Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
586,61 KB
Nội dung
BÀI MỞ ĐẦU Giáo viên: TS Nguyễn Văn Hiệu Email: nvhieuqt@dut.udn.vn Nguyễn Văn Hiệu, 2012, Discrete Mathematics Nội dung Nguyên lý Cấu hình tổ hợp Nguyên lý • A , B - tập hợp • N(A) = |A| = • ‘3’ Lực lượng A • ‘3’ Số pt A • A hợp B = ? • A giao B = ? • A nhân B = ? Nguyên lý 1.1 Nguyên lý cộng Nếu A B hai tập hợp rời N(A B)= N(A)+N(B) Nếu { A1, A2, , Ak } phân hoạch X N(X)= N(A1)+N(A2)+ …+N(Ak) Nếu A tính chất cho X N(A)= N(X) - N( A) Nguyễn Văn Hiệu, 2012, Discrete Mathematics Nguyên lý 1.1 Nguyên lý cộng Ví dụ – – – – – {Cờ tướng, Cờ vua} {Nam, Nữ } Nam có 10 người Số thi cờ tướng(cả nam lẫn nữ) 14 Số Nữ thi cờ vua = Số Nam thi cờ tướng Nguyễn Văn Hiệu, 2012, Discrete Mathematics Một số nguyên lý 1.1 Nguyên lý cộng Ví dụ ĐS: 24 người Toàn đoàn Nam (10) Cơ tướng Nữ Cờ tướng Cờ vua Cờ vua 14 = Nguyễn Văn Hiệu, 2012, Discrete Mathematics Một số nguyên lý 1.1 Nguyên lý cộng Ví dụ Trong đợt phổ biến đề tài tốt nghiệp, Ban chủ nhiệm Khoa công bố danh sách đề tài bao gồm: + + + 80 đề tài chủ đề “xây dựng hệ thống thông tin quản lý” 10 đề tài chủ đề “ thiết kế phần mềm dạy học” 10 đề tài chủ đề “ Hệ chuyên gia” Hỏi sinh viên có khả lựa chọn đề tài ? Nguyễn Văn Hiệu, 2012, Discrete Mathematics Một số nguyên lý 1.1 Nguyên lý cộng Ví dụ 80 “MS” 10 “ES”, 10 “DS” Nguyễn Văn Hiệu, 2012, Discrete Mathematics Nguyên lý 1.1 Nguyên lý cộng Ví dụ ĐS: 100 Khả chọn MS (80) ES (10) Nguyễn Văn Hiệu, 2012, Discrete Mathematics DS(10) Một số nguyên lý 1.1 Nguyên lý cộng Ví dụ Tính giá trị s = ? s = 0; for( i = 0; i