Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 51 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
51
Dung lượng
324,5 KB
Nội dung
MỘT TRĂM BÀI TẬP HÌNH HỌC LỚP Phần 2: 50 tập Bài 51:Cho (O), từ điểm A nằm đường tròn (O), vẽ hai tt AB AC với đường tròn Kẻ dây CD//AB Nối AD cắt đường tròn (O) E C/m ABOC nội tiếp Chứng tỏ AB2=AE.AD C/m góc AOC = ACB ∆BDC cân CE kéo dài cắt AB I C/m IA=IB B I A O E D C Hình 51 1/C/m: ABOC nt:(HS tự c/m) 2/C/m: AB2=AE.AD Chứng minh ∆ADB ∽ ∆ABE , có E chung BDE = sđ BE (góc nt chắn BE ) Sđ ABE = sđ cung BE (góc tt dây) Sđ 3/C/m AOC = ACB * Do ABOC nt⇒ AOC = ABC (cùng chắn cung AC); AC = AB (t/c tt cắt nhau) ⇒ ∆ABC cân A⇒ ABC = ACB ⇒ AOC = ACB 2 * sđ ACB = sđ BEC (góc tt dây); sđ BDC = sđ BEC (góc nt) ⇒ BDC = ACB mà ABC = BDC (do CD//AB) ⇒ BDC = BCD ⇒ ∆BDC cân B 4/ Ta có ɵI chung; IBE = ECB (góc tt dây; góc nt chắn cung BE)⇒ ∆IBE∽∆ICB⇒ IE IB = ⇒ IB2=IE.IC IB IC Xét ∆IAE ICA có ɵI chung; sđ IAE = sđ ( DB − BE ) mà ∆BDC cân B⇒ DB = BC ⇒sđ IAE = sđ (BC-BE) = sđ CE= sđ ECA ⇒ ∆IAE∽∆ICA⇒ IA IE = ⇒IA2=IE.IC IC IA Từ ⇒IA2=IB2⇒ IA=IB Bài 52: Cho ∆ABC (AB=AC); BC=6; Đường cao AH=4(cùng đơn vò độ dài), nội tiếp (O) đường kính AA’ Tính bán kính (O) Kẻ đường kính CC’ Tứ giác ACA’C’ hình gì? Kẻ AK⊥CC’ C/m AKHC hình thang cân Quay ∆ABC vòng quanh trục AH Tính diện tích xung quanh hình tạo A 1/Tính OA:ta có BC=6; đường cao AH=4 ⇒ AB=5; ∆ABA’ vuông B⇒BH2=AH.A’H C' K ⇒A’H= O BH = AH ⇒AA’=AH+HA’= H B C A' Hình 52 ⇒AO= 25 25 2/ACA’C’ hình gì? Do O trung điểm AA’ CC’⇒ACA’C’ Hình bình hành Vì AA’=CC’(đường kính đường tròn)⇒AC’A’C hình chữ nhật 3/ C/m: AKHC thang cân: ta có AKC=AHC=1v⇒AKHC nội tiếp.⇒HKC=HAC(cùng chắn cung HC) mà ∆OAC cân O⇒OAC=OCA⇒HKC=HCA⇒HK//AC⇒AKHC hình thang Ta lại có:KAH=KCH (cùng chắn cung KH)⇒ KAO+OAC=KCH+OCA⇒Hình thang AKHC có hai góc đáy nhau.Vậy AKHC thang cân 4/ Khi Quay ∆ ABC quanh trục AH hình sinh hình nón Trong BH bán kính đáy; AB đường sinh; AH đường cao hình nón 2 Sxq= p.d= 2π.BH.AB=15π 1 3 Bài 53:Cho(O) hai đường kính AB; CD vuông góc với Gọi I trung điểm OA Qua I vẽ dây MQ⊥OA (M∈ cung AC ; Q∈ AD) Đường thẳng vuông góc với MQ M cắt (O) P C/m: a/ PMIO thang vuông V= B.h= πBH2.AH=12π b/ P; Q; O thẳng hàng Gọi S Giao điểm AP với CQ Tính Góc CSP Gọi H giao điểm AP với MQ Cmr: a/ MH.MQ= MP2 b/ MP tiếp tuyến đường tròn ngoại tiếp ∆QHP 1/ a/ C/m MPOI thang vuông Vì OI⊥MI; CO⊥IO(gt) ⇒CO//MI mà MP⊥CO ⇒MP⊥MI⇒MP//OI⇒MPOI thang vuông b/ C/m: P; Q; O thẳng hàng: Do MPOI thang vuông ⇒IMP=1v hay QMP=1v⇒ QP đường kính (O)⇒ Q; O; P thẳng hàng 2/ Tính góc CSP: Ta có sđ CSP= sđ(AQ+CP) (góc có đỉnh nằm đường tròn) mà cung CP = CM C P M S H A I B O J Q D Hình 53 2 CM=QD ⇒ CP=QD ⇒ sđ CSP= sđ(AQ+CP)= sđ CSP= sđ(AQ+QD) = sđAD=45o Vậy CSP=45o 3/ a/ Xét hai tam giác vuông: MPQ MHP có : Vì ∆ AOM cân O; I trung điểm AO; MI⊥AO⇒∆MAO tam giác cân M⇒ ∆AMO tam giác ⇒ cung AM=60o MC = CP =30o ⇒ cung MP = 60o ⇒ cung AM=MP ⇒ góc MPH= MQP (góc nt chắn hai cung nhau.)