH RM TRONG PHN TCH TNH TON KT CU CU CHUYấN : TNH TON CU Bấ TễNG CT THẫP D NG LC THI CễNG PHN ON TNG QUAN V PHN MM RM Phn 1: TNG QUAN V PHN MM RM TRONG PHN TCH TNH TON KT CU CU Chương 1: Tổng quan 1.1 Giới thiệu chung Trong nhng nm gn õy, phn mm RM-SPACEFRAME ó giỳp nhiu k s, cỏc n v t gii quyt c rt nhiu cỏc bi toỏn phõn tớch kt cu cu t n gin n phc Phn mm ny hin c s dng rt rng rói trờn th gii c bit l cỏc nc Chõu phõn tớch tớnh toỏn kt cu cu i vi cỏc cu ln Vit Nam hin u c cỏc cụng ty t s dng phn mm ny tớnh toỏn kim tra kt cu Chng trỡnh c thit k vi cỏc modul chuyờn dng tớnh toỏn cho tng loi kt cu cu c s dng rng rói Vit Nam v trờn th gii a Gii thiu cỏc Modul ca RM-SPACEFRAME: Modul c bn: Cú giao tip ho hon chnh xõy dng chuyờn cho ngnh xõy dng cu: mụ hỡnh kt cu, mụ hỡnh ti trng (tnh ti, hot ti), t hp ti trng, phõn tớch tnh khụng gian cú xột n cỏc ti trng ph thuc thi gian (co ngút, t bin), qun lý kt qu tớnh toỏn Modul x lý hỡnh hc: Xõy dng c s d liu hỡnh hc chi tit cho cu: Trc dc, trc ngang, mt bng tuyn Xỏc nh cỏc mt ct ngang qua giao tip ho v t ng xõy dng cỏc d liu cho Modul tớnh toỏn Modul Bờ tụng D .L: Phn mm tớnh toỏn bờ tụng d ng lc bao gm tớnh toỏn thụng s hỡnh hcca cỏp, tớnh toỏn cng kộo cỏp, tớnh toỏn vi ti trng co ngút t bin bờ tụng, kim tra ng sut theo cỏc trng thỏi gii hn Cỏc kt qu kim tra c biu th trờn biu Modul Bờ tụng ct thộp thng: Xột un hai trc v cỏc lc dc trc xỏc nh ct thộp thng Modul phõn tớch nt ca kt cu bờ tụng: Thc hin phõn tớch phi tuyn xột n cỏc tớnh cht vt liu phi tuyn ca bờ tụng b nt vựng chu kộo Modul phõn tớch ng: (ti trng giú, ti trng ng t, tớnh toỏn giỏ tr riờng, ph hiu ng, phõn tớch mode dao ng, lch s thi gian tuyn tớnh) Modul tớnh toỏn cho cu treo dõy vng: Modul tớnh toỏn cho cu treo dõy vừng: theo lý thuyt bin dng ln v phõn tớch phi tuyn Modul tớnh toỏn kt cu theo phng phỏn phn t hu hn tng quỏt (MISES3) Modul phõn tớch tớnh toỏn phn t tm: PLATE (phn t tm trờn nn n hi, phn t tm D..L, ti trng tỏc dng cú th l tnh ti, hot ti) b Kh nng ca chng trỡnh: Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM - - - - Kh nng phõn tớch ca chng trỡnh: trờn 50.000 phn t v 50.000 nỳt D liu u vo: S dng d liu nhp vo theo khi, c chia thnh cỏc modulus Phng phỏp phõn tớch: Cỏc phng phỏp phõn tớch bin dng n hi hay phõn tớch theo phng phỏp bin dng ln u c s dng chng trỡnh T ng ỏp dng cỏc quy nh v vt liu theo nhiu tiờu chun khỏc Khụng cú hn ch no v vic mụ t hỡnh hc, cỏc iu kin liờn kt hay ỏp dng cỏc ti trng Phõn tớch tng phn nh kt cu tng th (vớ d: Cỏc giai on ca quỏ trỡnh thi cụng lm kt cu thay i) m khụng cn phi thay i d liu u vo Cỏc kt cu thng dựng chng trỡnh phõn tớch nh: + H khung phng + H dm, phng + Kt cu i cc + H khung khụng gian + H dm, khụng gian + H dm v dõy bin dng hoc khụng bin dng hỡnh hc Cỏc t hp ca ni lc v bin dng: Bt c t hp no cú th tng tng c ca cỏc trng hp ti ca tnh ti v hot ti Cỏc Modulus b sung ca chng trỡnh: + Phõn tớch bn, n nh ca kt cu + Thit k bờ tụng v thit k thộp + Phõn tớch nt ca kt cu bờ tụng + Phõn tớch phi tuyn + Phõn tớch dao ng + Cỏc phng thc phõn tớch: Lc rung, Ph phn ng, ng t, Phng phỏp thi gian) + Cỏc phõn tớch liờn quan n Thi cụng kt cu bờ tụng ng sut trc (S cỏp DL, T bin v co ngút, nh hng ca nhit , Kim tra ng sut bờ tụng v kh nng chu lc ti hn) + Phõn tớch nh hng ng ca giú, hot ti Kt qu ca chng trỡnh cú th xem trc tip bng file text hoc file ho, xut sang Excel hoc AutoCad Chng trỡnh tớnh toỏn v a kt qu ni lc vi thnh phn (N, Qx, Qy, Mx, My, Mz) v cỏc thnh phn chuyn v tng ng ng thi a c ng sut ti bt kỡ im no ó c nh ngha trc ú, Kh nng chu lc cc hn ca mt ct (Ultimate bearing capacities) im khỏc bit ca chng trỡnh so vi cỏc kt cu thụng thng khỏc ang cú mt ti Vit Nam l trỡnh t phõn tớch v tớnh toỏn da trờn c s phõn tớch cng dn t cỏc giai on thi cụng cú xột ti nhiu yu t thc t Tin trỡnh thit k da trờn h thng kt cu cui cựng v thit k cỏc giai on thi cụng da trờn kt qu ca phõn tớch kt cu giai on cui c Cỏc tiờu chun k thut ỏp dng: OENORM(B4200) OENORM(B4700) ca chõu u) Tiờu chun thit k ca o (tiờu chun c) Tiờu chun thit k ca o (tiờu chun mi theo tiờu chun Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM DIN 1045 DIN(18800,EC3) Portuguese