SÁNG KIẾN KINH NGHIỆM DẠY GIẢI BÀI TẬP VỀ VÉC TƠ TRONG HÌNH HỌC 10 NHẰM RÈN LUYỆN KỸ NĂNG GIẢI TOÁN CHO HỌC SINH KÝ HIỆU CÁC CHỮ VIẾT TẮT GV HS HH PPVT SGK, SBT THPT : Giáo viên : Học sinh : Hình học : Phương pháp véc tơ : Sách giáo khoa,sách tập : Trung học phổ thông MỤC LỤC A MỞ ĐẦU Lý chọn đề tài Nhiệm vụ đề tài Đối tượng nghiên cứu Phạm vi nghiên cứu B NỘI DUNG Cơ sở lý luận Cơ sở khoa học Thực trạng Áp dụng thực tế dạy học 4.1 Áp dụng quy trình bước dạy giải tập toán GV 4.2 Trước giải tập theo hệ thống GV cần nhấn mạnh cho học sinh kiến thức tập sau 10 4.3 Hệ thống tập 12 4.4 Chỉ khó khăn sai lầm học sinh gặp phải giải toán hình học phẳng PPVT 24 C HIỆU QUẢ CỦA SÁNG KIẾN 26 KẾT LUẬN 27 TÀI LIỆU THAM KHẢO 27 A MỞ ĐẦU Lý chọn đề tài Một mục đích dạy toán trường phổ thông là: Phát triển học sinh lực phẩm chất trí tuệ, giúp học sinh biến tri thức khoa học nhân loại tiếp thu thành kiến thức thân, thành công cụ để nhận thức hành động đắn lĩnh vực hoạt động học tập sau Trong đường lối đổi giáo dục Đảng nhà nước ta khẳng định: “Phải đổi phương pháp giáo dục đào tạo, khắc phục lối truyền thụ chiều, rèn luyện thành nếp tư sáng tạo người học Từng bước áp dụng phương pháp tiên tiến phương tiện đại vào trình dạy học, đảm bảo điều kiện thời gian tự học, tự nghiên cứu cho học sinh” Như vậy, quan điểm chung đổi phương pháp dạy học khẳng định, cốt lõi việc đổi phương pháp dạy học môn toán trường THPT làm cho học sinh học tập tích cực, chủ động, chống lại thói quen học tập thụ động Làm cho học sinh nắm cách xác, vững có hệ thống kiến thức kỹ toán học phổ thông bản, đại, phù hợp với thực tiễn có lực vận dụng tri thức vào tình cụ thể, vào đời sống, vào lao động sản xuất, vào việc học tập môn khoa học khác Việc giải tập toán hình thức tốt để củng cố, hệ thống hóa kiến thức rèn luyện kỹ năng, hình thức vận dụng kiến thức học vào vấn đề cụ thể, vào thực tế, vào vấn đề mới, hình thức tốt để giáo viên kiểm tra lực, mức độ tiếp thu khả vận dụng kiến thức học Việc giải tập toán có tác dụng lớn việc gây hứng thú học tập cho học sinh nhằm phát triển trí tuệ góp phần giáo dục, rèn luyện người học sinh nhiều mặt Việc giải toán cụ thể nhằm dụng ý đơn mà thường bao hàm ý nghĩa nhiều mặt học sinh dùng phương pháp để giải vấn đề toán cao vấn đề thực tế mang tính lôgic toán Thực tiễn dạy học cho thấy: Việc sử dụng phương pháp véctơ nghiên cứu hình học, học sinh có thêm công cụ để diễn đạt, suy luận để giải toán, tránh ảnh hưởng lợi trực giác, từ cho thấy vấn đề xem xét giả quan điểm khoa học, với cách tiệm cận vấn đề khác đưa phương pháp khác đắn Đây dịp tốt để học sinh làm quen với ngôn ngữ toán học cao cấp, từ giáo dục học sinh cách nhìn cởi mở khoa học môn học liên quan Thế việc sử dụng không thành thạo phương pháp trên, cụ thể lúng túng giải sai tập làm học sinh gặp nhiều khó khăn, hạn chế tới kết học tập phạm vi chuyên đề sử dụng “phương pháp véc tơ” để giải toán hình học Với lí trên, chọn đề tài nghiên cứu “Dạy giải tập VÉC TƠ hình học 10 nhằm rèn luyện kỹ giải toán cho học sinh” Nhiệm vụ đề tài 2.1 Nghiên cứu phương pháp giảng dạy giải