1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp đề - đáp án Toán ĐH đầy đủ các khối và Toán THPTQG từ 2007 2016

128 376 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 128
Dung lượng 8,78 MB

Nội dung

Tổng hợp đề đáp án Toán ĐH đầy đủ các khối và Toán THPTQG từ 2007 2016

BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THƠNG QUỐC GIA NĂM 2016 ĐỀ THI CHÍNH THỨC (Đề thi có 01 trang) Mơn thi: Tốn Thời gian làm bài: 180 phút, khơng kể thời gian phát đề Câu I (1,0 điểm) Cho số phức z = + 2i Tìm phần thực phần ảo số phức w = z + z Cho log x = Tính giá trị biểu thức A = log x + log x3 + log x Câu II (1,0 điểm) Khảo sát biến thiên vẽ đồ thị hàm số y = − x + x Câu III (1,0 điểm) Tìm m để hàm số f ( x) = x − x + mx − có hai điểm cực trị Gọi x1 , x2 hai điểm cực trị đó, tìm m để x12 + x22 = ( ) Câu IV (1,0 điểm) Tính tích phân I = ∫ 3x x + x + 16 dx Câu V (1,0 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho ba điểm A(3; 2; −2), B(1;0;1) C (2; −1;3) Viết phương trình mặt phẳng qua A vng góc với đường thẳng BC Tìm tọa độ hình chiếu vng góc A đường thẳng BC Câu VI (1,0 điểm) Giải phương trình 2sin x + 7sin x − = Học sinh A thiết kế bảng điều khiển điện tử mở cửa phòng học lớp Bảng gồm 10 nút, nút ghi số từ đến khơng có hai nút ghi số Để mở cửa cần nhấn liên tiếp nút khác cho số nút theo thứ tự nhấn tạo thành dãy số tăng có tổng 10 Học sinh B khơng biết quy tắc mở cửa trên, nhấn ngẫu nhiên liên tiếp nút khác bảng điều khiển Tính xác suất để B mở cửa phòng học Câu VII (1,0 điểm) Cho lăng trụ ABC A ' B ' C ' có đáy ABC tam giác vng cân B, AC = a Hình chiếu vng góc A ' mặt phẳng ( ABC ) trung điểm cạnh AC , đường thẳng A ' B o tạo với mặt phẳng ( ABC ) góc 45 Tính theo a thể tích khối lăng trụ ABC A ' B ' C ' chứng minh A ' B vng góc với B ' C Câu VIII (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp đường tròn đường kính BD Gọi M , N hình chiếu vng góc A đường thẳng BC , BD P giao điểm hai đường thẳng MN , AC Biết đường thẳng AC có phương trình x − y − = 0, M (0; 4), N (2; 2) hồnh độ điểm A nhỏ Tìm tọa độ điểm P, A B Câu IX (1,0 điểm) Giải phương trình 3log ( ) + x + − x + log ( ⎛ ⎞ + x + − x log ( x ) + ⎜1 − log x ⎟ = ⎝ ⎠ ) Câu X (1,0 điểm) Xét số thực x, y thỏa mãn x + y + = 2 ( ) x − + y + (*) Tìm giá trị lớn x + y Tìm m để 3x + y − + ( x + y + 1) 27 − x − y − ( x + y ) ≤ m với x, y thỏa mãn (*) Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: Chữ ký cán coi thi 1: ; Chữ ký cán coi thi 2: BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THƠNG QUỐC GIA NĂM 2016 ĐỀ THI CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM Mơn thi: TỐN (Đáp án - Thang điểm có 04 trang) Câu I (0,5 điểm) (1,0 điểm) Ta có w  1  2i    2i Đáp án Điểm 0,25   2i Vậy phần thực w phần ảo w 2 (0,5 điểm) Ta có A  log2 x  log2 x  log2 x II (1,0 điểm)   - 0,25 0,25   log2 x   2 Tập xác định: D   Sự biến thiên: Chiều biến thiên: y   4x  4x ; x  x  1 1  x  y     ; y     ; y     x  1   x  x      0,25 0,25 Hàm số đồng biến khoảng  ; 1 0; Hàm số nghịch biến khoảng 1; 0 1;  - Cực trị: hàm số đạt cực đại x  1, y c®  1; đạt cực tiểu x  0, yCT  - Giới hạn: lim y  ; lim y   - Bảng biến thiên: x  0,25 x   0,25  Đồ thị: 0,25 Hàm số cho xác định với x   III (1,0 điểm) Ta có f (x )  3x  6x  m 0,25 Hàm số có hai điểm cực trị phương trình 3x  6x  m  có hai nghiệm phân biệt, tức    m  0,25 Ta có x 12  x 22   x  x   2x 1x    2 m 3 (thỏa mãn) Vậy m  2 IV (1,0 điểm) Ta có I  0,25 0,25 3x 2dx   3x x  16 dx  0,25  m 3 I1   3x dx  x 3  27 0,25   3x I2  x  16 dx Đặt t  x  16, ta có t   2x ; t(0)  16, t(3)  25 25 Do I  2 0,25 t dt 16 t t 25  61 0,25 16 V (1,0 điểm) Vậy I  I  I  88  Ta có BC  1; 1;2 0,25 Mặt phẳng (P ) qua A vng góc với BC có phương trình x  y  2z   0,25  x   t  Đường thẳng BC có phương trình  y  t   z   2t   Gọi H hình chiếu vng góc A BC Ta có H  (P )  BC   - Vì H  BC nên H  t ;  t ;1  2t - Vì H  (P ) nên 1  t   t   1  2t     t  1 0,25 0,25 Vậy H 0;1; 1 VI (0,5 điểm) (1,0 điểm) sin x    Ta có sin x  sin x     sin x    sin x   : vơ nghiệm   x    k 2  (k  )  sin x    x  5  k 2   (0,5 điểm)  720 Khơng gian mẫu  có số phần tử n()  A10 Gọi E biến cố: “B mở cửa phòng học” Ta có E  (0;1;9),(0;2; 8),(0; 3; 7),(0; 4; 6),(1;2; 7),(1; 3;6),(1; 4; 5),(2; 3; 5) Do n(E )  n(E ) Vậy P(E )   n() 90 0,25 0,25 0,25 0,25 H Gọi trung điểm  A H  ABC   A BH  45o VII (1,0 điểm) AC , ta có AC  a S ABC  a Tam giác A HB vng cân H , suy A H  BH  a Do VABC AB C   A H S ABC  a 0,25 Ta có BH  Gọi I giao điểm A B AB , ta có I trung điểm A B AB  Suy HI  A B Mặt khác HI đường trung bình AB C nên HI // B C Do A B  B C Phương trình MN: x  y   Tọa độ P nghiệm hệ  x  y    P  ;     x  y    2   Vì AM song song với DC điểm A, B, M , N thuộc đường tròn nên ta có   PCD   ABD   AMP  PAM VIII (1,0 điểm) 0,25 0,25 0,25 0,25 0,25 Suy PA  PM Vì A  AC : x  y   nên A a; a  1, a  2 2 a              Ta có a    a            A(0; 1)         a  Đường thẳng BD qua N vng góc với AN nên có phương trình 2x  3y  10  Đường thẳng BC qua M vng góc với AM nên có phương trình y   2x  3y  10   Tọa độ B nghiệm hệ   B 1;    y4    Điều kiện:  x  IX (1,0 điểm) Khi phương trình cho tương đương với   x   x   log   x   x .log 3x   log 3x       log   x   x   log 3x   log   x   x   log 3x       log   x   x   log 3x     x   x  3x log23 3 3 3 0,25 0,25 3    x  9x   x  9x   x     81 x  68x    x2  0,25 0,25 68 81 Kết hợp với điều kiện  x  2, ta có nghiệm x   log    x   x  log 3x    Vì  x  nên 3x  17  x  2x   3x (1) 0,25 Mặt khác  x  2x     x2    x  2x   Do phương trình (1) vơ nghiệm 0,25 Vậy phương trình cho có nghiệm x  17 X (0,25 điểm) (1,0 điểm) Điều kiện: x  2, y  3   Ta có (*)  x  y  1  x  y   x  y  (**) Vì x  y   x  y  nên từ (**) suy x  y  1  x  y  1 0,25  x  y    x  y  Ta có x  6, y  thỏa mãn (*) x  y  Do giá trị lớn biểu thức x  y (0,75 điểm) Vì x  y   nên từ (**) suy x  y  1  x  y  1 x  y   x  y   (vì x  y   0) x  y  1       x  y   x  y   x  y  Vì x  2x (do x  ), y   2y nên x  y   x  y  Do   3x y 4  x  y  1 27x y  x  y  3x y 4  x  y  1 27x y  x  y   0,25 0,25 Đặt t  x  y, ta có t  1  t  Xét hàm số f (t )  3t 4  t  1 27t  6t  Ta có f (1)  f (t )  3t 4 ln  27t  t  1 27t ln  6; 2188 ; 243 f (t )  3t 4 ln2  t  1 ln  2 27t ln  0,  t  [3;7]   Suy f (t ) đồng biến (3;7) Mà f (t ) liên tục [3;7] f (3)f (7)  0, f (t )  có nghiệm t0  (3; 7) Bảng biến thiên 0,25   Suy 3x y 4  x  y  1 27x y  x  y  Đẳng thức xảy x  2, y  Vậy m  148 với x, y thỏa mãn (*) 148 - Hết - BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2015 ĐỀ THI CHÍNH THỨC Môn thi: TOÁN (Đề thi gồm 01 trang) Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−− Câu (1,0 điểm) Khảo sát biến thiên vẽ đồ thò hàm số y = x3 − 3x Câu (1,0 điểm) Tìm giá trò lớn giá trò nhỏ hàm số f(x) = x + đoạn [1; 3] x Câu (1,0 điểm) a) Cho số phức z thỏa mãn (1 − i) z − + 5i = Tìm phần thực phần ảo z b) Giải phương trình log2 (x2 + x + 2) = Câu (1,0 điểm) Tính tích phân I = (x − 3)ex dx Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; −2; 1), B(2; 1; 3) mặt phẳng (P ) : x − y + 2z − = Viết phương trình đường thẳng AB tìm tọa độ giao điểm đường thẳng AB với mặt phẳng (P ) Câu (1,0 điểm) a) Tính giá trò biểu thức P = (1 − cos 2α)(2 + cos 2α), biết sin α = b) Trong đợt ứng phó dòch MERS-CoV, Sở Y tế thành phố chọn ngẫu nhiên đội phòng chống dòch động số đội Trung tâm y tế dự phòng thành phố 20 đội Trung tâm y tế sở để kiểm tra công tác chuẩn bò Tính xác suất để có đội Trung tâm y tế sở chọn Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc đường thẳng SC mặt phẳng (ABCD) 45◦ Tính theo a thể tích khối chóp S.ABCD khoảng cách hai đường thẳng SB, AC Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A Gọi H hình chiếu vuông góc A cạnh BC; D điểm đối xứng B qua H; K hình chiếu vuông góc C đường thẳng AD Giả sử H(−5; −5), K(9; −3) trung điểm cạnh AC thuộc đường thẳng x − y + 10 = Tìm tọa độ điểm A Câu (1,0 điểm) Giải phương trình √ x2 + 2x − = (x + 1) x + − tập số thực x − 2x + Câu 10 (1,0 điểm) Cho số thực a, b, c thuộc đoạn [1; 3] thỏa mãn điều kiện a + b + c = Tìm giá trò lớn biểu thức P = a2b2 + b2 c2 + c2a2 + 12abc + 72 − abc ab + bc + ca −−−−−−−−Hết−−−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2015 ĐÁP ÁN - THANG ĐIỂM ĐỀ THI CHÍNH THỨC Môn thi: TOÁN (Đáp án - Thang điểm gồm 03 trang) −−−−−−−−−−−−−−−−−−−−−−−−−−−− Đáp án Câu (Trang 01) Điểm • Tập xác đònh: D = R • Sự biến thiên: - Chiều biến thiên: y = 3x2 − 3; y = ⇔ x = ±1 0,25 Các khoảng đồng biến: (−∞; −1) (1; +∞); khoảng nghòch biến: (−1; 1) - Cực trò: Hàm số đạt cực đại x = −1, y CĐ = 2; đạt cực tiểu x = 1, y CT = −2 - Giới hạn vô cực: lim y = −∞; lim y = +∞ x→−∞ • Bảng biến thiên: x −∞ y y (1,0đ) 0,25 x→+∞ −∞ + −1 ✯ ❍ ✟ ✟ ✟✟ ✟ • Đồ thò: ❍ − +∞ + ✯ +∞ ✟✟ ✟ ✟ ✟ ❍ ❍❍ ❥ −2 0,25 y −1 O x 0,25 −2 Ta có f (x) xác đònh liên tục đoạn [1; 3]; f (x) = − x2 Với x ∈ [1; 