Code Norwegian Norm-NS Japanese Norm-JIS BS5400 AASHTO CEB78 (90) Tiờu chun thit k ca c v kt cu bờ tụng Tiờu chun thit k ca c v kt cu thộp Tiờu chun thit k ca B o Nha Tiờu chun thit k ca Na Uy Tiờu chun thit k ca Nht Bn Tiờu chun thit k ca Anh Tiờu chun thit k ca M Tiờu chun thit k ca Chõu u d Gii thiu cỏc d ỏn ó ỏp dng RM-SPACEFRAME: Phn mm ó c s dng thit k nhiu cụng trỡnh ln Vit Nam v trờn th gii nh: A2 Motorway (Lavant Valley), Austria: Thi cụng theo cụng ngh ỳc hng cõn bng vi chiu di nhp gia l 160m, chiu cao tr l 175m Gateway bridge (Brisbane, Australia ): Thi cụng theo cụng ngh ỳc hng cõn bng vi chiu di nhp gia l 260m, chiu cao tr l 60m Woodrow Wilson Bridge Virginia-Washington DC-Maryland, USA Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM Umgehung Sulz Bridge GERMANY: Lockwitztal Viaduct Bridge in Germany: Kao Ping Hsi Bridge (Taiwan R.O.C.): Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM Kap Shui Mun bridge (Hong Kong) WangAn suspension bridge (Pusan, Korea) Pedestrian bridge over the Lahn (Marburg, Germany) My-Thuan Cable stayed bridge (Mekong Delta, VietNam) Uddevalla bridge (Sweden): 2nd Bridge across Panama Canal: Cu treo dõy vng mt phng dõy vi nhp gia l 420m Cu Sutong Cu treo dõy vng vi nhp gia l 1088m: Cu Shenzen Western Corridor Bridge: Nhp chớnh l 210m dm thộp bn trc hng Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM Stonecutters Bridge in Hong Kong: Nhp gia 1018m, chiu cao thỏp 290m: Machang Bridge KOREA: Cu treo dõy vng vi nhp chớnh l 400m Verige Bridge in Montenegro: Doushan Viaduct Bridge in Taiwan: Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM Wadi Abdoun Bridge in JORDAN: Hardanger Bridge in Norway: Kwang An Suspension Bridge in Pusan, Korea: Cu Rch Miu Vit Nam: S nhp: 117-270-117m Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM Cu k rụng Vit Nam: Ti Vit Nam, hu ht cỏc cu ln c thit k bi cỏc cụng ty T nc u s dng phn mm ny Cỏc cu tiờu biu nh Phỳ Lng, Dakrong, T Hin, Rch Miu, Thun Phc u c s dng chng trỡnh thit k kt cu Ti H Ni sp ti cu Vnh Tuy vi chiu di khong 3100m cú khu nhp chớnh l 135m (khu ỳc hng ln nht ti Vit nam) n giai on thit k k thut cng s s dng phn mm ny i vi cỏc d ỏn nc ngoi cỏc cụng trỡnh cu khu ln c thit k bi cỏc hóng T nc ngoi, quỏ trỡnh thi cụng, u c kim toỏn li bng phn mm ny nh cu Tõn , Quý Cao, Cu Kin, Cu Cõu Lõu, Tr Khỳc, Nỳt giao Ngó T Vng Cú th núi, õy l phn mm rt ph bin ti Vit Nam, vic lm quen vi chng trỡnh l ht sc cn thit nhm ỏp ng yờu cu cụng ngh cho cỏc k s thit k v cỏc cụng ty nc 1.2 Bộ chương trình yêu cầu phần cứng Cu hỡnh phn cng ti thiu: - Mỏy tớnh & h iu hnh: - cng: - B nh (RAM): - B vi x lý: - Card ho: - Mn hỡnh: Cu hỡnh phn cng kin ngh: - Mỏy tớnh & h iu hnh: - cng: - B nh (RAM): H iu hnh Windows98/NT, 2k 2GB cũn trng ớt nht 100MB 64MB Pentium200 MHz 16MB 17 H iu hnh Windows98/NT, 2k 20GB cũn trng ớt nht 1GB 128MB Nguyn Trng Ngha - PHN TCH KT CU CU VI RM TNG QUAN V PHN MM RM 1.3 B vi x lý: Card ho: Mn hỡnh: PentiumIII 750 MHz 32MB 17 File liệu chương trình Cỏc file d liu chớnh tớnh toỏn vi RM: Cỏc file d liu mụ hỡnh húa hỡnh hc vi mụ un GP: *.gp9 File d liu mụ hỡnh húa mụ un GP *.rm9 File xut mụ hỡnh tớnh toỏn sang RM *.tcl File kt qu nhp d liu di dng Text *.lst File xut kt qu nhp s liu di dng Text t GP Cỏc file d liu mụ hỡnh húa v tớnh toỏn vi mụ un RM: *.rm9 File d liu tớnh toỏn mụ un RM *.pl, *.pla File kt qu tớnh toỏn di dng *.lst File kt qu tớnh toỏn di dng Text *.sup File superposition *.inf File kt qu ng nh hng *.rm File CSDL cho xut kt qu di dng *.mod File kt qu tớnh toỏn chu k dao ng riờng *.mtx File d liu tớnh toỏn ng t Cỏc file hng dn s dng chng trỡnh: rm9e_UGuide.pdf User Guide (in English) gp9e_UGuide.pdf User Guide (in English) rm9e_TCL.pdf User Guide (in English) rm9e_App.pdf User Guide (in English) D liu Input/Output ca chng trỡnh: Hỡnh 1.1 D liu Input/Output ca cng trỡnh Nguyn Trng Ngha - PHN TCH KT CU CU VI RM Ph lc 1: Mễ HèNH TI TRNG TRONG RM DT-G Temperature change with respect to the stress-less or a previous state, which is constant over the cross section and produces only axial strains Example: DT-G = +20C and DT-Y = 0C The temperature gradients (TGy, TGz), and consequently the related strain gradients (y) and (z), are specified by value pairs of temperature difference and related length or width (DT-Y, H-Y and DT-Z, H-Z respectively) DT-Y, H-Y Temperature difference DT-Y and related height H-Y, describing the temperature gradient TGy=DT-Y/H-Y in the local y-direction, producing only bending strains in the X-Y plane DT-Z, H-Z Temperature difference DT-Z and related height H-Z, describing the temperature gradient TGz=DT-Z/H-Z in the local z-direction, producing only bending strains in the X-Z plane Note: Temperature gradients are specified as the change in temperature per unit length The related temperature difference is positive if the temperature increases in the positive direction of the local axis The related temperatures are assumed zero at the cross-section centroid Example 1: Example 2: Nguyn Trng Ngha - PHN TCH KT CU CU VI RM PL1 - 19 Phn 3: HNG DN S DNG RM2004 2.7.2Non-linear Temperature Distribution Some design codes require a non-linear variation of the temperature over the crosssection to be investigated This is for instance the case in the AASHTO Code Australian Standard British Standard BS 5400 Korean Standard All these Standards only require considering a non-linear variation in the vertical direction A constant distribution may be assumed for the horizontal direction and may be combined with the non-linear case This fact has been considered in the program, and therefore only a distribution in the local y-direction can be defined Some codes prescribe the temperature state to be investigated as a function of the distance of the point from the upper surface and the bottom surface of the cross-section; other for- mulations refer to the related distances (with respect to the total cross-section height) Also mixed formulations can occur Two cases have usually to be investigated: a temperature increase and a temperature de- crease The required variations for these cases generally differ and separate Load Cases have therefore to be investigated A summary of the different demands of the above-mentioned Design Codes is given in 22TCN272-05 2.7.3Cable shortening defined by force - load type FX0 FX0 Initial normal force in the element; a stress free element length differing from the system length is assigned to the element by specifying the normal force Fx required for producing this length difference The effect of this load type is identical to LX0 At first, the stress-free length LX0 is internally computed by using the specified normal force Fx (LX0 = LX + (Fx*LX) / (E*A -Fx)) Then the program proceeds in the same manner than with load type LX0 2.7.4Secondary component - bending part TB Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 20 Phn 3: HNG DN S DNG RM2004 This and the ensuing Load Types are generated automatically by the program in the case of a non-linear temperature distribution They describe the primary and secondary part of the temperature diagram in terms of element end forces It is also possible to enter them directly, but this is not recommended because the correct usage requires a deep insight in the theoretical contexts The normal force and bending part described with TB is normally the sole part causing a system reaction in the beam model 2.7.5Secondary component - shear part TS A secondary shear part does normally not arise due to in longitudinal direction constant strain gradients A shear force arises due to equilibrium conditions if the end moments re- lated to the temperature gradient are different on both ends of the element 2.7.6Primary component - bending part TB0 The primary part is also defined in terms of internal forces, although it characterises an in- ternal equilibrium state The fictitious internal force characterising this state is defined to be the force producing the correct stress in points of the cross-section (the upper and lower edge) 2.7.7Primary component - shear part TS0 Normally not existent 2.7.8Stress-free element length LX0 LX0 Stress-free -fittingỡ-length; a stress free element length LX0 other than the system length is assigned to the element The initial