tập toán theo hướng hình thành rèn luyện kỹ giải toán cho học sinh 2.2 Dựa theo chuẩn kiến thức kỹ hình học 10 Bộ GD-ĐT xuất phát từ thực tiễn giảng dạy nghiên cứu phương pháp dạy học tập hình học 10 qua phương pháp dùng véc tơ, nhằm rèn luyện kỹ giải toán cho học sinh Đối tượng nghiên cứu 3.1 Phương pháp giải tập hình học phẳng phương pháp véc tơ 3.2 Các tập hình học phẳng phương pháp véc tơ hình học lớp 10 Phạm vi nghiên cứu Bài tập hình học phẳng phương pháp véc tơ chương I+II SGK hình học 10 theo chương trình nâng cao B NỘI DUNG Cơ sở lý luận Theo phương pháp dạy học toán tập toán đặt thời điểm trình dạy học chứa đựng cách tường minh hay ẩn tàng chức khác Các chức là: - Chức dạy học - Chức giáo dục - Chức phát triển - Chức kiểm tra Các chức hướng tới việc thực mục đích dạy học: - Chức dạy học: Bài tập toán nhằm hình thành củng cố cho học sinh tri thức, kĩ năng, kĩ xảo giai đoạn khác trình dạy học - Chức giáo dục: Bài tập toán nhằm hình thành cho học sinh giới quan vật biện chứng, hứng thú học tập, sáng tạo, có niềm tin phẩm chất đạo đức người lao động - Chức phát triển: Bài tập toán nhằm phát triển lực tư cho học sinh, đặc biệt rèn luyện thao tác trí tụê hình thành phẩm chất tư khoa học - Chức kiểm tra: Bài tập toán nhằm đánh giá mức độ kết dạy học, đánh giá khả độc lập học toán, khả tiếp thu, vận dụng kiến thức trình độ phát triển học sinh Hiệu việc dạy toán phần lớn phụ thuộc vào việc khai thác thực cách đầy đủ chức có tác giả viết sách giáo khoa có dụng ý đưa vào chương trình Người giáo viên phải có nhiệm vụ khám phá thực dụng ý tác giả lực sư phạm Trong toán có nhiều toán chưa có thuật giải thuật giải tổng quát để giải tất toán Chúng ta thông qua việc dạy học giải số toán cụ thể mà truyền thụ cho học sinh cách thức, kinh nghiệm việc suy nghĩ, tìm tòi lời giải cho toán Dạy học giải tập toán nghĩa giáo viên cung cấp cho học sinh lời giải toán Biết lời giải toán không quan trọng làm để giải toán Để làm tăng hứng thú học tập học sinh, phát triển tư duy, thầy giáo phải hình thành cho học sinh quy trình chung, phương pháp tìm lời giải cho toán Theo Pôlya, phương pháp tìm lời giải cho toán thường tiến hành theo bước sau: Bước 1: Tìm hiểu nội dung toán Để giải toán, trước hết phải hiểu toán có hứng thú với việc giải toán Vì người giáo viên phải ý gợi động cơ, kích thích trí tò mò, hứng thú cho học sinh giúp em tìm hiểu toán cách tổng quát Tiếp theo phải phân tích toán cho: - Đâu ẩn số, đâu kiện -Vẽ hình, sử dụng kí hiệu thích hợp (nếu cần) -Phân biệt thành phần khác điều kiện, diễn đạt điều kiện dạng công thức toán học không? Bước 2: Xây dựng chương trình giải Phải phân tích toán cho thành nhiều toán đơn giản Phải huy động kiến thức học (định nghĩa, định lí, quy tắc ) có liên quan đến điều kiện, quan hệ đề toán lựa chọn số kiến thức gần gũi với kiện toán mò mẫm, dự đoán kết Xét vài khả xảy ra, kể trường hợp đặc biệt Sau đó, xét toán tương tự khái quát hóa toán cho Bước Thực chương trình giải Bước 4: Kiểm tra nghiên cứu lời giải - Kiểm tra lại kết quả, xem lại lập luận trình giải - Nhìn lại toàn bước giải, rút tri