⇒ ∆MHP∽∆MQP⇒ đpcm b/ C/m MP tiếp tuyến đường tròn ngoại tiếp ∆ QHP Gọi J tâm đtròn ngoại tiếp ∆QHP.Do cung AQ=MP=60o⇒ ∆HQP cân H QHP=120o⇒J nằm đường thẳng HO⇒ ∆HPJ tam giác mà HPM=30o⇒MPH+HPJ=MPJ=90o hay JP⊥MP P nằm đường tròn ngoại tiếp ∆HPQ ⇒đpcm Bài 54: Cho (O;R) cát tuyến d không qua tâm O.Từ điểm M d (O) ta kẻ hai tiếp tuyến MA MB với đườmg tròn; BO kéo dài cắt (O) điểm thứ hai C.Gọi H chân đường vuông góc hạ từ O xuống d.Đường thẳng vuông góc với BC O cắt AM D C/m A; O; H; M; B nằm đường tròn C/m AC//MO MD=OD Đường thẳng OM cắt (O) E F Chứng tỏ MA2=ME.MF Xác đònh vò trí điểm M d để ∆MAB tam giác đều.Tính diện tích phần tạo hai tt với đường tròn trường hợp B 1/Chứng minh OBM=OAM=OHM=1v 2/ C/m AC//OM: Do MA MB hai tt cắt ⇒BOM=OMB MA=MB ⇒MO đường trung trực AB⇒MO⊥AB Mà BAC=1v (góc nt chắn nửa đtròn ⇒CA⊥AB Vậy AC//MO d E F O D C A H Hình 54 C/mMD=OD Do OD//MB (cùng ⊥CB)⇒DOM=OMB(so le) mà OMB=OMD(cmt)⇒DOM=DMO⇒∆DOM cân D⇒đpcm 3/C/m: MA2=ME.MF: Xét hai tam giác AEM MAF có góc M chung Sđ AFM= sđcungAE(góc nt chắn cungAE) ⇒EAM=A FM Sđ EAM= sd cungAE(góc tt dây) ⇒∆MAE∽∆MFA⇒đpcm 4/ Vì AMB tam giác đều⇒góc OMA=30o⇒OM=2OA=2OB=2R Gọi diện tích cần tính S.Ta có S=S OAMB-Squạt AOB 2 πR 3 −π R2 3= 3 Ta có AB=AM= OM − OA =R ⇒S AMBO= BA.OM= R2 ⇒ Squạt= πR 120 360 = πR ⇒S= R2 ( 2R R = ) Bài 55: Cho nửa (O) đường kính AB, vẽ tiếp tuyến Ax By phía với nửa đường tròn Gọi M điểm cung AB N điểm đoạn AO Đường thẳng vuông góc với MN M cắt Ax By D C C/m AMN=BMC C/m∆ANM=∆BMC DN cắt AM E CN cắt MB F.C/m FE⊥Ax Chứng tỏ M trung điểm DC x D y M C E F A N Hình 55 B O 1/C/m AMN=BMA Ta có AMB=1v(góc nt chắn nửa đtròn) NM⊥DC⇒NMC=1v vậy: AMB=AMN+NMB=NMB+BMC=1v⇒ AMN=BMA 2/C/m ∆ANM=∆BCM: Do cung AM=MB=90o.⇒dây AM=MB MAN=MBA=45o.(∆AMB vuông cân M)⇒MAN=MBC=45o Theo c/mt CMB=AMN⇒ ∆ANM=∆BCM(gcg) 3/C/m EF⊥Ax Do ADMN nt⇒AMN=AND(cùng chắn cung AN) Do MNBC nt⇒BMC=CNB(cùng chắn cung CB) ⇒ AND=CNB Mà AMN=BMC (chứng minh câu 1) Ta lại có AND+DNA=1v⇒CNB+DNA=1v ⇒ENC=1v mà EMF=1v ⇒EMFN nội tiếp ⇒EMN= EFN(cùng chắn cung NE)⇒ EFN=FNB ⇒ EF//AB mà AB⊥Ax ⇒ EF⊥Ax 4/C/m M trung điểm DC: Ta có NCM=MBN=45o.