strain required for yielding the elongation characterised by differ- ence between the specified length and the system length is calculated This strain is applied in the same manner than a temperature change DT-G The stress-free length LX0 is used as well for determining the initial strain (0 = (LX0-LX)/LX0) and the related end force FX0 = E*A* , as for calculating the linear normal force stiffness (E*A / LX0) Both load types LX0 and FX0 correspond physically to the installation process of a pre- stressed cable stressed in a pre-stressing bed (not against the system) (The load type FCAB simulates stressing against the system; see 4.2.6.2) This pre-stressed element is installed in the actual system The actual distance between the connection points characterises the length in the fully (with Fx) pre-stressed state LX0 is the length arising in the case that the connection to the system is dropped The calculation process simulates removing the pre- stressing bed The pre-stressing forces are then acting on the system at both connection points The system will give way and the resulting force in the cable will be (more or less, depending on the system stiffness) smaller than the specified fixed end value Fx 2.8 Actions on the Element Ends 2.8.1Element End Displacement load types VGA, VGE, VLA, VLE The load types ỡElement end displacementợ not prescribe a global displacement value to the point, where it is assigned, but it induces a displacement difference between the speci- fied element end and the nodal point to which it is connected, i.e a gap or overlapping dis- tance between the element end and the appropriate node is prescribed The global deforma- tion behaviour is calculated as a reaction of the structural system to Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 21 Phn 3: HNG DN S DNG RM2004 this prescription This load type is for instance typically used for simulating support settlements In this case, an element end displacement in the vertical direction will be applied on the support element (typically a spring element with one node fixed) The end of the support element will be moved by the specified amount in relation to the node When the appropriate node is fixed, the specified movement will act like an absolute displacement of the element end point If these load types are applied to an element of the superstructure, the resulting deformations will represent an influence line for the appropriate internal force at the regarded point The Element end displacements may be specified at the start (VGA,VLA) or end (VGE, VLE) of an element, and they may be defined either in the global (VGA, VGE) or in the local (VLA, VLE) coordinate system Mind the sign conventions: The element end displacements are defined as vectors from the element end to the ap- propriate node in the regarded coordinate system, i.e the node is moved away from the element end by the specified amount This convention applies also to rotations, where the node is rotated right hand turning in relation to the original position at the element end Note: The global deformations and the internal forces resulting from these prescribed deformations are dependent on the various constraint conditions (typically from the supports) Whenever the DOFớs of the node, to whom the element end displacement is applied, is restrained, the element end will move in the opposite direction than specified for the node Example: This example describes a 5mm downward support settlement (displacement) of a bridge pier This settlement is simulated by an element end displacement in the global Y direction applied at the element begin of the support element (e.g spring element 501) By applying a global element end-displacement (VGA) Vy or a lo- cal element end-displacement (VLA) Vx of +0.005m the program will try to move the start node upwards by that amount But as the start node is restrained the element begin will be moved downwards by 5mm instead Figure 27 Modelling a support settlement with the load type VGA or VLA VGA End-displacement (global - at the start node) - Prescribed displacements Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 