3], f (x) = ⇔ x = 2 (1,0đ) 13 Ta có f (1) = 5, f (2) = 4, f (3) = 0,25 0,25 0,25 Giá trò lớn giá trò nhỏ f (x) đoạn [1; 3] 0,25 a) Ta có (1 − i)z − + 5i = ⇔ z = − 2i 0,25 Do số phức z có phần thực 3, phần ảo −2 0,25 b) Phương trình cho tương đương với x + x + = (1,0đ) x=2 x = −3 Vậy nghiệm phương trình x = 2; x = −3 ⇔ 0,25 0,25 Đáp án Câu (1,0đ) (Trang 02) Điểm Đặt u = x − 3; dv = ex dx Suy du = dx; v = ex 0,25 Khi I = (x − 3)ex 0,25 = (x − 3)ex 1 − ex dx 0 − ex 0,25 0,25 = − 3e − −→ Ta có AB = (1; 3; 2) 0,25 x−1 y+2 z−1 Đường thẳng AB có phương trình = = (1,0đ) Gọi M giao điểm AB (P ) Do M thuộc AB nên M (1 + t; −2 + 3t; + 2t) M thuộc (P ) nên + t − (−2 + 3t) + 2(1 + 2t) − = 0, suy t = −1 Do M (0; −5; −1) 1 14 Suy P = − 2+ = 3 (1,0đ) b) Số phần tử không gian mẫu C 325 = 2300 a) Ta có cos 2α = − sin2 α = Số kết thuận lợi cho biến cố “có đội Trung tâm y tế sở” 2090 209 C220 C15 + C320 = 2090 Xác suất cần tính p = = 2300 230 S ✟✠ (1,0đ) H ☞✌  ✁ A ✝✞ D Tam giác SAM vuông A, có đường cao AH, nên 1 = + = 2 2 AH SA AM 2a √ 10 a Vậy d(AC, SB) = AH = AC Gọi M trung điểm AC Ta có M H = M K = , nên M thuộc đường trung trực HK Đường trung trực HK có phương trình 7x + y − 10 = 0, nên tọa x − y + 10 = độ M thỏa mãn hệ 7x + y − 10 = Suy M (0; 10) ✡☛ d M ✂✄ ☎✆ C B A ✍ (1,0đ) M ✖✗ D ✎ B ✑✒ ✓✔ ✏ C H ✕ K Ta có SCA = (SC, √ (ABCD)) = 45◦ , suy SA = AC = a √ 1√ 2a VS.ABCD = SA.SABCD = a.a = 3 Kẻ đường thẳng d qua B song song AC Gọi M hình chiếu vuông góc A d; H hình chiếu vuông góc A SM Ta có SA⊥BM, M A⊥BM nên AH⊥BM Suy AH⊥(SBM ) Do d(AC, SB) = d(A, (SBM )) = AH Ta có HKA = HCA = HAB = HAD, nên ∆AHK cân H, suy HA = HK Mà M A = M K, nên A đối xứng với K qua M H −−→ Ta có M H = (5; 15); đường thẳng M H có phương trình 3x − y + 10 = Trung điểm AK thuộc M H AK⊥M H nên tọa độ điểm A thỏa mãn hệ x+9 y−3 − + 10 = 2 (x − 9) + 3(y + 3) = Suy A(−15; 5) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Đáp án Câu (Trang 03) Điểm Điều kiện: x −2 Phương trình cho tương đương với x=2 (x + 1)(x − 2) (x − 2)(x + 4) x+4 x+1 √ = ⇔ =√ (1) x2 − 2x + x+2+2 x2 − 2x + x+2+2 √ Ta có (1) ⇔ (x + 4)( x + + 2) = (x + 1)(x2 − 2x + 3) √ √ ⇔ ( x + + 2)[( x + 2)2 + 2] = [(x − 1) + 2][(x − 1)2 + 2] (2) 0,25 0,25 Xét hàm số f (t) = (t + 2)(t + 2) (1,0đ) Ta có f (t) = 3t2 + 4t + 2, suy f (t) > 0, ∀t ∈ R, nên f (t) đồng biến R √ √ Do (2) ⇔ f ( x + 2) = f (x − 1) ⇔ x + = x − ⇔ ⇔x= √ 3+ 13 x x2 − 3x − = Đối chiếu điều kiện, ta nghiệm phương trình cho x = 2; x = 3+ 0,25 √ 13 0,25 Đặt t = ab + bc + ca (a − b)2 + (b − c)2 + (c − a)2 + 3t 3t Suy t 12 Mặt khác, (a − 1)(b − 1)(c − 1) 0, nên abc ab + bc + ca − = t − 5; (3 − a)(3 − b)(3 − c) 0, nên 3t = 3(ab + bc + ca) abc + 27 t + 22 Suy t 11 Vậy t ∈ [11; 12] Ta có 36 = (a + b + c)2 = Khi P = 10 (1,0đ) a2 b2 + b2 c2 + c2 a2 + 2abc(a + b + c) + 72 abc − ab + bc + ca (ab + bc + ca)2 + 72 abc = − ab + bc + ca Xét hàm số f (t) = Do f (t) Suy f (t) t2 + 72 t − t2 + 5t + 144 − = t 2t 0,25 0,25 t2 + 5t + 144 t2 − 144 , với t ∈ [11; 12] Ta có f (t) = 2t 2t2 0,25 0, ∀t ∈ [11; 12], nên f (t) nghòch biến đoạn [11, 12] 160 160 f (11) = Do P 11 11 Ta có a = 1, b = 2, c = thỏa mãn điều kiện toán P = 160 Vậy giá trò lớn P 11 −−−−−−− −Hết−−−−−−−− 160 11 0,25 BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC Câu (2,0 điểm) Cho hàm số y = ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối A Khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− x+2 x−1 (1) a) Khảo sát biến thiên vẽ đồ thò (C) hàm số (1) b) Tìm tọa độ điểm M thuộc (C) cho khoảng cách từ M đến đường thẳng y = −x Câu (1,0 điểm) Giải phương trình √ sin x + cos x = + sin 2x Câu (1,0 điểm) Tính diện tích hình phẳng giới hạn đường cong y = x2 − x + đường thẳng y = 2x + Câu (1,0 điểm) a) Cho số phức z thỏa mãn điều kiện z + (2 + i) z = + 5i Tìm phần thực phần ảo z b) Từ hộp chứa 16 thẻ đánh số từ đến 16, chọn ngẫu nhiên thẻ Tính xác suất để thẻ chọn đánh số chẵn Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x+y −2z −1 = y z+3 x−2 = = Tìm tọa độ giao điểm d (P ) Viết phương đường thẳng d : −2 trình mặt phẳng chứa d vuông góc với (P ) 3a , hình chiếu vuông góc S mặt phẳng (ABCD) trung điểm cạnh AB Tính theo a thể tích khối chóp S.ABCD khoảng cách từ A đến mặt phẳng (SBD) Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a, SD = Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có điểm M trung điểm đoạn AB N điểm thuộc đoạn AC cho AN = 3NC Viết phương