(cùng chắn cung MN) ⇒∆NMC vuông cân M⇒ MN=NC Và ∆NDC vuông cân N⇒NDM=45o ⇒∆MND vuông cân M⇒ MD=MN⇒ MC= DM ⇒đpcm Bài 56: Từ điểm M nằm (O) kẻ hai tiếp tuyến MA MB với đường tròn Trên cung nhỏ AB lấy điểm C kẻ CD⊥AB; CE⊥MA; CF⊥MB Gọi I K giao điểm AC với DE BC với DF C/m AECD nt C/m:CD2=CE.CF Cmr: Tia đối tia CD phân giác góc FCE C/m IK//AB A F K C x M D O I E B Hình 56 1/C/m: AECD nt: (dùng phương pháp tổng hai góc đối) 2/C/m: CD2=CE.CF Xét hai tam giác CDF CDE có: -Do AECD nt⇒CED=CAD(cùng chắn cung CD) -Do BFCD nt⇒CDF=CBF(cùng chắn cung CF) Và sđ CBF= sđ cung BC(góc tt dây)⇒FDC=DEC Mà sđ CAD= sđ cung BC(góc nt chắn cung BC) Do AECD nt BFCD nt ⇒DCE+DAE=DCF+DBF=2v.Mà MBD=DAM(t/c hai tt cắt nhau)⇒DCF=DCE Từ ⇒∆CDF∽∆CED⇒đpcm 3/Gọi tia đối tia CD Cx,Ta có góc xCF=180o-FCD xCE=180o-ECD.Mà theo cmt có: FCD= ECD⇒ xCF= xCE.⇒đpcm 4/C/m: IK//AB Ta có CBF=FDC=DAC(cmt) Do ADCE nt⇒CDE=CAE(cùng chắn cung CE) ABC+CAE(góc nt góc tt… chắn cung)⇒CBA=CDI.trong ∆CBA có BCA+CBA+CAD=2v hay KCI+KDI=2v⇒DKCI nội tiếp⇒ KDC=KIC (cùng chắn cung CK)⇒KIC=BAC⇒KI//AB Bài 57: Cho (O; R) đường kính AB, Kẻ tiếp tuyến Ax Ax lấy điểm P cho P>R Từ P kẻ tiếp tuyến PM với đường tròn C/m BM/ / OP Đường vuông góc với AB O cắt tia BM N C/m OBPN hình bình hành AN cắt OP K; PM cắt ON I; PN OM kéo dài cắt J C/m I; J; K thẳng hàng N P J Q I K M A B O Hình 57 1/ C/m:BM//OP: Ta có MB⊥AM (góc nt chắn nửa đtròn) OP⊥AM (t/c hai tt cắt nhau) ⇒ MB//OP 2/ C/m: OBNP hình bình hành: Xét hai ∆ APO OBN có A=O=1v; OA=OB(bán kính) NB//AP ⇒ POA=NBO (đồng vò)⇒∆APO=∆ONB⇒ PO=BN Mà OP//NB (Cmt) ⇒ OBNP hình bình hành 3/ C/m:I; J; K thẳng hàng: Ta có: PM⊥OJ PN//OB(do OBNP hbhành) mà ON⊥AB⇒ON⊥OJ⇒I trực tâm ∆OPJ⇒IJ⊥OP -Vì PNOA hình chữ nhật ⇒P; N; O; A; M nằm đường tròn tâm K, mà MN//OP⇒ MNOP thang cân⇒NPO= MOP, ta lại có NOM = MPN (cùng chắn cung NM) ⇒ IPO=IOP ⇒∆IPO cân I Và KP=KO⇒IK⊥PO Vậy K; I; J thẳng hàng Bài 58:Cho nửa đường tròn tâm O, đường kính AB; đường thẳng vuông góc với AB O cắt nửa đường tròn C Kẻ tiếp tuyến Bt với đường tròn AC cắt tiếp tuyến Bt I C/m ∆ABI vuông cân Lấy D điểm cung BC, gọi J giao điểm AD với Bt C/m AC.AI=AD.AJ C/m JDCI nội tiếp Tiếp tuyến D nửa đường tròn cắt Bt K Hạ DH⊥AB Cmr: AK qua trung điểm DH Hình 58 I 1/C/m ∆ABI vuông cân(Có nhiều cách-sau C/m cách): -Ta có ACB=1v(góc nt chắn nửa đtròn)⇒∆ABC vuông C.Vì OC⊥AB trung điểm O⇒AOC=COB=1v ⇒ cung AC=CB=90o ⇒CAB=45 o (góc nt nửa số đo cung bò chắn) C D N A O J K B H ∆ABC vuông cân C Mà Bt⊥AB có góc CAB=45 o ⇒ ∆ABI vuông cân B 2/C/m: AC.AI=AD.AJ Xét hai ∆ACD AIJ có góc A chung sđ góc CDA= sđ cung AC =45o Mà ∆ ABI vuông cân B⇒AIB=45 o.⇒CDA=AIB⇒ ∆ADC∽∆AIJ⇒đpcm 3/ Do CDA=CIJ (cmt) CDA+CDJ=2v⇒ CDJ+CIJ=2v⇒CDJI nội tiếp 4/Gọi giao điểm AK DH N Ta phải C/m:NH=ND -Ta có:ADB=1v DK=KB(t/c hai tt cắt nhau) ⇒KDB=KBD.Mà KBD+DJK= 1v KDB+KDJ=1v⇒KJD=JDK⇒∆KDJ cân K ⇒KJ=KD ⇒KB=KJ -Do DH⊥ JB⊥AB(gt)⇒DH//JB p dụng hệ Ta lét tam giác AKJ AKB ta có: DN AN NH AN DN NH = ; = ⇒ = mà JK=KB⇒DN=NH JK AK KB AK JK KB Bài 59: Cho (O) hai đường kính AB; CD vuông góc với Trên OC lấy điểm N; đường thẳng AN cắt đường tròn M Chứng minh: NMBO nội tiếp CD đường thẳng MB cắt E Chứng minh CM MD phân giác góc góc góc AMB C/m hệ thức: AM.DN=AC.DM Nếu ON=NM Chứng minh MOB tam giác E C M N A B O 1/C/m NMBO nội tiếp:Sử dụng tổng hai góc đối) 2/C/m CM MD phân giác góc góc góc AMB: -Do AB⊥CD trung điểm O AB CD.