thức phương pháp để giải loại toán - Tìm thêm cách giải khác (nếu có thể) - Khai thác kết có toán - Đề xuất toán tương tự, toán đặc biệt khái quát hóa toán Công việc kiểm tra lời giải toán có ý nghĩa quan trọng Trong nhiều trường hợp, kết thúc toán lại mở đầu cho toán khác Vì "Cần phải luyện tập cho học sinh có thói quen kiểm tra lại toán, xét xem có sai lầm hay thiếu sót không, toán có đặt điều kiện toán đòi hỏi phải biện luận Việc kiểm tra lại lời giải yêu cầu học sinh thực cách thường xuyên” Cơ sở khoa học Xuất phát từ yêu cầu học sinh kiến thức kỹ chương I, II- SGK HH nâng cao là: - Về kiến thức bản: nắm khái niệm véctơ, hai véctơ nhau, hai véctơ đối nhau, véctơ không, quy tắc ba điểm, quy tắc hình bình hành, quy tắc trung điểm, định nghĩa tính chất phép cộng, phép trừ, phép nhân véctơ với số thực, tích vô hướng hai véctơ - Về kĩ bản: biết dựng véctơ véctơ cho trước, biết lập luận hai véctơ nhau, vận dụng quy tắc hình bình hành, quy tắc ba điểm để dựng véctơ tổng giải số toán, biết xác định số thực k hai véc tơ phương a, b cho b ka , vận dụng tính chất tích vô hướng, đặc biệt để xác định điều kiện cần đủ hai véctơ (khác véctơ- không) vuông góc với nhau, vận dụng tổng hợp kiến thức véctơ để nghiên cứu số quan hệ hình học như: tính thẳng hàng ba điểm, trung điểm đoạn thẳng, trọng tâm tam giác, giao điểm hai đường chéo hình bình hành… Thực trạng Trong thực tế dạy học cho thấy, học sinh thường gặp khó khăn vận dụng kiến thức vào giải tập cụ thể do: học sinh không nắm vững kiến thức khái niệm, định lí, qui tắc, không trở thành sở kỹ Muốn hình thành kỹ năng, đặc biệt kỹ giải toán cho học sinh, người thầy giáo cần phải tổ chức cho học sinh học toán hoạt động hoạt động tự giác, tích cực, sáng tạo để học sinh nắm vững tri thức, có kỹ sẵn sàng vận dụng vào thực tiễn Góp phần thực nguyên lý nhà trường phổ thông là: “Học đôi với hành, giáo dục kết hợp với lao động sản xuất, nhà trường gắn liền với xã hội” Trong chương trình hình học lớp 10 học sinh học véctơ, phép toán véctơ, tính chất tích vô hướng ứng dụng chúng, đặc biệt hệ thức quan trọng tam giác: Định lý Côsin, định lý Sin, công thức trung tuyến, công thức tính diện tích tam giác học sinh phải biết tận dụng kiến thức nói để giải số toán hình học toán thực tế PPVT có nhiều tiện lợi việc giải tập hình học Tuy vậy, sử dụng phương pháp học sinh gặp phải số khó khăn, không tránh khỏi sai lầm giải toán hình học lớp 10 Khó khăn thứ mà học sinh gặp phải lần làm quen với đối tượng véctơ, phép toán véctơ Các phép toán véctơ lại có mmọt số tính chất tương tự số mà học sinh học trước đó, học sinh chưa hiểu rõ chất khái niệm phép toán nên dễ ngộ nhận, mắc sai lầm sử dụng PPVT Khó khăn thứ hai sử dụng PPVT thoát ly khỏi hình ảnh trực quan, hình vẽ nên khó tưởng tượng, hiểu toán cách hình thức, không hiểu nghĩa hình học toán Vì học sinh có thói quen giải toán hình học phải vẽ hình nên sử dụng PPVT để giải số tập không sử dụng hình vẽ, học sinh gặp nhiều khó khăn Học sinh thường gặp khó khăn chuyển toán từ ngôn ngữ hình học thông thường sang “ngôn ngữ véctơ” ngược lại Vì cần rèn