trình đường thẳng CD, biết M(1; 2) N(2; −1) Câu (1,0 điểm) Giải hệ phương trình √ x 12 − y + y(12 − x2 ) = 12 (x, y ∈ R) √ x3 − 8x − = y − Câu (1,0 điểm) Cho x, y, z số thực không âm thỏa mãn điều kiện x2 + y + z = Tìm giá trò lớn biểu thức P = x2 y+z + yz + − x2 + yz + x + x + y + z + −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x − (3m + 2) x + 3m có đồ thị (Cm ), m tham số Khảo sát biến thiên vẽ đồ thị hàm số cho m = Tìm m để đường thẳng y = −1 cắt đồ thị (Cm ) điểm phân biệt có hồnh độ nhỏ Câu II (2,0 điểm) Giải phương trình cos5 x − 2sin 3x cos x − sin x = ⎧ x( x + y + 1) − = ⎪ ( x, y ∈ \) Giải hệ phương trình ⎨ ⎪⎩( x + y ) − x + = Câu III (1,0 điểm) dx e −1 Tính tích phân I = ∫ x Câu IV (1,0 điểm) Cho hình lăng trụ đứng ABC A ' B ' C ' có đáy ABC tam giác vng B, AB = a, AA ' = 2a, A ' C = 3a Gọi M trung điểm đoạn thẳng A ' C ', I giao điểm AM A ' C Tính theo a thể tích khối tứ diện IABC khoảng cách từ điểm A đến mặt phẳng ( IBC ) Câu V (1,0 điểm) Cho số thực khơng âm x, y thay đổi thoả mãn x + y = Tìm giá trị lớn giá trị nhỏ biểu thức S = (4 x + y )(4 y + 3x) + 25 xy PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có M (2;0) trung điểm cạnh AB Đường trung tuyến đường cao qua đỉnh A có phương trình x − y − = x − y − = Viết phương trình đường thẳng AC Trong khơng gian với hệ toạ độ Oxyz , cho điểm A(2;1;0), B (1;2;2), C (1;1;0) mặt phẳng ( P) : x + y + z − 20 = Xác định toạ độ điểm D thuộc đường thẳng AB cho đường thẳng CD song song với mặt phẳng ( P ) Câu VII.a (1,0 điểm) Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn số phức z thoả mãn điều kiện | z − (3 − 4i ) |= B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C ) : ( x − 1)2 + y = Gọi I tâm (C ) Xác định n = 30D toạ độ điểm M thuộc (C ) cho IMO x+2 y−2 z = = mặt phẳng 1 −1 ( P ) : x + y − z + = Viết phương trình đường thẳng d nằm ( P) cho d cắt vng góc với đường thẳng Δ Câu VII.b (1,0 điểm) x2 + x − Tìm giá trị tham số m để đường thẳng y = −2 x + m cắt đồ thị hàm số y = hai điểm phân x biệt A, B cho trung điểm đoạn thẳng AB thuộc trục tung Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: Trong khơng gian với hệ toạ độ Oxyz , cho đường thẳng Δ : BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối: D (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm (1,0 điểm) Khảo sát… Khi m = 0, y = x − x • Tập xác định: D = \ • Sự biến thiên: 0,25 - Chiều biến thiên: y ' = x3 − x; y ' = ⇔ x = ±1 x = Hàm số nghịch biến trên: (−∞ ; − 1) (0;1); đồng biến trên: (−1;0) (1; + ∞) - Cực trị: Hàm số đạt cực tiểu x = ±1, yCT = −1; đạt cực đại x = 0, yCĐ = - Giới hạn: lim y = lim y = +∞ x →−∞ 0,25 x →+∞ - Bảng biến thiên: x −∞ −1 y' − + − + +∞ y −1 −1 • Đồ thị: +∞ +∞ 0,25 y 0,25 −2 −1 O −1 x (1,0 điểm) Tìm m Phương trình hồnh độ giao điểm (Cm ) đường thẳng y = −1: x − (3m + 2) x + 3m = −1 Đặt t = x , t ≥ 0; phương trình trở thành: t − (3m + 2)t + 3m + = ⇔ t = t = 3m + 0,25 ⎧0 < 3m + < u cầu tốn tương đương: ⎨ ⎩3m + ≠ 1 ⇔ − < m < 1, m ≠ II (2,0 điểm) 0,25 0,25 0,25 (1,0 điểm) Giải phương trình… Phương trình cho tương đương: cos5 x − (sin x + sin x) − sin x = 0,25 cos5 x − sin x = sin x 2 ⎛π ⎞ ⇔ sin ⎜ − x ⎟ = sin x ⎝3 ⎠ ⇔ 0,25 Trang 1/4 Câu Đáp án ⇔ π − x = x + k 2π Vậy: x = π 18 +k π π − x = π − x + k 2π x = − π +k π ( k ∈ ] ) Điểm 0,25 0,25 (1,0 điểm) Giải hệ phương trình… ⎧ ⎪⎪ x + y + − x = Hệ cho tương đương: ⎨ ⎪( x + y ) − + = ⎪⎩ x2 ⎧ ⎧ ⎪x + y = x −1 ⎪⎪ x + y = x − ⎪ ⇔ ⎨ ⇔ ⎨ ⎪⎛ − ⎞ − + = ⎪ −6 +2=0 ⎜ ⎟ ⎪⎩⎝ x ⎠ ⎪⎩ x x x ⎧1 ⎧1 ⎪⎪ x = ⎪ =1 ⇔ ⎨x ⎨ ⎪⎩ x + y = ⎪x + y = ⎪⎩ x = ⎧ ⎧x = ⎪ ⇔ ⎨ ⎨ y = ⎩ ⎪⎩ y = − 3⎞ ⎛ Nghiệm hệ: ( x; y ) = (1;1) ( x; y ) = ⎜ 2; − ⎟ 2⎠ ⎝ III 0,25 0,25 0,25 Tính tích phân… (1,0 điểm) Đặt t = e x , dx = e3 dt I=∫ = t (t − 1) e dt ; x = 1, t = e; x = 3, t = e3 t e3 ⎛ 1⎞ ∫ ⎜⎝ t − − t ⎟⎠ dt 0,25 0,25 e e3 IV 0,25 e3 = ln| t − 1| e − ln| t | e 0,25 = ln(e + e + 1) − 0,25 Tính thể tích khối chóp (1,0 điểm) M A' I C' B' 2a 3a K A C H a B Hạ IH ⊥ AC ( H ∈ AC ) ⇒ IH ⊥ ( ABC ) ; IH đường cao tứ diện IABC IH CI 2 4a = = ⇒ IH = AA ' = ⇒ IH // AA ' ⇒ AA ' CA ' 3 AC = A ' C − A ' A2 = a 5, BC = AC − AB = 2a Diện tích tam giác ABC : SΔABC = AB.BC = a 4a Thể tích khối tứ diện IABC : V = IH S ΔABC = Trang 2/4 0,50 Câu Đáp án Hạ AK ⊥ A ' B ( K ∈ A ' B) Vì BC ⊥ ( ABB ' A ') nên AK ⊥ BC ⇒ AK ⊥ ( IBC ) Khoảng cách từ A đến mặt phẳng ( IBC ) AK AK = V (1,0 điểm) SΔAA ' B = A' B AA ' AB A ' A2 + AB = 2a Điểm 0,25 0,25 Tìm giá