22 Phn 3: HNG DN S DNG RM2004 and rotations defined in the global coordinate system applied between the element start and the start node VLA End-displacement (local - at the start node) - Prescribed displacements and rotations defined in the local coordinate system applied between the element start and the start node VGE End-displacement (global - at the end node) - Prescribed displacements and rotations defined in the global coordinate system applied between the element end and the end node VLE End-displacement (local - at the end node) - Prescribed displacements and rotations defined in the local coordinate system applied between the element end and the end node 2.8.2Element End Displacement without static effect DSPLA The input for applying a displacement to the begin of the element is prepared with this load type DSPLE The input for applying a displacement to the end of the element is prepared with this load type These load sets cause no internal forces in the structure (no static effects) The load sets are used for incremental launching method and later for nonlinear calculation 2.8.3Load Type DEMO - Support Removal DEMO Support removal - simulation of removing a previously active support element This will typically but not necessarily be a spring element The basic requirements for a correct analysis of this loading are: The sum of all the internal forces in the structure resultant from all applicable load cases ac- cumulated from all the previous construction stages must be stored in a special load case (e.g.: LC 1000) The accumulated internal forces of the specified element(s) from this specified load case are now automatically applied to the redefined structure and redistributed on the structure in ac- cordance with the normal rules of statics This case must be considered as a normal load case and must be combined with all other previous load cases to get the total result 2.8.4Cable end displacement correction DISCOR The input for applying a displacement to the ends of a cable is prepared with this load type Different from the load types VGA, VLA, ỡElement End Displacementỡ with this option a displacement of cable nodes (e.g for consideration of the fabrication shape) can be de- fined directly 2.9 Wind Load This Load Type calculates the effective forces acting on the structure due to wind impact These forces are determined by using the wind direction, the wind speed and aerodynamic shape coefficients dependent on the cross-section shape and the ỡangle of flowợ These co- efficients are usually determined in wind tunnel tests and given in form of diagrams de- scribing the angle-of-flow dependency of the drag-, lift- and pitch coefficients for a special cross-section shape The static part of the acting forces is Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 23 Phn 3: HNG DN S DNG RM2004 herein calculated as well as the power spectrum characterizing the dynamic part Note:: This Load Type is usually only used for highly sophisticated wind dynamics analyses, because usually no shape coefficients are available for standard cases due to missing wind tunnel tests The wind loads are in these cases usually modelled by standard distributed loads as described in chap 6.3.2 -Uniformly Distributed Loadsỡ Usage and correct application of this Load Type ỡWind Loadợ is described in detail in the User Guide The following special Types are available for describing the wind loading: Mean wind load (macro) WINDM Mean drag for longitudinal wind component DRAGM Mean drag DRAGM Mean lift LIFTM Mean pitch PITCHM 2.10 Normal Forces (Stiffness Change) In the case of a non-linear solution (p-delta effects, large displacements) the superposition of load cases is theoretically not allowed The normal forces used for the calculation of the stiffness matrices must therefore represent total states It is therefore necessary to define an initial state of the normal force distribution in the system, if differential loading cases are investigated This might be done for single Load Cases by specifying these initial normal forces as a Load Set assigned to the