-1- SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 01 Câu I: (3.0 điểm) Cho hàm số 3 3 1 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị ()C , biết tiếp tuyến đó vuông góc với đường thẳng 3 x y . Câu II: (3.0 điểm) 1) Tìm GTLN, GTNN của hàm số 2 .( 2) x y e x trên đoạn 1;3 . 2) Cho hàm số 1x x ye . Chứng minh 2 . ' 0x y y . Câu III: (1.0 điểm) Tính giá trị biểu thức 3 7 7 7 1 log 36 log 14 3log 21 2 A . Câu IV: (2.0 điểm) Cho khối chóp đều S.ABCD có AB = a, góc giữa mặt bên và mặt đáy bằng 60 0 . Tính thể tích khối chóp S.ABCD theo a. Câu V: (1.0 điểm) Cho hàm số 32 2 (1 ) (1).y x x m x m Tìm m để hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 1 2 3 ;;x x x thỏa mãn điều kiện: 2 2 3 1 2 3 4xxx . Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 2 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 02 Câu I: (3.0 điểm) Cho hàm số 23 3 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Tìm tất cả các giá trị của tham số m sao cho phương trình 23 3 3 0x x m có 3 nghiệm phân biệt. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) 2025 2011f x x trên đoạn 0;1 . 2) Cho hàm số 2 xx ye . Giải phương trình '' ' 2 0y y y . Câu III: (2.0 điểm) Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, BC=2a và chiều cao SA=3a. 1) Tính thể tích khối chóp S.ABCD theo a. 2) Xác định tâm và tính theo a bán kính bán kính mặt cầu đi qua các đỉnh của hình chóp S.ABCD. Câu IV: (1.0 điểm) Giải phương trình (7 4 3) (7 4 3) 14 xx Câu V: (1.0 điểm) Cho hình nón tròn xoay có đỉnh là S, đường tròn đáy có tâm O, độ dài đường sinh l=a, góc hợp bởi đường sinh và mặt phẳng chứa đường tròn đáy là 4 . Tính diện tích xung quanh và diện tích toàn phần của hình nón theo a. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 3 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 03 Câu I: (3.0 điểm) Cho hàm số 32 3 2 ( ). m y x x mx m C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho khi 3m . 2) Tìm tất cả các giá trị của tham số m để hàm số có cực đại và cực tiểu. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) lnf x x x trên đoạn 1; .e 2) Giải phương trình 2 13 3 3log 2log 5xx . Câu III: (2.0 điểm) Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại A, BC=a, SB vuông góc với đáy và SB=a 2 , góc giữa (SBC) và đáy bằng 30 0 . 1) Tính thể tích khối chóp S.ABC theo a. 2) Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp. Câu IV: (1.0 điểm) Cho hàm số 1 ln( ) 1 y x . Chứng minh . ' 1 y x y e Câu V: (1.0 điểm) Cho hình nón tròn xoay có chiều cao h=20cm, bán kính đáy r=25cm. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiệt diện là 12cm. Tính diện tích thiết diện đó. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 4 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không SỞ GD & ĐT TT HUẾ ĐỀ KIỂM TRA HỌCKÌ I -Nămhọc 2009-2010 TRƯỜNGTHPTBÌNH ĐIỀN Môn: Toán 11 Thời gian: 90 phút ( không kể thời gian giao đề ) I. PHẦN CHUNG CHO CẢ HAI BAN (7 điểm) Câu I: (2điểm): Giải các phương trình: 1. sin 3cos 0xx 2. 