luyện cho học sinh kỹ chuyển tương đương quan hệ hình học từ cách nói thông thường sang dạng véctơ để vận dụng công cụ véctơ giải toán Áp dụng thực tế dạy học Ở lớp 10 học sinh (học theo chương trình nâng cao) học sinh học véc tơ, phép toán véc tơ (phép cộng, phép trừ, phép nhân véc tơ với số thực, tích vô hướng hai véc tơ), sau trục, hệ trục toạ độ, toạ độ điểm, toạ độ véc tơ vài ứng dụng đơn giản phương pháp toạ độ Tuy học sinh học hai phương pháp: Véc tơ toạ độ, phương pháp chủ yếu phương pháp véc tơ Bởi vì, hệ thức lượng tam giác đường tròn xây dựng nhờ véc tơ phép toán, đặc biệt tích vô hướng hai véc tơ định nghĩa theo đẳng thức véc tơ Để giúp học sinh sử dụng thành thạo PPVT để giải toán, học sinh lớp 10 giảng dạy GV cần lưu ý vấn đề sau: 4.1 Áp dụng quy trình bước dạy giải tập toán GV cần hình thành cho học sinh bước giải toán hình học phương pháp véc tơ theo bước sau: Trước hết giáo viên cần rèn luyện cho học sinh nắm vững quy trình bốn bước giải toán PPVT Quy trình bốn bước giải toán hình học PPVT Bước 1: Chọn véc tơ sở Bước 2: Dùng phương pháp phân tích véc tơ phép toán véc tơ để biểu diễn, chuyển ngôn ngữ từ hình học thông thường sang ngôn ngữ véc tơ Bước 3: Giải toán véc tơ Bước 4: Kết luận, đánh giá kết Giáo viên cần tận dụng hội để rèn luyện cho học sinh khả thực bốn bước giải toán hình học PPVT thông qua tập, minh hoạ quy trình bốn bước ví dụ sau: Bài toán: Cho góc xOy hai điểm di chuyển hai cạnh góc M thuộc Ox, N thuộc Oy, luôn thoả mãn OM = 2ON Chứng minh trung điểm I MN thuộc đường thẳng cố định Hướng dẫn giải: Bước 1: Lấy điểm A Ox, B Oy cho OA = OB, chọn hai véc tơ OA, OB làm hai véc tơ sở Mọi véc tơ toán phân tích (hoặc biểu thị được) qua hai véc tơ nàu Bước 2: Giả thiết cho OM = 2ON, nên ON kOB , OM 2kOA Điều phải chứng minh I thuộc đường thẳng cố định (dễ thấy đường thẳng qua O) tương đương OI pv , với v véc tơ cố định Bước 3: Do I trung điểm MN, nên ta có OI (OM ON ) k (2OA OB ) 2 Đặt k p, 2OA OB v , ta điều phải chứng minh A A' x Bước 4: Nhận xét: Nếu lấy OA' 2OA v OA' OB đường thẳng cố I O B ’ định qua trung điểm A B N y * Có thể tổng quát hoá toán theo hai cách: - Thay cho giả thiết OM = 2ON OM = m.ON (m số) - Thay cho kết luận: Trung điểm I MN thuộc đường thẳng cố định kết luận: Mỗi điểm chia MN theo tỷ số IM p (p, q số dương) IN q thuộc đường thẳng cố định Trong trình hướng dẫn học sinh giải toán PPVT, giáo viên cần ý đến tri thức phương pháp: Ở bước 1: Nên chọn véc tơ sở cho véc tơ toán phân tích theo chúng thuận lợi Qua toán học sinh thấy việc chọn véc tơ sở Ở bước 2: Cần rèn luyện cho học sinh chuyển đổi ngôn ngữ cách thành thạo Cách chuyển đổi ta thấy qua nhóm toán trình bày Ở bước 3: Cần nắm vững phép toán véc tơ Đồng thời, thông qua tập cụ thể, giáo viên cần làm cho học sinh hiểu rõ tính ưu việt PPVT Đặc biệt tập tìm tập hợp điểm, tập chứng minh điểm thẳng hàng, chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, dạng toán có nhiều hội để làm rõ vấn đề 4.2 Trước giải tập theo hệ thống GV cần nhấn mạnh cho học sinh kiến thức tập sau (vì tri thức phương pháp để giải tập sau này)