⇒Cung AD=DB=CB=AC=90 o ⇒sđ AMD= sđcungAD=45o D Hình 59 sđ DMB= sđcung DB=45o.⇒AMD=DMB=45o.Tương tự CAM=45o ⇒EMC=CMA=45o.Vậy CM MD phân giác góc góc góc AMB 3/C/m: AM.DN=AC.DM Xét hai tam giác ACM NMD có CMA=NMD=45 o.(cmt) Và CAM=NDM(cùng chắn cung CM)⇒∆AMC∽∆DMN⇒đpcm 4/Khi ON=NM ta c/m ∆MOB tam giác Do MN=ON⇒∆NMO vcân N⇒NMO=NOM.Ta lại có: NMO+OMB=1v NOM+MOB=1v⇒OMB=MOB.Mà OMB=OBM ⇒OMB=MOB=OBM⇒∆MOB tam giác Bài 60: Cho (O) đường kính AB, d tiếp tuyến đường tròn C Gọi D; E theo thứ tự hình chiếu A B lên đường thẳng d C/m: CD=CE Bài 86: Cho (O;R (O’;r) R>r, cắt Avà B Gọi I điểm đường thẳng AB nằm đoạn thẳng AB Kẻ hai tiếp tuyến IC ID với (O) (O’) Đường thẳng OC O’D cắt K Chứng minh ICKD nội tiếp Chứng tỏ:IC2=IA.IB Chứng minh IK nằm đường trung trực CD IK cắt (O) E F; Qua I dựng cát tuyến IMN a/ Chứng minh:IE.IF=IM.IN b/ E; F; M; N nằm đường tròn 1/C/m ICKD nt: Vì CI DI hai tt I Hình 86 hai đtròn ⇒ICK=IDK=1v ⇒đpcm C 2/C/m: IC2=IA.IB E Xét hai tam giác M ICE ICBcó góc I A D chung sđ ICE= • O sđ cung CE (góc •O’ tt dây) B N F K sđ CE (góc nt cung bò chắn)⇒ICE=IBC⇒∆ICE~∆IBC⇒đpcm 3/Cm IK nằm đường trung trực CD IC=ID⇒I nằm trênđường Theo chứng minh ta có: IC2=IA.IB trung trực CD Chứng minh tương tự ta có:ID =IA.IB -Hai tam giác vuông ICK IDK có Cạnh huyền IK chung cạnh góc vuông IC=ID ⇒∆ICK=∆IDK⇒CK=DK⇒K nằm đường trung trực CD.⇒đpcm 4/ a/Bằng cách chứng minh tương tự câu ta có: IC2=IE.IF ID2=IM.IN Mà IC=ID (cmt)⇒IE.IF=IM.IN b/ C/m Tứ giác AMNF nội tiếp: Theo chứng minh có E.Ì=IM.IN.p dụng tính IF IN chất tỉ lệ thức ta có: = Tức hai cặp cạnh tam giác IFN tương ứng tỉ lệ với IM IE hai cặp cạnh tam giác IME.Hơn góc EIM chung ⇒∆IEM~∆INF⇒IEM=INF.Mà IEM+MEF=2v⇒MEF+MNF=2v⇒đpcm Sđ CBI= Bài 87: Cho∆ABC có góc nhọn.Vẽ đường tròn tâm O đường kính BC.(O) cắt AB;AC D E.BE CD cắt H Chứng minh:ADHE nội tiếp C/m:AE.AC=AB.AD AH kéo dài cắt BC F.Cmr:H tâm đường tròn nội tiếp ∆DFE Gọi I trung điểm AH.Cmr IE tiếp tuyến (O) A I E D x Hình 87 H B F O C 1/Cm:ADHE nội tiếp: Ta có BDC=BEC=1v(góc nt chắn nửa đường tròn) ⇒ADH+AEH=2v⇒ADHE nt 2/C/m:AE.AC=AB.AD Ta chứng minh ∆AEB ∆ADC đồng dạng 3/C/m H tâm đường tròn ngoại tiếp tam giác DEF: Ta phải c/m H giao điểm đường phân giác tam giác DEF -Tứ giác BDHF nt⇒HED=HBD(cùng chắn cung DH).Mà EBD=ECD (cùng chắn cung DE).Tứ gáic HECF nt⇒ECH=EFH(cùng chắn cung HE) ⇒EFH=HFD⇒FH phân giác DEF -Tứ gáic BDHF nt⇒FDH=HBF(cùng chắn cung HF).Mà EBC=CDE(cùng chắn cung EC)⇒EDC=CDF⇒DH phân giác góc FDE⇒H là… 4/ C/m