22 os 2 sin 2 0c x x Câu II: (1,5 điểm) Một tổ trực có 9 học sinh nam và 4 học sinh nữ. Giáo viên chọn ra 3 học sinh. Tính xác suất để: 1. Cả 3 học sinh cùng giới tính. 2. Có ít nhất 1học sinh nữ. Câu III: (1,5 điểm) 1. Tim giá trị lớn nhất và giá trị nhỏ nhất của hàm số : (sinx-2cosx)(2sinx+cosx)-1y 2. Khai triển nhị thức: 6 1 x x Câu IV: (2 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt thuộc cạnh SB, SC sao cho 21 , 32 SM SN SB SC . 1. Tìm giao tuyến của hai mặt phẳng ()AMN và ()SBD , từ đó suy ra giao điểm P của SD và mặt phẳng ()AMN . 2. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng ()AMN và chứng minh BD song song với thiết diện đó. II. PHẦN DÀNH CHO HỌC SINH TỪNG BAN (3 điểm) A. Dành cho học sinh ban cơ bản: Câu Va: (1 điểm) Cho cấp số cộng n u với công sai d, có 3 14u , 50 80u . Tìm 1 u và d. Từ đó tìm số hạng tổng quát của n u . Câu VIa: (2 điểm) Trong mặt phẳng tọa độ Oxy : 1. Viết phương trình d' là ảnh của d: 2 3 6 0xy qua phép đối xứng tâm O. 2. Viết phương trình (C') là ảnh của (C): 22 ( 2) ( 3) 16xy qua phép tịnh tiến theo (1; 2)v B. Dành cho học sinh ban nâng cao: Câu Vb: (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số trong đó chữ số đứng sau phải lớn hơn chữ số đứng trước. Câu VIb:(2 điểm) Trong mặt phẳng tọa độ Oxy : 1. Viết phương trình d' là ảnh của d: 2 3 0xy qua phép đối xứng tâm I(1;-2). 2. Viết phương trình (C') là ảnh của (C): 22 ( 3) ( 4) 16xy qua phép vị tự tâm O tỉ số 1 2 . 3. 4. ĐÁP ÁN - THANG ĐIỂM CHẤM ĐÈ KIỂM TRA HỌC KỲ I 5. Môn: TOÁN 11 -NĂMHỌC 2009 - 2010. Câu Ý Nội dung Điểm I Giải các phương trình 1 sin 3cos 0xx sin 3cos tan 3x x x (vì cosx = 0 không thỏa phương trình) 0.5 , 3 x k k Z Vậy nghiệm của phương trình đã cho là: , 3 x k k 0.5 2 22 os 2 sin 2 0c x x 2 1 cos2 cos 2 2 0 2 x x 2 1 os2x os 2 2 0 2 c cx 0.25 2 2cos 2 cos2 - 3 0xx (*) 0.25 Đặt cos2 , -1;1t x t , (*) trở thành: 2 2 3 0tt t = -1 hoặc 3 2 t (loại) 0.25 Với t = -1: ta có os2x = -1 2x= +k2 x= , 2 c k k Z Vậy nghiệm của phương trình đã cho là: , 2 x k k 0.25 II Chọn 3 học sinh trong 13 học sinh có 3 13 286nC 0.25 1 Gọi A là biến cố: "Cả 3 học sinh cùng giới tính" 0.25 A xảy ra khi 3 học sinh chọn ra cùng nam hoặc cùng nữ 33 94 88n A C C ( ) 4 () ( ) 13 nA PA n 0.25 2 Gọi B là biến cố: "có ít nhất 1học sinh nữ" Khi đó: B là biến cố:"không có học sinh nữ nào được chọn" B xảy ra khi 3 học sinh chọn ra là 3 học sinh nam: 3 9 ( ) 84n B C 0.25 42 () 143 PB 0.25 101 ( ) 1 ( ) 143 P B P B 0.25 III 1 Ta có: 33 1 sin2 2cos2 sin2 2cos2 1 0 22 y x x x x y (*) 0.25 (*) có nghiệm 2 2 2 2 3 21 2 4 8 21 0 73 22 y yy y 0.25 Giá trị lớn nhất và giá trị nhỏ nhất của y theo thứ tự là 3 2 và 7 2 0.25 2 66 01 66 5 2 2 3 3 4 4 5 5 6 6 6 6 6 6 6 4 3 2 11 KY THIHOC KY 1- NAM HQC 2014 - 2015 MON THI: TOA.N 11 - ThO; gian: 90 phut ************************************** TRlfONG THPTNGUYEN HU~ TO TOA.N ********** Cau 1: Giai cac phirong trinh sau : 11 cos2x - cos ( x + ~) 21 31 