Load Case to be calculated For these Load Sets the following two load types are available: 2.10.1 Assign normal force direct (just stiffness) - load type PDFOR PDFOR Direct assignment of a user defined normal force intensity to an element series With this function you can define which elements should be assigned with the defined nor- mal force (Fx internal normal force in kN) First you must choose the elements which are needed for a P-Delta calculation (From, To, Step) and then you can define the normal force for these elements directly (Fx) 2.10.2 Assign normal force from LC (just stiffness) - load type PDFLC PDFLC The normal force is read from a Load Case result and assigned to an element serie With this function you can define witch elements should be assigned with a normal force from an other load case (LC - loading case) First you must choose the elements needed for a P-Delta calculation (From, To, Step) and then you can define the load case for these elements directly (LC) 2.11 Special 2.11.1 Pier Dimensioning DIMPR Additional information for pier dimensioning by Austrian standard ữN B4700 are prepared with this load type The following values have to be defined by the user: Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 24 Phn 3: HNG DN S DNG RM2004 L0y [m] Buckling length of single beam in local xy-plane (relates to Mz) L0z [m] Buckling length of single beam in local xz-plane (relates to My) ni-y Imperfection factor for calculation of the additional load eccentricity ea,y out of the Buckling length L0y (correspond to Mz) ni-z Imperfection factor for calculation of the additional load eccentricity ea,z out of the Buckling length L0z (correspond to Mz) 2.12 Load Type Creep & Shrinkage There is no separate Load Type for the specification of creep and shrinkage parameters The behaviour of the structure due to creep and shrinkage is defined by The creep and shrinkage potential depending on material parameters, cross-section parameters and environmental conditions (humidity, temperature) The stress state subjected to creep The time history (Duration and start points of creep inducing stresses) The internal force redistributions due to creep an shrinkage will nevertheless be stored and referenced as Load Case results A Load Case Number will be assigned in the construction schedule for every time section where creep and shrinkage is considered The Load Case needs not be created before assigning it to the Creep Action, but it has to be created previ- ously an empty Load Case, if it is used in the Load Management function Creep and shrinkage cannot be mixed up with other load types in one Load Case A detailed description of the treatment of creep and shrinkage can be found in chap 7.4, Creep & Shrinkage Note: Creep & Shrinkage can be treated together with other Load Types in the same Load Case, but only separately for a certain period Nguyn Trng Ngha - PHN TCH KT CU CU VI RM2004 PL1 - 25 PH LC 2: CU TRC CC FILE HA (*.rm) Cu trỳc file in kt qu ti trng ng t File pl-Eigenmode-1.rm PLTRAN -20.000 90.000 25.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSCAL 1000.000 1000.000 5.000 PLSTAG EXP PLLC eigen1000#1 PLTXSZ 0.500000 PLELEM 0 SYS PLPEN 0.050000 PLELEM 0 SHAPE PLPEN 0.100000 PLNODE 0 SHAPE PLFONT RB GROTES PLTXSZ 1.200 PLPEN 0.020000 PLFTXT RB 5.000 70.000 0.000000 "Eigenmode Extraction" PLFTXT RB 5.000 67.000 0.000000 "Mode Shape 1" PLLC PLTXSZ 1.200 PLFONT LB GROTES PLFTXT LB 0.000000 12.000 0.000000 "FCM Bridge" Chỳ ý: Cu trỳc File ny tng t cho cỏc File pl-Eigenmode-2.rm, pl-Eigenmode-3.rm, plEigenmode-4.rm, pl-Eigenmode-5.rm, pl-Eigenmode-6.rm, pl-Eigenmode-7.rm, plEigenmode-8.rm, pl-Eigenmode-9.rm) File pl-EQ-X.rm PLTRAN -20.000 90.000 25.