IE tiếp tuyến (O):Ta có IA=IH⇒IA=IE=IH= AH (tính chất trung tuyến tam giác vuông)⇒∆IAE cân I⇒IEA=IAE.Mà IAE=EBC (cùng phụ với góc ECB) AEI=xEC(đối đỉnh)Do ∆OEC cân O⇒ OEC=OCE ⇒xEC+CEO =EBC +ECB=1v Hay xEO=1v Vậy OE⊥IE điểm E nằm đường tròn (O)⇒đpcm Bài 88: Cho(O;R) (O’;r) cắt Avà B.Qua B vẽ cát tuyến chung CBD⊥AB (C∈(O)) cát tuyến EBF bất kỳ(E∈(O)) Chứng minh AOC AO’D thẳng hàng Gọi K giao điểm đường thẳng CE DF.Cmr:AEKF nt Cm:K thuộc đường tròn ngoại tiếp ∆ACD Chứng tỏ FA.EC=FD.EA A E • O • O’ C B Hình 88 D F K 1/C/m AOC AO’D thẳng hàng: -Vì AB⊥CD ⇒Góc ABC=1v⇒AC đường kính (O)⇒A;O;C thẳng hàng.Tương tự AO’D thẳng hàng 2/C/m AEKF nt: Ta có AEC=1v(góc nt chắn nửa đường tròn tâm O.Tương tự AFD=1v hay AFK=1v ⇒AEK+AFK=2v⇒đpcm 3/Cm: K thuộc đường tròn ngoại tếp ∆ACD Ta có EAC=EBC(cùng chắn cung EC).Góc EBC=FBD(đối đỉnh).Góc FBD=FAD(cùng chắn cung FD).Mà EAC+ECA=90o ⇒ADF=ACE ACE+ACK=2v⇒ADF+ACK=2v⇒K nằm đường tròn ngoại tiếp … 4/C/m FA.EC=FD.EA Ta chứng minh hai tam giác vuông FAD EAC đồng dạng EAC=EBC(cùng hcắn cung EC)EBC=FBD(đối đỉnh) FBD=FAD(cùng chắn cung FD)⇒EAC=FAD⇒đpcm Bài 89: Cho ∆ABC có A=1v.Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC B dựng (O’;r) tiếp xúc với BC C.Gọi M;N trung điểm AB;AC,OM ON kéo dài cắt K Chứng minh:OAO’ thẳng hàng CM:AMKN nội tiếp Cm AK tiếp tuyến hai đường tròn K nằm BC Chứng tỏ 4MI2=Rr Hình 89 O’ A O M I N B K C 1/C/m AOO’ thẳng hàng: -Vì M trung điểm dây AB⇒OM⊥AB nên OM phân giác góc AOB hay BOM=MOA Xét hai tam giác BKO AKO có OA=OB=R; OK chung BOK=AOK (cmt) ⇒∆KBO=∆KAO ⇒ góc OBK=OAK mà OBK=1v ⇒OAK=1v Chứng minh tương tự ta có O’AK=1v Nên OAK+O’AK=2v ⇒đpcm 2/Cm:AMKN nội tiếp:Ta có Vì AMK=1v(do OMA=1v) ANK=1v ⇒AMK+ANK=2v ⇒đpcm Cần lưu ý AMKN hình chữ nhật 3/C/m AK tiếp tuyến (O) O’) -Theo chứng minh Góc OAK=1v hay OA⊥AK điểm A nằm đường tròn (O)⇒đpcm.Chứng minh tương tự ta có AK tt (O’) -C/m K nằm BC: Theo tính chất hai tt cắt ta có:BKO=OKA AKO’=O’KC Nhưng AMKN hình chữ nhật⇒MKN=1v hay OKA+O’KA=1v tức có nghóa góc BKO+O’KC=1v BKO+OKA+AKO’+O’KC=2v⇒K;B;C thẳng hàng ⇒đpcm 4/ C/m: 4MI2=Rr Vì ∆OKO’ vuông K có đường cao KA.p dụng hệ thue=ức lượng tam giác vuông có AK2=OA.O’A.Vì MN=AK MI=IN hay MI= AK⇒đpcm Bài 90: Cho tứ giác ABCD (AB>BC) nội tiếp (O) đường kính AC; Hai đường chéo AC DB vuông góc với Đường thẳng AB CD kéo dài cắt E; BC AD cắt F Cm:BDEF nội tiếp Chứng tỏ:DA.DF=DC.DE Gọi I giao điểm DB với AC M giao điểm đường thẳng AC với đường tròn ngoại tiếp ∆AEF Cmr: DIMF nội tiếp Gọi H giao điểm AC với FE Cm: AI.AM=AC.AH E Hình 90 B A O I C H M D F 1/ Cm:DBEF nt: Do ABCD nt (O) đường kính AC⇒ABC=ADC=1v (góc nt chắn nửa đường tròn)⇒ FBE=EDF=1v⇒đpcm 2/ C/m DA.DF=DC.DE: Xét hai tam giác vuông DAC DEF có: Do BF⊥AE ED⊥AF nên C trực tâm ∆AEF⇒Góc CAD=DEF(cùng phụ với góc DFE)⇒đpcm 3/ Cm:DIMF nt: Vì AC⊥BD(gt) ⇒DIM=1v I trung điểm DB(đường kính vuông góc với dây DB)⇒∆ADB cân A⇒ AEF cân A (Tự c/m yếu tố này)⇒Đường tròn ngoại tiếp ∆AEF có tâm nằm đường AM ⇒góc AFM=1v(góc nt chắn nửa đường tròn)⇒DIM+DFM=2v⇒đpcm 4/ Bài 91: Cho (O) (O’) tiếp xúc A.