1. Trang chủ
  2. » Giáo án - Bài giảng

Đại Số Lớp 8. Tiết 60

13 547 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 317 KB

Nội dung

KÍNH CHÀO QUÝ THẦY CÔ GIÁO VỀ THAM DỰ TIẾT DẠY HÔM NAY! Người thực hiện: Ph¹m TuÊn Anh. Tổ: Toán – Lý - Tin. Trường THCS: S¬n TiÕn. PHÒNG GIÁO DỤC HUYỆN H­¬ng S¬n T×nh hµ tÜnh + Tập nghiệm : { x | x { x | x ≥ 1 ≥ 1 }. }. + Biểu diễn tập nghiệm trên trục số : 0 1 Kiểm tra bài cũ: Kiểm tra bài cũ: 1 1 / / Viết Viết và biểu diễn tập nghiệm trên trục số của bất và biểu diễn tập nghiệm trên trục số của bất phương trình sau : phương trình sau : x x ≥ ≥ 1. 1. Đáp án: Đáp án: • Ghi nhớ: Bất phương trình có dạng: x > a , x < a , x ≥ a , x ≤ a ( với a là số bất kì ) sẽ cho ta ngay tập nghiệm của bất phương trình. * Giải phương trình: - 3x = - 4x + 2 * Giải phương trình: - 3x = - 4x + 2 Giải Giải : Ta có – 3x = - 4x + 2 : Ta có – 3x = - 4x + 2 ⇔ ⇔ - 3x + 4x = 2 - 3x + 4x = 2 ⇔ ⇔ x = 2 x = 2 Vậy phương trình có nghiệm là: x = 2 Vậy phương trình có nghiệm là: x = 2 * Hai quy rắc biến đổi phương trình là: a) Quy tắc chuyển vế: - Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó. b) Quy tắc nhân với một số: - Trong một phương trình ta có thể nhân ( hoặc chia ) cả hai vế với cùng một số khác 0. * - 3x > - 4x + 2 * - 3x > - 4x + 2 Tiết 60: Tiết 60: BẤT PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. BẬC NHẤT MỘT ẨN. Đáp án: a) 2x – 3 < 0 và c) 5x – 15 ≥ 0 là hai bất phương trình bậc nhất một ẩn. Trong các bất phương trình sau; hãy cho biết bất phương trình nào là bất phương trình bậc nhất một ẩn ? a) 2x – 3 < 0 b) 0.x + 5 > 0 c) 5x – 15 ≥ 0 d) x 2 > 0 ?1 * * Phương trình bậc nhất một ẩn có dạng: Phương trình bậc nhất một ẩn có dạng: ax + b = 0 (a ax + b = 0 (a ≠ ≠ 0 ) 0 ) ; ; với a, b là hai số đã cho. với a, b là hai số đã cho. 1/ 1/ Định nghĩa Định nghĩa : : Bất phương trình có dạng Bất phương trình có dạng ax + b < 0 ax + b < 0 (hoặc (hoặc ax + b > 0 ax + b > 0 ; ; ax + b ≤ 0 ax + b ≤ 0 ; ; ax + b ≥ 0 ax + b ≥ 0 ). ). Trong đó: a, b là hai số đã cho; Trong đó: a, b là hai số đã cho; a a ≠ ≠ 0 0 được gọi được gọi là bất phương trình bậc nhất một ẩn. là bất phương trình bậc nhất một ẩn. 2/ 2/ Hai quy tắc biến đổi bất phương trình Hai quy tắc biến đổi bất phương trình . . a) a) Quy tắc chuyển vế Quy tắc chuyển vế : : Khi Khi chuyển chuyển một hạng tử của bất phương trình một hạng tử của bất phương trình từ từ vế này vế này sang sang vế kia vế kia ta phải ta phải đổi dấu đổi dấu hạng tử đó. hạng tử đó. Giải: Ta có x – 5 < 18 ⇔ x < 18 + 5 ⇔ x < 23. Vậy tập nghiệm của bất phương trình là: { x | x < 23 } Giải: Ta có: - 3x > - 4x + 2 ⇔ - 3x + 4x > 2 ( Chuyển vế - 4x và đổi dấu thành 4x ) ⇔ x > 2. Vậy tập nghiệm của bất phương trình là: { x | x > 2 }. Tập nghiệm này được biểu diễn như sau: 0 2 VD1: Giải bất phương trình x – 5 < 18 VD2: Giải bất phương trình - 3x > - 4x + 2 và biểu diễn tập nghiệm trên trục số. ( Chuyển vế - 5 và đổi dấu thành 5 )  Giải Giải : : Ta có 8x + 2 < 7x - 1 Ta có 8x + 2 < 7x - 1 ⇔ ⇔ 8x - 7x < - 1 - 2 8x - 7x < - 1 - 2 ⇔ ⇔ x < - 3 x < - 3 v v ậy bpt có nghiệm là x < - 3 ậy bpt có nghiệm là x < - 3 Giải bpt sau : 8x + 2 < 7x - 1 b) b) Quy tắc nhân với một số Quy tắc nhân với một số . . Khi Khi nhân hai vế nhân hai vế của bất phương trình với cùng một của bất phương trình với cùng một số khác 0 số khác 0 , ta phải: , ta phải: - - Giữ nguyên chiều Giữ nguyên chiều của bất phương trình của bất phương trình nếu số đó nếu số đó dương dương ; ; - - Đổi chiều Đổi chiều bất phương trình bất phương trình nếu số đó âm nếu số đó âm . . VD 3: Giải bất phương trình 0,5x < 3 Giải: Ta có: - 0,5x < 3 ⇔ - 0,5x . ( - 2 ) > 3 . ( - 2 ) ( Nhân cả hai vế với - 2 và đổi chiều) ⇔ x > - 6. Vậy tập nghiệm của bất phương trình là: { x | x > - 6 }. Tập nghiệm này Tập nghiệm này được biểu diễn như sau: được biểu diễn như sau: VD 4: Giải bất phương trình - 0,5x < 3 và biểu diễn tập nghiệm trên trục số. Giải: - 6 0 Ta có 0,5x < 3 ⇔ x < 3 – 0,5 ⇔ x < 2,5 Vậy tập nghiệm của bpt là: { x | x < 2,5 } Ta có: 0,5x < 3 ⇔ 0,5x . 2 < 3 . 2 ( Nhân cả hai vế với 2 ) ⇔ x < 6. Vậy tập nghiệm của bất phương trình là: { x | x < 6 } Vd: Khi giải một bất phương trình: - 1,2x > 6, bạn An giải như sau. Ta có: - 1,2x > 6 ⇔ - 1,2x . > 6 . ⇔ x > - 5. Vậy tập nghiệm của bpt là: { x | x > - 5 } Em hãy cho biết bạn An giải đúng hay sai ? Giải thích và sửa lại cho đúng (nếu sai ) 1 - 1,2 1 - 1,2 Đáp án Đáp án: Bạn An giải sai. Sửa lại là: Ta có: - 1,2x > 6 ⇔ - 1,2x . < 6 . ⇔ x < - 5. Vậy tập nghiệm của bpt là: { x | x < - 5 } 1 - 1,2 1 - 1,2 Tiết 60: Tiết 60: BẤT PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. BẬC NHẤT MỘT ẨN. 1 1 / / Định nghĩa Định nghĩa : : Bất phương trình có dạng Bất phương trình có dạng ax + b < 0 ax + b < 0 ( hoặc ( hoặc ax + b > 0 ax + b > 0 ; ; ax + b ax + b ≤ ≤ 0 0 ; ; ax + b ax + b ≥ ≥ 0 0 ). ). Trong đó: a, b là hai số đã cho; Trong đó: a, b là hai số đã cho; a a ≠ ≠ 0 0 được gọi được gọi là bất phương trình bậc nhất một ẩn. là bất phương trình bậc nhất một ẩn. 2/ 2/ Hai quy tắc biến đổi bất phương trình Hai quy tắc biến đổi bất phương trình . . a) a) Quy tắc chuyển vế Quy tắc chuyển vế : : Khi Khi chuyển chuyển một hạng tử của bất một hạng tử của bất phương trình từ phương trình từ vế này vế này sang sang vế kia vế kia ta phải ta phải đổi dấu đổi dấu hạng tử hạng tử đó. đó. b) Quy tắc nhân với một số : Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải : - Gĩư nguyên chiều bất phương trình nếu số đó dương; - Đổi chiều bất phương trình nếu số đó âm. a) Ta có: 2x < 24 ⇔ 2x . < 24 . ⇔ x < 12. Tập nghiệm của bpt là : { x | x < 12 } 1 2 1 2 b) Ta có: - 3x < 27 ⇔ - 3x . > 27 . ⇔ x > - 9. Tập nghiệm của bpt là : { x | x > - 9 } 1 - 3 1 - 3 Giải các bpt sau ( dùng quy tắc nhân ): Giải các bpt sau ( dùng quy tắc nhân ): a) a) 2x < 24; 2x < 24; b) b) – 3x < 27. – 3x < 27. Giải Giải : : ?3 . một số: - Trong một phương trình ta có thể nhân ( hoặc chia ) cả hai vế với cùng một số khác 0. * - 3x > - 4x + 2 * - 3x > - 4x + 2 Tiết 60: Tiết 60: . cùng một số khác 0 số khác 0 , ta phải: , ta phải: - - Giữ nguyên chiều Giữ nguyên chiều của bất phương trình của bất phương trình nếu số đó nếu số đó dương

Ngày đăng: 15/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w