2sin 23x + 41 Cau 2sinx.cosx 3sin3x + J3 = - = (cos2x - 1) = 2(l-sinx) + tan x = ' '1+cos2x 2: 11 Tim s6 hang khong chira x khai trien ( 2X2 + ~ 21 V6i t~p E = {O, 1,2,3,4, r 5} c6 th@ SỞ GD-ĐT THỪA THIÊN HUẾ ĐỀ KIỂM TRA HỌCKÌ I. TRƯỜNGTHPT HÓA CHÂU NĂMHỌC 2009-2010. Môn: TOÁN- KHỐI 10. Thời gian: 90 phút. I. PHẦN CHUNG (7điểm): Câu 1 (1,5điểm) Cho A =(1;4]; B=(0;2).Tìm ; ; \ .A B A B A B Câu 2 (1.5điểm) Lập bảng biến thiên và vẽ đồ thị hàm số 2 43y x x Câu 3 (2điểm) Giải các phương trình sau a. 3 1 4 5xx b. 13xx . Câu 4 (2điểm) Cho A(-6;5), B(-4;-1), C(4;-3). a. Tìm tọa độ trung điểm I của đoạn BC. Viết phương trình đường trung tuyến AI của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. II. PHẦN RIÊNG (3điểm): A. Phần dành riêng cho ban KHTN: Câu 1 (2điểm) Cho tam giác đều ABC cạnh a. a. Tính theo a giá trị của biểu thức: . . .T AB BC BCCA CA AB . b. M là điểm bất kỳ trên đường tròn ngoại tiếp ABC. Chứng minh rằng: 2 2 2 2 2MA MB MC a . Câu 2 (1điểm) Cho hai số a, b thỏa mãn 0ab . Chứng tỏ rằng: 3 33 22 a b a b B. Phần dành riêng cho ban cơ bản: Câu 1 (2điểm) Cho hình bình hành ABCD có tâm O. Chứng minh rằng với điểm M bất kì ta luôn có: 4MA MB MC MD MO . Câu 2 (1điểm) Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng: 9 111 cba . …………………….Hết…………………… Cán bộ coi thi không giải thích gì thêm SỞ GD-ĐT THỪA THIÊN HUẾ ĐÁP ÁN-THANG ĐIỂM TRƯỜNGTHPT HÓA CHÂU KIỂM TRA HỌCKÌ I NĂMHỌC 2009-2010. Môn: TOÁN- KHỐI 10. ĐÁP ÁN-THANG ĐIỂM Câu Đáp án Điểm I. Phần Chung (7điểm) Câu 1: (1.5điểm) (0;4]AB 0.5 (1;2)AB 0.5 \ [2;4]AB 0.5 Câu 2: (1.5điểm) - Đỉnh I(-2;-1) - Trục đối xứng x=-2 0.25 a=1>0 nên ta có bảng biến thiên: x -2 0.5 -1 y Một số điểm đặc biệt: -Giao điểm với Ox: (-1; 0); (-3; 0) -Giao điểm với Oy: (0; 3) 0.25 *Đồ thị: x y -1 -2 -1-3 1 0.5 Câu 3: (2điểm) a. 3 1 4 5 3 1 4 5 3 1 (4 5 ) xx xx xx 0.25 3 8 5 2 x x 0.5 Vậy phương trình đã cho có 2 nghiệm: 35 ; 82 xx 0.25 b. 2 13 30 1 ( 3) xx x xx 0.25 2 3 7 10 0 x xx 0.25 3 5 25 x x x hoac x 0.25 Vậy phương trình có 1 nghiệm x=5 0.25 Câu 4a: (1điểm) Tọa độ trung điểm I(0; -2) 0.5đ Giả sử đường trung tuyến AI có phương trình y=ax+b. Vì đường trung tuyến đi qua A, I nên ta có 0.5đ 7 56 6 2 2 ab a b b Vậy 7 2 6 yx Câu 4b: (1điểm) Gọi D(x D ; y D ) (2; 6) (4 ; 3 ) DD AB DC x y 0.5 Vì ABCD là hình bình hành nên 4 2 2 3 6 3 DD DD xx AB DC yy Vậy D(2;3) 0.5 II. Phần riêng: (3điểm) A. Phần dành cho ban KHTN: Câu 1: (2điểm) a. 2 . 2 a AB BC 0.25 2 2 a BC CA CA AB 0.5 2 3 2 a T 0.25 b. Gọi G là trọng tâm của tam giác ABC Ta có: 0GA GB GC G cũng là tâm đường tròn ngoại tiếp tam giác ABC nên 3 3 a GA GB GC 0.25 2 2 2 2. . MA MG GA MA MG GA MG GA Tương tự 0.5 2 2 2 2. .MB MG GB MGGB 2 2 2 2. .MC MG GC MGGC Cộng vế theo vế được: 2 2 2 2 2 2 3( ) 2MA MB MC MG GA a 0.25 Câu 2: (1điểm) Giả sử có 3 33 2 2 3 22 2 22 ( )( ) ( ) 28 () 3 6 3 0 2 3( ) ( ) 0 8 a b a b a b a ab b a b ab a ab b ab ab 0.25 0.5 0.25 B. Phần dành cho ban cơ bản Câu 1 (2điểm) 4 ( ) ( ) VT MA MB MC