trị lớn nhất, nhỏ nhất… Do x + y = 1, nên: S = 16 x y + 12( x3 + y ) + xy + 25 xy = 16 x y + 12 ⎡⎣( x + y )3 − xy ( x + y ) ⎤⎦ + 34 xy = 16 x y − xy + 12 Đặt t = xy, ta được: S = 16t − 2t + 12; ≤ xy ≤ ( x + y )2 ⎡ 1⎤ = ⇒ t ∈ ⎢0; ⎥ 4 ⎣ 4⎦ ⎡ 1⎤ Xét hàm f (t ) = 16t − 2t + 12 đoạn ⎢0; ⎥ ⎣ 4⎦ 191 25 ⎛1⎞ ⎛1⎞ , f⎜ ⎟ = f '(t ) = 32t − 2; f '(t ) = ⇔ t = ; f (0) = 12, f ⎜ ⎟ = 16 16 ⎝ 16 ⎠ ⎝ 4⎠ ⎛ ⎞ 25 ⎛ ⎞ 191 max f (t ) = f ⎜ ⎟ = ; f (t ) = f ⎜ ⎟ = ⎡ 1⎤ ⎝ ⎠ ⎡0; ⎤ ⎝ 16 ⎠ 16 0; ⎢⎣ ⎥⎦ 0,25 0,25 ⎢⎣ ⎥⎦ Giá trị lớn S ⎧x + y = 25 ⎪ ⎛1 1⎞ ; ⎨ ⇔ ( x; y ) = ⎜ ; ⎟ ⎝2 2⎠ ⎪⎩ xy = ⎧x + y = 191 ⎪ ; ⎨ Giá trị nhỏ S 16 ⎪⎩ xy = 16 0,25 0,25 ⎛2+ 2− 3⎞ ⎛2− 2+ 3⎞ ⇔ ( x; y ) = ⎜⎜ ; ; ⎟⎟ ( x; y ) = ⎜⎜ ⎟ ⎠ ⎟⎠ ⎝ ⎝ VI.a (2,0 điểm) (1,0 điểm) Viết phương trình đường thẳng… ⎧7 x − y − = ⇒ A(1;2) Toạ độ A thoả mãn hệ: ⎨ ⎩6 x − y − = B đối xứng với A qua M , suy B = (3; −2) 0,25 Đường thẳng BC qua B vng góc với đường thẳng x − y − = Phương trình BC : x + y + = 0,25 ⎧7 x − y − = 3⎞ ⎛ ⇒ N ⎜ 0; − ⎟ Toạ độ trung điểm N đoạn thẳng BC thoả mãn hệ: ⎨ 2⎠ ⎝ ⎩x + y + = JJJG JJJJG ⇒ AC = 2.MN = ( −4; −3) ; phương trình đường thẳng AC : 3x − y + = 0,25 0,25 (1,0 điểm) Xác định toạ độ điểm D ⎧x = − t JJJG ⎪ AB = (−1;1;2), phương trình AB : ⎨ y = + t ⎪ z = 2t ⎩ 0,25 JJJG D thuộc đường thẳng AB ⇒ D(2 − t ;1 + t ;2t ) ⇒ CD = (1 − t ; t ;2t ) 0,25 Trang 3/4 Câu Đáp án Điểm G Véc tơ pháp tuyến mặt phẳng ( P ) : n = (1;1;1) C khơng thuộc mặt phẳng ( P ) G JJJG ⎛5 ⎞ CD //( P) ⇔ n.CD = ⇔ 1.(1 − t ) + 1.t + 1.2t = ⇔ t = − Vậy D ⎜ ; ; −1⎟ 2 ⎝ ⎠ VII.a (1,0 điểm) Tìm tập hợp điểm… Đặt z = x + yi ( x, y ∈ \ ); z − + 4i = ( x − 3) + ( y + ) i Từ giả thiết, ta có: ( x − 3) + ( y + ) 0,25 2 = ⇔ ( x − ) + ( y + ) = Tập hợp điểm biểu diễn số phức z đường tròn tâm I ( 3; − ) bán kính R = VI.b (2,0 điểm) 0,50 0,50 0,25 (1,0 điểm) Xác định toạ độ điểm M Gọi điểm M ( a; b ) Do M ( a; b ) thuộc (C ) nên ( a − 1) + b = 1; O ∈ (C ) ⇒ IO = IM = 0,25 n = 120D nên OM = IO + IM − IO.IM cos120D ⇔ a + b = Tam giác IMO có OIM 0,25 ⎧ a= ⎧⎪( a − 1)2 + b = ⎛3 3⎞ ⎪⎪ Toạ độ điểm M nghiệm hệ ⎨ Vậy M = ⎜⎜ ; ± ⇔⎨ ⎟ ⎟⎠ ⎝2 ⎪⎩a + b = ⎪b = ± ⎪⎩ 0,50 (1,0 điểm) Viết phương trình đường thẳng… ⎧x+ y −2 z = = ⎪ Toạ độ giao điểm I Δ với ( P) thoả mãn hệ: ⎨ 1 −1 ⇒ I (−3;1;1) ⎪⎩ x + y − 3z + = G G Vectơ pháp tuyến ( P ) : n = (1;2; −3); vectơ phương Δ : u = (1;1; −1) VII.b 0,25 0,25 G G G Đường thẳng d cần tìm qua I có vectơ phương v = ⎡⎣ n, u ⎤⎦ = (1; −2; −1) 0,25 ⎧ x = −3 + t ⎪ Phương trình d : ⎨ y = − 2t ⎪ z = − t ⎩ 0,25 Tìm giá trị tham số m (1,0 điểm) Phương trình hồnh độ giao điểm: x2 + x − = −2 x + m ⇔ 3x + (1 − m) x − = ( x ≠ 0) x Phương trình có hai nghiệm phân biệt x1 , x2 khác với m Hồnh độ trung điểm I AB : xI = I ∈ Oy ⇔ xI = ⇔ x1 + x2 m − = m −1 = ⇔ m = -Hết - Trang 4/4 0,25 0,25 0,25 0,25 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn thi: TỐN, khối D Thời gian làm 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = x − 3x + (1) Khảo sát biến thiên vẽ đồ thị hàm số (1) Chứng minh đường thẳng qua điểm I(1; 2) với hệ số góc k ( k > − ) cắt đồ thị hàm số (1) ba điểm phân biệt I, A, B đồng thời I trung điểm đoạn thẳng AB Câu II (2 điểm) Giải phương trình 2sinx (1 + cos2x) + sin2x = + 2cosx ⎧⎪ xy + x + y = x − 2y 2 Giải hệ phương trình ⎨ (x, y ∈ \) x 2y y x 2x 2y − − = − ⎪⎩ Câu III (2 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0), B(3;0;3), C(0;3;3), D(3;3;3) Viết phương trình mặt cầu qua bốn điểm A, B, C, D Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC Câu IV (2 điểm) lnx dx x Cho x, y hai số thực khơng âm thay đổi Tìm giá trị lớn giá trị nhỏ biểu (x − y)(1 − xy) thức P = (1 + x) (1 + y) Tính tích phân I = ∫ PHẦN RIÊNG Thí sinh làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm) −1 k Tìm số ngun dương n thỏa mãn hệ thức C12n + C32n + + C2n 2n = 2048 ( C n số tổ hợp chập k n phần tử) Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : y = 16x điểm A(1; 4) Hai điểm n = 90o Chứng minh phân biệt B, C (B C khác A) di động (P) cho góc BAC đường thẳng BC ln qua điểm cố định Câu V.b Theo chương trình phân ban (2 điểm) x − 3x + Giải bất phương trình log ≥ x 2 Cho lăng trụ đứng ABC.A'B'C' có đáy ABC tam giác vng, AB = BC = a, cạnh bên AA' = a Gọi M trung điểm cạnh BC Tính theo a thể tích khối lăng trụ ABC.A'B'C' khoảng cách hai đường thẳng AM, B'C .Hết Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn: TỐN, khối D (Đáp án - Thang điểm gồm 04 trang) ĐỀ CHÍNH