Đường thẳng OO’ cắt (O) (O’) B C (khác A) Kẻ tiếp tuyến chung DE(D∈(O)); DB CE kéo dài cắt M Cmr: ADEM nội tiếp Cm: MA tiếp tuyến chung hai đường tròn ADEM hình gì? Chứng tỏ:MD.MB=ME.MC B O A O’ C E D M 1/Cm:ADEM nt: Vì AEC=1v ADB=1v(góc nt chắn nửa đtròn) ⇒ADM+AEM=2v⇒đpcm 2/C/m MA tiếp tuyến hai đường tròn; -Ta có sđADE= sđ cungAD=sđ DBA.Và ADE=AME(vì chắn cung AE tứ giác ADME nt)⇒ABM=AMC Hình 91 Tương tự ta có AMB=ACM⇒Hai tam giác ABM ACM có hai cặp góc tương ứng nhau⇒Cặp góc cònlại nhau.Hay BAM=MAC.Ta lại có BAM+MAC=2v⇒BAM=MAC=1v hay OA⊥AM điểm A nằm đtròn… 3/ADEM hình gì? Vì BAM=1v⇒ABM+AMB=1v.Ta có MA tt đtròn⇒DAM=MBA (cùng nửa cung AD).Tương tự MAE=MCA.Mà theo cmt ta có ACM=AMB Nên DAM+MAE=ABM+ACM=ABM+AMB=1v.Vậy DAE=1v nên ADEM hình chữ nhật 4/Cm: MD.MB=ME.MC Tam giác MAC vuông A có đường cao AE.p dụng hệ thức lượng tam giác vuông ta có:MA2=ME.MC.Tương tự tam giác vuông MAB có MA2=MD.MB⇒đpcm Bài 92: Cho hình vuông ABCD.Trên BC lấy điểm M Từ C hạ CK⊥ với đường thẳng AM Cm: ABKC nội tiếp Đường thẳng CK cắt đường thẳng AB N.Từ B dựng đường vuông góc với BD, đường cắt đường thẳng DK E Cmr: BD.KN=BE.KA Cm: MN//DB Cm: BMEN hình vuông Hình 92 A B N M E K D C 1/Cm: ABKC nội tiếp: Ta có ABC=1v (t/c hình vuông); AKC=1v(gt) ⇒ đpcm 2/Cm: BD.KN=BE.KA.Xét hai tam giác vuông BDE KAN có: Vì ABCD hình vuông nên nội tiếp đường tròn có tâm giao điểm hai đường chéo.Góc AKC=1v⇒A;K;C nằm đtròn đường kính AC.Vậy điểm A;B;C;D;K nằm đường tròn.⇒Góc BDK=KDN (cùng chắn cung BK)⇒∆BDE~∆KAN⇒ BD BE = ⇒đpcm KA KN 3/ Cm:MN//DB.Vì AK⊥CN CB⊥AN ;AK cắt BC M⇒M trực tâm tam giác ANC⇒NM⊥AC.Mà DB⊥AC(tính chất hình vuông)⇒MN//DB 4/Cm:BNEM hình vuông: Vì MN//DB⇒DBM=BMN(so le) mà DBM=45o⇒BMN =45o⇒∆BNM tam giác vuông cân⇒BN=BM.Do BE⊥DB(gt)và o o BDM=45 ⇒MBE=45 ⇒∆MBE tam giác vuông cân BM phân giác tam giác MBN;Ta dễ dàng c/m MN phân giác góc BMN⇒BMEN hình thoi lại có goác B vuông nên BMEN hình vuông Bài 93: Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB O Gọi M điểm OB N điểm đối xứng với C qua M Kẻ NE; NF NP vuông góc với AB; AD; AC; PN cắt AB Q Cm: QPCB nội tiếp Cm: AN//DB Chứng tỏ F; E; M thẳng hàng Cm: ∆PEN tam giác cân F N I Q A E B P M O D C 1/C/m QPCB nội tiếp:Ta có:NPC=1v(gt) QBC=1v(tính chất hình chữ nhật).