MD MO OA MO OB MO OC MO OD MO OA OC OB OD / Trueng THPT Nglly~n Hll~ TB toanDETHI HQC KY I Mon: Toan-KhBi 10 -Nam hoc 2014-2015 Thai gian: 90 phut Call 1(1.5diim) Giai cac phuong trinh sau: 12x + 31 = Ix - 21 ; -V'X2 + = x2 - (HD: d~t fin phu) Cau2(1.5diim) Cho phuong trinh sau: x - 3x + 2m - = (1) Tim t~t ca cac gia tri cua tham s6 m dS phuong trinh (1) co nghiem Tim t~t ca cac gia tri cua tham s6 m -1- SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 01 Câu I: (3.0 điểm) Cho hàm số 3 3 1 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị ()C , biết tiếp tuyến đó vuông góc với đường thẳng 3 x y . Câu II: (3.0 điểm) 1) Tìm GTLN, GTNN của hàm số 2 .( 2) x y e x trên đoạn 1;3 . 2) Cho hàm số 1x x ye . Chứng minh 2 . ' 0x y y . Câu III: (1.0 điểm) Tính giá trị biểu thức 3 7 7 7 1 log 36 log 14 3log 21 2 A . Câu IV: (2.0 điểm) Cho khối chóp đều S.ABCD có AB = a, góc giữa mặt bên và mặt đáy bằng 60 0 . Tính thể tích khối chóp S.ABCD theo a. Câu V: (1.0 điểm) Cho hàm số 32 2 (1 ) (1).y x x m x m Tìm m để hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 1 2 3 ;;x x x thỏa mãn điều kiện: 2 2 3 1 2 3 4xxx . Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 2 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 02 Câu I: (3.0 điểm) Cho hàm số 23 3 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Tìm tất cả các giá trị của tham số m sao cho phương trình 23 3 3 0x x m có 3 nghiệm phân biệt. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) 2025 2011f x x trên đoạn 0;1 . 2) Cho hàm số 2 xx ye . Giải phương trình '' ' 2 0y y y . Câu III: (2.0 điểm) Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, BC=2a và chiều cao SA=3a. 1) Tính thể tích khối chóp S.ABCD theo a. 2) Xác định tâm và tính theo a bán kính bán kính mặt cầu đi qua các đỉnh của hình chóp S.ABCD. Câu IV: (1.0 điểm) Giải phương trình (7 4 3) (7 4 3) 14 xx Câu V: (1.0 điểm) Cho hình nón tròn xoay có đỉnh là S, đường tròn đáy có tâm O, độ dài đường sinh l=a, góc hợp bởi đường sinh và mặt phẳng chứa đường tròn đáy là 4 . Tính diện tích xung quanh và diện tích toàn phần của hình nón theo a. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 3 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 03 Câu I: (3.0 điểm) Cho hàm số 32 3 2 ( ). m y x x mx m C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho khi 3m . 2) Tìm tất cả các giá trị của tham số m để hàm số có cực đại và cực tiểu. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) lnf x x x trên đoạn 1; .e 2) Giải phương trình 2 13 3 3log 2log 5xx . Câu III: (2.0 điểm) Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại A, BC=a, SB vuông góc với đáy và SB=a 2 , góc giữa (SBC) và đáy bằng 30 0 . 1) Tính thể tích khối chóp S.ABC theo a. 2) Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp. Câu IV: (1.0 điểm) Cho hàm số 1 ln( ) 1 y x . Chứng minh . ' 1 y x y e Câu V: (1.0 điểm) Cho hình nón tròn xoay có chiều cao h=20cm, bán kính đáy r=25cm. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiệt diện là 12cm. Tính diện tích thiết diện đó. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 4 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không -1- SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 01 Câu I: (3.0 điểm) Cho hàm số 3 3 1 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị ()C , biết tiếp tuyến đó vuông góc với đường thẳng 3 x y . Câu II: (3.0 điểm) 1) Tìm GTLN, GTNN của hàm số 2 .( 2) x y e x trên đoạn 1;3 . 2) Cho hàm số 1x x ye . Chứng minh 2 . ' 0x y y . Câu III: (1.0 điểm) Tính giá trị biểu thức 3 7 7 7 1 log 36 log 14 3log 21 2 A . Câu IV: (2.0 điểm) Cho khối chóp đều S.ABCD có AB = a, góc giữa mặt bên và mặt đáy bằng 60 0 . Tính thể tích khối chóp S.ABCD theo a. Câu V: (1.0 điểm) Cho hàm số 32 2 (1 ) (1).y x x m x m Tìm m để hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 1 2 3 ;;x x x thỏa mãn điều kiện: 2 2 3 1 2 3 4xxx . Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 2 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 02 Câu I: (3.0 điểm) Cho hàm số 23 3 ( ).y x x C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho. 2) Tìm tất cả các giá trị của tham số m sao cho phương trình 23 3 3 0x x m có 3 nghiệm phân biệt. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) 2025 2011f x x trên đoạn 0;1 . 2) Cho hàm số 2 xx ye . Giải phương trình '' ' 2 0y y y . Câu III: (2.0 điểm) Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, BC=2a và chiều cao SA=3a. 1) Tính thể tích khối chóp S.ABCD theo a. 2) Xác định tâm và tính theo a bán kính bán kính mặt cầu đi qua các đỉnh của hình chóp S.ABCD. Câu IV: (1.0 điểm) Giải phương trình (7 4 3) (7 4 3) 14 xx Câu V: (1.0 điểm) Cho hình nón tròn xoay có đỉnh là S, đường tròn đáy có tâm O, độ dài đường sinh l=a, góc hợp bởi đường sinh và mặt phẳng chứa đường tròn đáy là 4 . Tính diện tích xung quanh và diện tích toàn phần của hình nón theo a. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh:………………………………Số báo danh:……………………… Chữ kí của giám thị 1:………………………… Chữ kí của giám thị 2:…………… - 3 - SỞ GD&ĐT QUẢNG NAM KIỂM TRA HỌCKÌ I NĂMHỌC 2014-2015 TRƯỜNGTHPTNGUYỄN VĂN TRỖI Môn: TOÁN – Khối 12. Thời gian: 90 phút (không kể giao đề) ĐỀ THAM KHẢO 03 Câu I: (3.0 điểm) Cho hàm số 32 3 2 ( ). m y x x mx m C 1) Khảo sát sự biến thiên và vẽ đồ thị ()C của hàm số đã cho khi 3m . 2) Tìm tất cả các giá trị của tham số m để hàm số có cực đại và cực tiểu. Câu II: (2.0 điểm) 1) Tìm GTLN, GTNN của hàm số ( ) lnf x x x trên đoạn 1; .e 2) Giải phương trình 2 13 3 3log 2log 5xx . Câu III: (2.0 điểm) Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại A, BC=a, SB vuông góc với đáy và SB=a 2 , góc giữa (SBC) và đáy bằng 30 0 . 1) Tính thể tích khối chóp S.ABC theo a. 2) Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp. Câu IV: (1.0 điểm) Cho hàm số 1 ln( ) 1 y x . Chứng minh . ' 1 y x y e Câu V: (1.0 điểm) Cho hình nón tròn xoay có chiều cao h=20cm, bán kính đáy r=25cm. Một thiết