THỨC Câu I Nội dung Điểm 2,00 Khảo sát biến thiên vẽ đồ thị hàm số (1,00 điểm) • Tập xác định : D = \ ⎡x = • Sự biến thiên : y ' = 3x − 6x , y ' = ⇔ ⎢ ⎣ x = • yCĐ = y ( ) = 4, y CT = y ( ) = • Bảng biến thiên : x −∞ y’ 0,25 0,25 0 + y − −∞ +∞ + +∞ 0,25 • Đồ thị : y 0,25 −1 O x Chứng minh đường thẳng … (1,00 điểm) Gọi (C) đồ thị hàm số (1) Ta thấy I(1;2) thuộc (C) Đường thẳng d qua I(1;2) với hệ số góc k (k > – 3) có phương trình : y = kx – k + Hồnh độ giao điểm (C) d nghiệm phương trình x − 3x + = k(x − 1) + ⇔ (x − 1) ⎡⎣ x − 2x − (k + 2) ⎤⎦ = ⎡ x = (ứng với giao điểm I) ⇔⎢ ⎣ x − 2x − (k + 2) = (*) Do k > − nên phương trình (*) có biệt thức Δ ' = + k > x = khơng nghiệm (*) Suy d ln cắt (C) ba điểm phân biệt I( x I ; y I ), A(x A ; y A ), B(x B ; y B ) với x A , x B nghiệm (*) 0,50 0,50 Vì x A + x B = = 2x I I, A, B thuộc d nên I trung điểm đoạn thẳng AB (đpcm) II 2,00 Giải phương trình lượng giác (1,00 điểm) Phương trình cho tương đương với 4sinx cos x + s in2x = + 2cosx ⇔ (2cosx + 1)(sin2x − 1) = 2π ⇔x=± + k2π π • sin2x = ⇔ x = + kπ 0,50 • cosx = − Nghiệm phương trình cho x = ± Trang 1/4 0,50 2π π + k2π, x = + kπ (k ∈ ]) Giải hệ phương trình (1,00 điểm) Điều kiện : x ≥ 1, y ≥ (1) ⎧⎪(x + y)(x − 2y − 1) = Hệ phương trình cho tương đương với ⎨ ⎪⎩ x 2y − y x − = 2x − 2y (2) Từ điều kiện ta có x + y > nên (1) ⇔ x = 2y + (3) Thay (3) vào (2) ta (y + 1) 2y = 2(y + 1) ⇔ y = (do y + > ) ⇒ x = Nghiệm hệ (x ; y) = (5; 2) 0,50 0,50 2,00 III Viết phương trình mặt cầu qua điểm A, B, C, D (1,00 điểm) Phương trình mặt cầu cần tìm có dạng x + y + z + 2ax + 2by + 2cz + d = (*), a + b + c − d > (**) Thay tọa độ điểm A, B, C, D vào (*) ta hệ phương trình ⎧6a + 6b + d = −18 ⎪6a + 6c + d = −18 ⎪ ⎨ ⎪6b + 6c + d = −18 ⎪⎩6a + 6b + 6c + d = −27 Giải hệ đối chiếu với điều kiện (**) ta phương trình mặt cầu x + y + z − 3x − 3y − 3z = Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm) ⎛3 3⎞ Mặt cầu qua A, B, C, D có tâm I ⎜ ; ; ⎟ ⎝2 2⎠ Gọi phương trình mặt phẳng qua ba điểm A, B, C mx + ny + pz + q = (m + n + p > 0) Thay tọa độ điểm A, B, C vào phương trình ta ⎧3m + 3n + q = ⎪ ⎨3m + 3p + q = ⇒ 6m = 6n = 6p = −q ≠ ⎪3n + 3p + q = ⎩ 0,50 0,50 0,50 Do phương trình mặt phẳng (ABC) x + y + z − = Tâm đường tròn ngoại tiếp tam giác ABC hình chiếu vng góc H điểm I mặt phẳng (ABC) 3 x− y− z− 2= 2= Phương trình đường thẳng IH : 1 ⎧x + y + z − = ⎪ Tọa độ điểm H nghiệm hệ phương trình ⎨ 3 ⎪⎩ x − = y − = z − Giải hệ ta H(2; 2; 2) 0,50 2,00 IV Tính tích phân (1,00 điểm) dx dx Đặt u = ln x dv = ⇒ du = v = − x x 2x 2 0,25 ln x dx ln Khi I = − + ∫ = − − 2x 1 2x 4x = − ln 16 Trang 2/4 0,50 0,25 Tìm giá trị lớn nhỏ biểu thức (1,00 điểm) Ta có P = (x − y)(1 − xy) (x + y)(1 + xy) 1 ≤ ≤ ⇔− ≤P≤ 2 (1 + x) (1 + y) 4 [ (x + y) + (1 + xy)] • Khi x = 0, y = P = − • Khi x = 1, y = P = 0,50 0,50 1 Giá trị nhỏ P − , giá trị lớn P 4 V.a 2,00 Tìm n biết rằng…(1,00) −1 2n Ta có = (1 − 1) 2n = C02n − C12n + − C 2n 2n + C 2n 0,50 −1 2n 2n = (1 + 1) 2n = C 02n + C12n + + C 2n + C 2n 2n 2n −1 ⇒ C12n + C32n + + C 2n = 22n −1 0,50 Từ giả thiết suy 2n −1 = 2048 ⇔ n = Tìm tọa độ đỉnh C (1,00 điểm) Do B,C thuộc (P), B khác C, B C khác A nên B( b2 c2 ; b), C( ;c) với b, c 16 16 hai số thực phân biệt, b ≠ c ≠ JJJG ⎛ b ⎞ JJJG ⎛ c ⎞ n = 90o nên AB = ⎜ − 1; b − ⎟ , AC = ⎜ − 1; c − ⎟ Góc BAC 16 16 ⎝ ⎠ ⎝ ⎠ JJJG JJJG ⎛ b2 ⎞ ⎛ c2 ⎞ AB.AC = ⇔ ⎜ − 1⎟ ⎜ − 1⎟ + (b − 4)(c − 4) = ⎝ 16 ⎠ ⎝ 16 ⎠ ⇔ 272 + 4(b + c) + bc = (1) 0,50 Phương trình đường thẳng BC là: c2 16 = y − c ⇔ 16x − (b + c)y + bc = (2) b c2 b − c − 16 16 Từ (1), (2) suy đường thẳng BC ln qua điểm cố định I(17; −4) x− V.b 0,50 2,00 Giải bất phương trình logarit (1,00 điểm) Bpt cho tương đương với < x − 3x + ≤ x • ⎡0 < x < x − 3x + > 0⇔⎢ x ⎣ x > • ⎡x < x − 4x + ≤ 0⇔⎢ x ⎣ − ≤ x ≤ + 0,50 ) ( Tập nghiệm bất phương trình : ⎡⎣ − ;1 ∪ 2; + ⎤⎦ Trang 3/4 0,50 Tính thể tích khối lăng trụ khoảng cách hai đường thẳng (1,00 điểm) Từ giả thiết suy tam giác ABC vng cân B a (đvtt) Thể tích khối lăng trụ VABC.A 'B'C' = AA '.SABC = a .a = 2 A' B' 0,50 C' E A B M C Gọi E trung điểm BB ' Khi mặt phẳng (AME) song song với B 'C nên khoảng cách hai đường thẳng AM, B 'C khoảng cách B 'C mặt phẳng (AME) Nhận thấy khoảng cách từ B đến mặt phẳng (AME) khoảng cách từ C đến mặt phẳng (AME) Gọi h khoảng cách từ B đến mặt phẳng (AME) Do tứ diện BAME có BA, BM, BE đơi vng góc nên a 1 1 1 = + + ⇒ = + + = ⇒h= 2 2 h BA BM BE h a a a a Khoảng cách hai đường