⇒đpcm 2/Cm:AN//DB O giao điểm hai đường chéo hình chữ nhật⇒O trung điểm AC.Vì C N đối xứng với qua M⇒M trung điểm NC ⇒OM đường trung bình ∆ANC⇒OM//AN hay AN//DB 3/Cm:F;E;M thẳng hàng Gọi I giao điểm EF AN.Dễ dàng chứng minh AFNE hình chữ nhật⇒∆AIE OAB tam gíc cân⇒IAE=IEA ABO=BAO.Vì AN//DB⇒ IAE=ABO(so le)⇒IEA=EAC⇒EF//AC hay IE//AC Vì I trung điểm AN;M trung điểm NC⇒IM đường trung bình ∆ANC⇒MI//AC Từ Ta có I;E;M thẳng hàng.Mà F;I;E thẳng hàng ⇒F;F;M thẳng hàng 4/C/m∆PEN cân:Dễ dàng c/m ANEP nội tiếp⇒PNE=EAP(cùng chắn cung PE).Và PNE=EAN(cùng chắn cung EN).Theo chứng minh câu ta suy NAE=EAP⇒ENP=EPN⇒∆PEN cân E Bài 94: Từ đỉnh A hình vuông ABCD,ta kẻ hai tia tạo với góc 45o Một tia cắt cạnh BC E cắt đường chéo DB P Tia cắt cạnh CD F cắt đường chéo DB Q Cm:E; P; Q; F; C nằm đường tròn Cm:AB.PE=EB.PF Cm:S∆AEF=2S∆APQ Gọi M trung điểm AE.Cmr: MC=MD A B M P E Q D F C 1/Cm:E;P;Q;C;F nằm đường tròn: Ta có QAE=45o.(gt) QBC=45o(t/c hình vuông)⇒ABEQ nội tiếp ⇒ABE+AQE=2v mà ABE=1v⇒AQE=1v Ta có ∆AQE vuông Q có góc QAE=45o⇒∆AQE vuông cân⇒AEQ=45o.Ta lại có EAF=45o(gt) PDF=45o ⇒APFD nội tiếp⇒APF+ADF=2v mà ADF=1v⇒APF=1v ECF=1v Từ ⇒E;P;Q;F;C nằm đường tròn đường kính EF 2/Chứng minh: AB.PE=EB.PF.Xét hai tam giác vuông ABE có: -Vì ABEQ nt⇒BAE=BQE(Cùng chắn cung BE) ⇒BAE=PFE -Vì QPEF nt⇒PQE=PEF(Cùng chắn cung PE) ⇒đpcm 3/Cm: :S∆AEF=2S∆APQ Theo cm ∆AQE vuông cân Q⇒AE= AQ + QE = AQ Vì QPEF nt ⇒PEF=AQP(cùng phụ với góc PQF);Góc QAP chung S AE ⇒∆AQP~∆AEF⇒ AEF = = S AQP AQ ( ) =2⇒đpcm 4/Cm: MC=MD.Học sinh chứng minh hai ∆MAD=MBC có BC=AD; MBE=MEB=DAE;AM=BM Bài 95: Cho hình chữ nhật ABCD có hai đường chéo cắt O.Kẻ AH BK vuông góc với BD AC.Đường thẳng AH BK cắt I.Gọi E F trung điểm DH BC.Từ E dụng đường thẳng song song với AD.Đường cắt AH J C/m:OHIK nội tiếp Chứng tỏ KH⊥OI Từ E kẻ đườngthẳng song song với AD.Đường cắt AH J.Chứng tỏ:HJ.KC=HE.KB Chứng minh tứ giác ABFE nội tiếp đường tròn A B J O F H K E D C I 1/Cm:OHIK nt (Hs tự chứng minh) 2/Cm HK⊥OI Tam giác ABI có hai đường cao DH AK cắt O ⇒OI đường cao thứ ba ⇒OI⊥AB Ta có OKIH nt⇒OKE=OIE(cùng chắn cung OH).Vì OI⊥AB AD⊥AB ⇒OI//AD⇒OIH=HAD(so le).Mà HAD=HBA(cùng phụ với góc D).Do ABCD hình chữ nhật nên ABH+ACE ⇒OKH=OCE⇒HK//AB.Mà OI⊥AB ⇒OI⊥KH 3/Cm: HJ.KC=HE.KB Chứng minh hai tam giác vuông HJE KBC đồng dạng 4/Chứng minh ABFE nội tiếp: VìAH⊥BE;EJ//AD AD⊥AB⇒EJ⊥AB⇒BJ đường cao thứ ba tam giác ABE⇒BJ⊥AE Vì E trung điểm DH;EJ//AD⇒EJ đường trung bình tam giác 2 ADH⇒EJ//= AB;BF= BC mà BC//=AD⇒JE//=BF⇒BJEF hình bình hành⇒JB//EF.Mà BJ⊥AE⇒EF⊥AE hay AEF=1v;Ta lại có ABF=1v⇒ABFE nt Bài 96: Cho ∆ABC, phân giác góc góc góc B C gặp theo thứ tự I J.Từ J kẻ JH; JP; JK vuông góc với đường thẳng AB; BC; AC Chứng tỏ A; I; J thẳng hàng Chứng minh: BICJ nt BI kéo dài cắt đường thẳng CJ E Cmr:AE⊥AJ C/m: AI.AJ=AB.AC A E I B P C K H J 1/Chứng minh A;I;J thẳng hàng: Vì Bài 97: Từ đỉnh A hình vuông ABCD ta kẻ hai