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSUP EQ-X.sup PLTXSZ 0.500000 PLELEM 0 SYS PLSCAL 1000.000 300.000 10.000 PLTXSZ 1.000000 PLVALUE MAXMIN PLPEN 0.050000 PLELEM 0 Mz MaxMz PLPEN 0.050000 PLELEM 0 Mz MinMz PLPEN 0.050000 PLELEM 0 My MaxMy PLELEM 0 My MaxMy PLPEN 0.050000 PLELEM 0 My MinMy PLPEN 0.050000 PLFONT RB GROTES PLTXSZ 1.200 PLPEN 0.020000 PLFTXT RB 5.000 67.000 0.000000 "Earthquake Moment Mx, My, Mz" PLFTXT RB 5.000 70.000 0.000000 "Seismic-X Longitudinal Direction" PLTXSZ 1.200 PLFONT LB GROTES PLFTXT LB 0.000000 22.000 0.000000 "FCM Bridge" Chỳ ý: Cu trỳc File ny tng t cho cỏc File pl-EQ-Y.rm, pl-EQ-Z.rm, pl-EQ.rm Cu trỳc file in kt qu ti trng hot ti Cu trỳc File pl_MzLiveLoad.rm PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 0.500000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSTAG PLPEN 0.025000 PLELEM 0 SYS PLPEN 0.025000 PLTXSZ 0.300000 PLELEM 0 NUM PLTXSZ 0.200000 PLNODE 0 SYS PLPEN 0.025000 PLNODE 0 NUM PLLOC PLSCAL 1.000000 2000.000 500.000 PLSUP HL93.sup PLVALUE ALLVAL PLSTAT ALLVAL PLSTAG PLPEN 0.025000 PLELEM 0 Mz MaxMz PLPEN 0.025000 PLELEM 0 Mz MinMz PLTXSZ 1.200 PLFONT LB GROTES PLPEN 0.000000 PLFTXT LB 10.000 -15.000 0.000000 "Mz - LIVE LOAD HL93" PLFTXT RB 40.000 -15.000 0.000000 "FCM BRIDGE" Chỳ ý: Cu trỳc File ny tng t cho cỏc File pl_MzBR.rm, pl_MzIM.rm Cu trỳc file in kt qu ti trng lỳn chờnh lch (SE) File pl_Mz-SE-21.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 0.500000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSTAG PLPEN 0.025000 PLELEM 0 SYS PLPEN 0.025000 PLTXSZ 0.300000 PLELEM 0 NUM PLTXSZ 0.200000 PLNODE 0 SYS PLPEN 0.025000 PLNODE 0 NUM PLLOC PLSCAL 1.000000 2000.000 500.000 PLLC 21 PLVALUE ALLVAL PLSTAT ALLVAL PLSTAG PLPEN 0.025000 PLELEM 0 Mz PLTXSZ 1.200 PLFONT LB GROTES PLPEN 0.000000 PLFTXT LB 10.000 -15.000 0.000000 "Mz - Settlement Effect - A1" PLFTXT RB 40.000 -15.000 0.000000 "FCM Bridge" Chỳ ý: Cu trỳc File ny tng t cho cỏc File pl_Mz-SE-22.rm, pl_Mz-SE-23.rm, pl_Mz-SE24.rm File pl_Mz-SE.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSCAL 1000.000 1000.000 1000.000 400.000 PLPEN 0.050000 PLVALUE ALLVAL PLMARK ALL PLSUP Settle.sup PLTXSZ 0.400000 PLPEN 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLPEN 0.050000 PLNODE 0 NUM PLPEN 0.050000 PLELEM 1001 3006 Mz MaxMz PLPEN 0.050000 PLELEM 1001 3006 Mz MinMz PLTXSZ 2.000 PLPEN 0.020000 PLFONT RB GROTES PLFTXT RB 16.000 -20.000 0.000000 "FCM Bridge" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -20.000 0.000000 "SETTLEMENT" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -23.000 0.000000 "max Mz - bending moment" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -26.000 0.000000 "min Mz - bending moment" Cu trỳc file in kt qu ti trng chờnh lch nhit (TU) File pl_Mz-TU-11.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 0.500000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSTAG PLPEN 0.025000 PLELEM 0 SYS PLPEN 0.025000 PLTXSZ 0.300000 PLELEM 0 NUM PLTXSZ 0.200000 PLNODE 0 SYS PLPEN 0.025000 PLNODE 0 NUM PLLOC PLSCAL 1.000000 2000.000 500.000 PLLC 11 PLVALUE ALLVAL PLSTAT ALLVAL PLSTAG PLPEN 0.025000 PLELEM 0 Mz PLTXSZ 1.200 PLFONT LB GROTES PLPEN 0.000000 PLFTXT LB 10.000 PLFTXT RB 40.000 -15.000 0.000000 "Mz - TU duong" -15.000 0.000000 "FCM Bridge" Chỳ ý: Cu trỳc File ny tng t cho cỏc File pl_Mz-TU-12.rm File pl_Mz-TU.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSCAL 1000.000 1000.000 1000.000 400.000 PLPEN 0.050000 PLVALUE ALLVAL PLMARK ALL PLSUP TU.sup PLTXSZ 0.400000 PLPEN 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLPEN 0.050000 PLNODE 0 NUM PLPEN 0.050000 PLELEM 1001 3006 Mz MaxMz PLPEN 0.050000 PLELEM 1001 3006 Mz MinMz PLTXSZ 2.000 PLPEN 0.020000 PLFONT RB GROTES PLFTXT RB 16.000 -20.000 0.000000 "FCM Bridge" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -20.000 0.000000 "Nhiet chenh lech" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -23.000 0.000000 "max Mz - bending moment" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 -26.000 0.000000 "min Mz - bending moment" File pl_Structure1.rm: PLTRAN 20.000 90.000 160.