thẳng B 'C AM 0,50 a NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu ®¸p ¸n mµ vÉn ®óng th× ®−ỵc ®đ ®iĨm tõng phÇn nh− ®¸p ¸n quy ®Þnh Hết Trang 4/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn thi: TỐN, khối D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) 2x x +1 Khảo sát biến thiên vẽ đồ thị ( C ) hàm số cho Cho hàm số y = Tìm tọa độ điểm M thuộc (C), biết tiếp tuyến (C) M cắt hai trục Ox, Oy A, B tam giác OAB có diện tích Câu II (2 điểm) x x⎞ ⎛ Giải phương trình: ⎜ sin + cos ⎟ + cos x = 2 2⎠ ⎝ Tìm giá trị tham số m để hệ phương trình sau có nghiệm thực: 1 ⎧ ⎪x + x + y + y = ⎪ ⎨ ⎪ x + + y3 + = 15m − 10 ⎪⎩ x3 y3 Câu III (2 điểm) Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A (1; 4; ) , B ( −1; 2; ) đường thẳng x −1 y + z = = −1 Viết phương trình đường thẳng d qua trọng tâm G tam giác OAB vng góc với mặt phẳng ( OAB ) Δ: Tìm tọa độ điểm M thuộc đường thẳng Δ cho MA + MB2 nhỏ Câu IV (2 điểm) e Tính tích phân: I = ∫ x 3ln xdx b a ⎞ ⎛ ⎞ ⎛ Cho a ≥ b > Chứng minh rằng: ⎜ 2a + a ⎟ ≤ ⎜ 2b + b ⎟ ⎠ ⎝ ⎠ ⎝ PHẦN TỰ CHỌN (Thí sinh chọn làm hai câu: V.a V.b) Câu V.a Theo chương trình THPT khơng phân ban (2 điểm) 10 Tìm hệ số x khai triển thành đa thức của: x (1 − 2x ) + x (1 + 3x ) 2 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : ( x − 1) + ( y + ) = đường thẳng d : 3x − 4y + m = Tìm m để d có điểm P mà từ kẻ hai tiếp tuyến PA, PB tới ( C ) (A, B tiếp điểm) cho tam giác PAB Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) 1 Giải phương trình: log x + 15.2 x + 27 + log = 4.2 x − n = BAD n = 900 , BA = BC = a, AD = 2a Cạnh Cho hình chóp S.ABCD có đáy hình thang, ABC ( ) bên SA vng góc với đáy SA = a Gọi H hình chiếu vng góc A SB Chứng minh tam giác SCD vng tính (theo a) khoảng cách từ H đến mặt phẳng ( SCD ) -Hết Cán coi thi khơng giải thích thêm Họ tên thí sinh: …………… ……………………………Số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC Câu I ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn: TỐN, khối D (Đáp án - Thang điểm gồm 04 trang) Ý Nội dung Điểm 2,00 Khảo sát biến thiên vẽ đồ thị hàm số (1,00 điểm) 2x Ta có y = = 2− x +1 x +1 • Tập xác định: D = \ \{−1} > 0, ∀x ∈ D • Sự biến thiên: y ' = (x + 1) Bảng biến thiên x −∞ −1 + y' 0,25 +∞ + 0,25 +∞ y −∞ • Tiệm cận: Tiệm cận đứng x = − 1, tiệm cận ngang y = • Đồ thị: y 0,25 0,25 −1 O x Tìm tọa độ điểm M … (1,00 điểm) ⎛ 2x ⎞ Vì M ∈ ( C ) nên M ⎜ x ; ⎟ Phương trình tiếp tuyến (C) M là: x0 +1 ⎠ ⎝ y = y ' ( x )( x − x ) + ⇒A ( − x 02 ;0 ) 2x 2x 02 ⇔y= x + x0 +1 ( x + 1)2 ( x + 1)2 ⎛ 2x 02 ⎞ ⎟ , B ⎜ 0; ⎜ ( x + 1)2 ⎟ ⎝ ⎠ Từ giả thiết ta có: 2x 02 ( x + 1)2 − x 02 ⎡ ⎡ 2x 02 + x + = x0 = − ⎢ ⇔ = ⇔⎢ 2 ⎢ ⎣⎢ 2x − x − = ⎣x0 = 1/4 0,25 0,50 ⎛ ⎞ ta có M ⎜ − ; − ⎟ ⎝ ⎠ Với x = ta có M (1;1) Với x = − 0,25 ⎛ ⎞ Vậy có hai điểm M thỏa mãn u cầu tốn là: M ⎜ − ; − ⎟ M (1;1) ⎝ ⎠ II 2,00 Giải phương trình lượng giác (1,00 điểm) Phương trình cho tương đương với π⎞ ⎛ + sin x + cos x = ⇔ cos ⎜ x − ⎟ = 6⎠ ⎝ π π ⇔ x = + k2π, x = − + k2π ( k ∈ Z ) Tìm m để hệ phương trình có nghiệm (1,00 điểm) 1 Đặt x + = u, y + = v ( u ≥ 2, v ≥ ) Hệ cho trở thành: x y ⎧u + v = ⎪⎧u + v = ⇔⎨ ⎨ 3 ⎩uv = − m ⎪⎩u + v − ( u + v ) = 15m − 10 ⇔ u, v nghiệm phương trình: t − 5t + = m (1) Hệ cho có nghiệm phương trình (1) có hai nghiệm t = t1 , t = t thoả mãn: t1 ≥ 2, t ≥ (t1, t2 khơng thiết phân biệt) 0,50 0,50 0,25 Xét hàm số f ( t ) = t − 5t + với t ≥ : Bảng biến thiên f ( t ) : t −∞ f '( t ) −2 − − +∞ f (t) +∞ 5/ + 0,50 +∞ 22 7/4 Từ bảng biến thiên hàm số suy hệ cho có nghiệm ≤ m ≤ m ≥ 22 III 0,25 2,00 Viết phương trình đường thẳng d (1,00 điểm) Tọa độ trọng tâm: G ( 0; 2; ) JJJG JJJG Ta có: OA = (1; 4; ) , OB = ( −1; 2; ) G Vectơ phương d là: n = (12; −6;6 ) = ( 2; −1;1) x y−2 z−2 = = −1 Tìm tọa độ điểm M (1,00 điểm) Vì M ∈ ∆ ⇒ M (1 − t; −2 + t; 2t ) Phương trình đường thẳng d: 2/4 0,25 0,50 0,25 0,25 ( ⇒ MA + MB2 = t + ( − t ) + ( − 2t ) 2 ) + ( ( −2 + t ) + ( − t ) + ( − 2t ) 2 ) 0,50 = 12t − 48t + 76 = 12 ( t − ) + 28 MA + MB2 nhỏ ⇔ t = Khi M ( −1;0; ) 0,25 2,00 IV Tính tích phân (1,00 điểm) ln x x4 dx, v = Ta có: x Đặt u = ln x, dv = x 3dx ⇒ du = e e e x4 e4 I = ln x − ∫ x ln xdx = − ∫ x ln xdx 21 21 Đặt u = ln x, dv = x 3dx ⇒ du = e 0,50 dx x4 , v = Ta có: x e e e x4 e4 3e4 + = − = − = x ln xdx ln x x dx x ∫ ∫ 4 16 16 1 1 5e4 − 32 Chứng minh bất đẳng thức (1,00 điểm) Bất đẳng thức cho tương đương với 0,50 Vậy I = ( ln + 4a (1 + ) ≤ (1 + ) ⇔ a ln (1 + ) Xét hàm f ( x ) = với x > Ta có: a b b a ) ≤ ln (1 + ) b 0,50 b x x f '( x ) = ( ) ( (1 + ) x ln 4x − + 4x ln + x x x ) nên f ( a ) ≤ f ( b ) ta có điều phải chứng minh V.a 2,00 Tìm hệ số x5 (1,00 điểm) Hệ số x5 khai triển x (1 − 2x ) ( −2 ) C54 Hệ số x5 khai triển x (1 + 3x ) 10 0,50 33.C10 Hệ số x5 khai triển x (1 − 2x ) + x (1 + 3x ) 10 ( −2 )4 C54 + 33.C103 = 3320 Tìm m để có điểm P cho tam giác PAB (1,00 điểm) (C) có tâm I (1; −2 ) bán kính R = Ta có: ∆PAB nên 0,50 IP = 2IA = 2R = ⇔ P thuộc đường tròn ( C ' ) tâm I, bán kính R ' = 0,50 Trên d có điểm P thỏa mãn u cầu tốn d tiếp xúc với ( C ' ) P ⇔ d ( I;d ) = ⇔ m = 19, m = −41 0,50 3/4 V.b 2,00 Giải phương trình logarit (1,00 điểm) Điều kiện: 4.2 x − > Phương trình cho tương đương với: ( ) ( log 4x + 15.2x + 27 = log 4.2 x − ) ( ) ⇔ 2x − 13.2x − = ⎡ x =− ⎢ ⇔ ⎢ x ⎢⎣ = Do 2x > nên x = ⇔ x = log (thỏa mãn điều kiện) Chứng minh ∆SCD vng tính khoảng cách từ H đến (SCD) (1,00 điểm) Gọi I trung điểm AD Ta có: IA = ID = IC = a ⇒ CD ⊥ AC Mặt khác, CD ⊥ SA Suy CD ⊥ SC nên tam giác SCD vng C 0,50 0,50 S H 0,50 A I B D C SH SA SA 2a 2 = = = = 2 2 SB SB SA + AB 2a + a Gọi d1 d khoảng cách từ B H đến mặt phẳng (SCD) d SH 2 = = ⇒ d = d1 d1 SB 3 3VB.SCD SA.SBCD = Ta có: d1 = SSCD SSCD 1 SBCD = AB.BC = a 2 1 SSCD = SC.CD = SA + AB2 + BC2 IC2 + ID = a 2 2 a Suy d1 = 2 a Vậy khoảng cách từ H đến mặt phẳng (SCD) là: d = d1 = 3 Trong tam giác vng SAB ta có: 0,50 NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu ®¸p ¸n mµ vÉn ®óng th× ®−ỵc ®đ ®iĨm tõng phÇn nh− ®¸p ¸n quy ®Þnh Hết 4/4 [...]...BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn: TOÁN; Khối A và Khối A1 (Đáp án - Thang điểm gồm 03 trang) −−−−−−−−−−−−−−−−−−− Đáp án Câu a) (1,0 điểm) 1 (2,0đ) • Tập xác đònh D = R \ {1} • Sự biến thiên: 3 ; y < 0, ∀x ∈ D (x − 1)2 Hàm số nghòch biến trên từng khoảng (−∞; 1) và (1; +∞) 0,25 - Chiều biến thiên: y = − - Giới hạn và tiệm cận:... −−−−−−Hết−−−−−− Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối A và khối A1 (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu 1 (2,0 điểm) Đáp án Điểm a (1,0 điểm) Khi m = 0 ta có y =... 1 + z + z 2 z +1 HẾT -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A và khối A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án Điểm 1 a) (1,0 điểm) (2,0 điểm) Khi m = 0, ta có: y = x 4 − 2 x 2 •... i z 1− i - Hết -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối A (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm 1 (1,0 điểm) Khi m = 1, ta có hàm số y = x3 − 2x2 + 1 •... -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Δ1 : Họ và tên thí sinh: ; Số báo danh ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối A (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm 1 (1,0 điểm) Khảo sát… ⎧ 3⎫ • Tập xác định: D = \ \ ⎨− ⎬ ⎩ 2⎭ • Sự biến thiên:... thuộc (S) và tam giác OAB đều Câu VII.b (1,0 điểm) Tính mơđun của số phức z, biết: (2 z − 1)(1 + i ) + ( z + 1)(1 − i ) = 2 − 2i - Hết -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối A (Đáp án - thang... 0,25 0,25 0,25 0,25 0,25 0,25 BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số y = −x3 + 3x2 + 3mx − 1 (1), với m là tham số thực a) Khảo sát sự biến thiên và vẽ đồ thò của hàm số (1) khi m = 0... 3 Do đó số hạng cần tìm là (−1)3 C73 5 35 x = − x5 4 16 2 Trang 3/4 0,25 Câu Đáp án 7.b (1,0 điểm) Điểm Phương trình chính tắc của (E) có dạng: y 2 O x2 a2 + y2 b2 = 1, 0,25 với a > b > 0 và 2a = 8 Suy ra a = 4 A 2 x Do (E) và (C) cùng nhận Ox và Oy làm trục đối xứng và các giao điểm là các đỉnh của một hình vng nên (E) và (C) có một giao điểm với tọa độ dạng A(t ; t ), t > 0 0,25 A∈(C) ⇔ t 2 + t... trị khi và chỉ khi m + 1 > 0 ⇔ m > −1 (*) Các điểm cực trị của đồ thị là A(0; m 2 ), B(− m + 1; − 2m − 1) và C ( m + 1; − 2m − 1) JJJG JJJG Suy ra: AB = ( − m + 1; − ( m + 1) 2 ) và AC = ( m + 1; − ( m + 1) 2 ) JJJG JJJG Ta có AB = AC nên tam giác ABC vng khi và chỉ khi AB AC = 0 ⇔ ( m + 1) 4 − ( m + 1) = 0 Kết hợp (*), ta được giá trị m cần tìm là m = 0 Trang 1/4 0,25 0,25 0,25 0,25 Câu Đáp án Điểm... x2e x ∫0 1 + 2e x dx Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN với DM Biết SH vng góc với mặt phẳng (ABCD) và SH = a 3 Tính thể tích khối chóp S.CDNM và tính khoảng cách giữa hai đường thẳng DM và SC theo a ⎧⎪(4 x 2 + 1) x + ( y − 3) 5 − 2 y = 0 (x, y ∈ R) Câu V (1,0 điểm) Giải hệ phương trình

Ngày đăng: 06/09/2016, 12:32

TỪ KHÓA LIÊN QUAN

w