tia Ax Ay cho: Ax cắt cạnh BC P,Ay cắt cạnh CD Q.Kẻ BK⊥Ax;BI⊥Ay DM⊥Ax,DN⊥Ay Chứng tỏ BKIA nội tiếp Chứng minh AD2=AP.MD Chứng minh MN=KI Chứng tỏ KI⊥AN x B P C K y Q N M A I D Bài 98: Cho hình bình hành ABCD có góc A>90o.Phân giác góc A cắt cạnh CD đường thẳng BC I K.Hạ KH KM vuông góc với CD AM Chứng minh KHDM nt Chứng minh:AB=CK+AM Bài 99: Cho(O) tiếp tuyến Ax.Trên Ax lấy điểm C gọi B trung điểm AC Vẽ cát tuyến BEF.Đường thẳng CE CF gặp lại đường tròn điểm thứ hai M N.Dựng hình bình hành AECD Chứng tỏ D nằm đường thẳng EF Chứng minh AFCD nội tiếp Chứng minh:CN.CF=4BE.BF Chứng minh MN//AC A D M B E N C F 1/Chứng minh D nằm đường thẳng EF:Do ADCE hình bình hành nên E;B;D thẳng hàng.Mà F;E;B thẳng hàng⇒đpcm 2/Cm:AFCD nội tiếp: -Do ADCE hình bình hành⇒BC//AE⇒góc BCA=ACE(so le) 2 -sđCAE= sđcung AE(góc tt dây) sđ AFE= sđ cung AE ⇒CAE=AFE.⇒BCN=BFA⇒AFCD nội tiếp 2/Cm CN.CF=4BE.BF -Xét hai tam gáic BAE BFA có góc ABF chung AFB=BAE(chứng minh trên)⇒∆BAE~∆BFA⇒ AB BE = ⇒AB2=BE.BF BF AB Tương tự hai tam giác CAN CFA đồng dạng⇒AC2=CN.CF Nhưng ta lại có AB= AC.Do trở thành: AC2=BE.BF hay AC2=4BE.BF Từ ⇒đpcm 4/cm MN//AC Do ADCE hbh⇒BAC=ACE(so le).Vì ADCF nt ⇒DAC=DFC(cùng chắn cung DC).Ta lại có EMN=EFN(cùng chắn cung EN)⇒ACM=CMN⇒MN//AC Bài 100: Trên (O) lấy điểm A;B;C.Gọi M;N;P theo thứ tự điểm cung AB;BC;AC AM cắt MP BP K I.MN cắt AB E Chứng minh ∆BNI cân PKEN nội tiếp Chứng minh AN.BD=AB.BN Chứng minh I trực tâm ∆MPN IE//BC 1/C/m ∆BNI cân Ta có sđBIN= sđ(AP+BN) sđIBN= sđ(CP+CN) Mà Cung AP=CP; BN=CN(gt) ⇒BIN=IBN⇒∆BNI cân N 2/Chứng tỏ PKEN nội tiếp: A P M F E K O I B C N Vì cung AM=MB⇒ANM=MPB hay KPE=KNE⇒Hai điểm P;N làm với hai đầu đoạn thẳng KE…⇒đpcm 3/C/m AN.DB=AB.BN Xét hai tam giác BND ANB có góc N chung;Góc NBD=NAB(cùng chắn cung NC=NB)⇒đpcm 4/ •Chứng minh I trực tâm ∆MNP: Gọi giao điểm MP với AB;AC F D.Ta có: sđ AFD= sđ cung (AP+MB)(góc có đỉnh đường tròn.) sđ ADF= sđ cung(PC+AM) (góc có đỉnh đường tròn.) Mà Cung AP=PC;MB=AM⇒AFD=ADF⇒∆AFD cân A có AN phân giác góc BAC(Vì Cung BN=NC nên BAN=NAC)⇒AN⊥MP hay NA đường cao ∆NMP.Bằng cách làm tương tự ta chứng minh I trực tâm tam gáic MNP •C/m IE//BC.Ta có ∆BNI cân N có NE phân giác ⇒NE đường trung trực BI⇒EB=EI⇒∆BEI cân E.Ta có EBI=EIB.Do EBI=ABP=PBC (hai góc nội tiếp chắn hai cung PA=PC).Nên PBC=EIB⇒EI//BC Hết [...]... góc BMC cắt BC ở N,cắt (O) ở I 1 Chứng minh A;O;I thẳng hàng 2 Kẻ AK⊥ với đường thẳng MC AI cắt BC ở J.Chứng minh AKCJ nội tiếp 3 C/m:KM.JA=KA.JB 1/C/m A;O;I thẳng hàng: Vì BMI=IMC(gt) ⇒ cung IB=IC ⇒Góc BAI= IAC(hai góc nt chắn hai cung bằng nhau)⇒AI là phân gíc của ∆ cân ABC ⇒AI⊥BC.Mà ∆BOC cân ở O⇒ có các góc ở tâm chắn các cung bằng nhau ⇒OI là phân giác của góc BOC A K O • E J B M N C I Hình 84 ⇒đpcm