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLINAC PLSTAG PLPEN 1 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLNODE 0 NUM PLSTAG PLPEN 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLNODE 0 NUM PLPEN 0.050000 PLTEND 0 SYS PLPEN 0.050000 PLTEND 0 NUM PLFONT LB GROTES PLTXSZ 1.200 PLPEN 0.020000 PLTXSZ 1.500 PLPEN 0.020000 PLFTXT LB 15.000 61.000 0.000000 "Tac dung DUL" PLFTXT LB 15.000 64.000 0.000000 "Phan tich tinh tai" PLFTXT LB 15.000 67.000 0.000000 "Phan tich theo giai doan thi cong" PLFTXT LB 15.000 70.000 0.000000 "Tu bien & Co ngot theo CEB FIP 1990" PLTXSZ 2.000 PLFONT RB GROTES PLFTXT RB 16.000 22.000 0.000000 "CAU DA VACH" PLTXSZ 1.500 PLPEN 0.020000 PLFTXT RB 16.000 16.000 0.000000 "Mo hinh phan tu" PLPEN 0.020000 PLFTXT RB 16.000 13.000 0.000000 "So hieu phan tu" PLPEN 0.020000 PLFTXT RB 16.000 10.000 0.000000 "So hieu nut" File pl_Structure2.rm: PLTRAN 0.000000 90.000 45.000 1.000000 5.000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLINAC PLPEN 1 0.050000 PLELEM 101 999 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 101 999 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 101 999 SYS PLPEN 0.050000 PLNODE 101 999 NUM PLSTAG PLPEN 0.050000 PLELEM 101 999 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 101 999 NUM PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 101 999 SYS PLPEN 0.050000 PLNODE 101 999 NUM PLPEN 0.050000 PLTEND 8000 SYS PLPEN 0.050000 PLTEND 8000 NUM PLTXSZ 2.000 PLFONT RB GROTES PLFTXT RB 16.000 120.000 0.000000 "CAU DA VACH" PLTXSZ 1.500 PLPEN 0.020000 PLFONT LB GROTES PLFTXT LB 10.000 120 0.000000 "SO DO BO TRI CAP DU UNG LUC" File pl_Structure3.rm: PLTRAN 30.000 90.000 160.000 1.000000 1.000000 1.000000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLINAC PLSTAG PLPEN 1 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 SYSQ PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLNODE 0 NUM PLSTAG PLPEN 0.050000 PLELEM 0 SYS PLPEN 0.050000 PLTXSZ 0.400000 PLELEM 0 SYSQ PLPEN 0.050000 PLTXSZ 0.500000 PLNODE 0 SYS PLNODE 0 NUM PLPEN 0.050000 PLTEND 8000 SYS PLPEN 0.050000 PLTEND 8000 NUM PLFONT LB GROTES PLTXSZ 1.200 PLPEN 0.020000 PLTXSZ 1.500 PLPEN 0.020000 PLFTXT LB 15.000 61.000 0.000000 "Tac dung DUL" PLFTXT LB 15.000 64.000 0.000000 "Phan tich tinh tai" PLFTXT LB 15.000 67.000 0.000000 "Phan tich theo giai doan thi cong" PLFTXT LB 15.000 70.000 0.000000 "Tu bien & Co ngot theo CEB FIP 1990" PLTXSZ PLFONT RB PLFTXT RB PLTXSZ PLPEN PLFTXT RB PLPEN PLFTXT RB PLPEN PLFTXT RB 2.000 GROTES 16.000 1.500 0.020000 16.000 0.020000 16.000 0.020000 16.000 32.000 0.000000 "CAU DA VACH" 26.000 0.000000 "Mo hinh phan tu" 23.000 0.000000 "Mat cat ngang" 20.000 0.000000 "So cap DUL" File pl_Fib_Bot5002.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 0.500000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSTAG PLPEN 0.025000 PLELEM 0 SYS PLPEN 0.025000 PLTXSZ 0.300000 PLELEM 0 NUM PLTXSZ 0.200000 PLNODE 0 SYS PLPEN 0.025000 PLNODE 0 NUM PLLOC PLSCAL 1.000000 2000.000 500.000 1000.000 PLLC 5002 PLVALUE ALLVAL PLSTAT ALLVAL PLFIBP FIBBOT PLSTAG PLPEN 0.025000 PLELEM 0 FIBLC PLPEN 0.025000 PLELEM 0 FIBMAX PLELEM 0 FIBMIN PLTXSZ 2.000 PLFONT LB GROTES PLPEN 0.000000 PLFTXT LB 10.000 -15.000 0.000000 "CONSTRUCTION STAGE 1" PLFTXT LB 10.000 -20.000 0.000000 "BOTTOM FIRBER STRESS CHECK-LC1000" PLFTXT RB 40.000 -15.000 0.000000 "CONG TRINH: CAU DA VACH" File pl_Fib_Top5002.rm: PLTRAN 0.000000 90.000 45.000 1.000000 1.000000 0.500000 PLSIZE 100.000 0.000000 0.000000 0.000000 0.000000 0.000000 PLSTAG PLPEN 0.025000 PLELEM 0 SYS PLPEN 0.025000 PLTXSZ 0.300000 PLELEM 0 NUM PLTXSZ 0.200000 PLNODE 0 SYS PLPEN 0.025000 PLNODE 0 NUM PLLOC PLSCAL 1.000000 2000.000 500.000 1000.000 PLLC 5002 PLVALUE ALLVAL PLSTAT ALLVAL PLFIBP FIBTOP PLSTAG PLPEN 0.025000 PLELEM 0 FIBLC PLPEN 0.025000 PLELEM 0 FIBMAX PLELEM 0 FIBMIN PLTXSZ 2.000 PLFONT LB GROTES PLPEN 0.000000 PLFTXT LB 10.000 -15.000 0.000000 "CONSTRUCTION STAGE 2" PLFTXT LB 10.000 -20.000 0.000000 "TOP FIRBER STRESS CHECK-LC1000" PLFTXT RB 40.000 -15.000 0.000000 "CONG TRINH: CAU DA VACH"

Ngày đăng: 21/11/2016, 02:15

Từ khóa liên quan

Mục lục

  • Bia2

  • 01_Tong quan ve RM_CS2

  • 02_Huong dan su dung GP

  • 03_1_Huong dan su dung RM

  • 03_2_MHH hoat tai

  • 03_3_Tinh toan voi dong dat

  • 03_4_Tai trong nhiet do

  • 03_5_Tai trong goi lun

  • 03_06_Tai trong bo hanh

  • 03_07_Tai trong khac

  • 04_01_Phu luc Tai trong

    • PHỤ LỤC 1: Load Types Library

    • 04_02_Phu luc 2 (Cau truc file do hoa)

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan