1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI HỌC SINH GIỎI TỈNH VÀ ĐÁP ÁN

3 1,7K 6
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 164 KB

Nội dung

SỞ GD-ĐT ĐĂK LĂK TRƯỜNG THPT VIỆT ĐỨC ĐỀ THI CHỌN HS GIỎI TỈNH NĂM HỌC 2007-2008 (ĐỀ ĐỀ NGHỊ) MÔN TOÁN LỚP 12 - THỜI GIAN 180 PHÚT A. ĐỀ RA: Câu 1: (4,0 điểm ) Định giá trị của m để phương trình sau có nghiệm: ( ) ( ) 4 3 3 3 4 1 1 0m x m x m− + + − − + − = (1) Câu 2: ( 4,0 điểm) Giải hệ phương trình sau: 3 2 3 2 3 2 9 27 27 0 9 27 27 0 9 27 27 0 y x x z y y x z z  − + − =  − + − =   − + − =  Câu 3: ( 4,0 điểm) Chứng minh rằng nếu các số tự nhiên x, y, z thỏa mãn điều kiện: n n n x y z+ = thì ( ) min ,x y n≥ . Câu 4: (4,0 điểm) Chứng minh rằng mọi tứ diện luôn tồn tại ít nhất một đỉnh mà ba cạnh xuất phát từ đỉnh đó có độ dài thích hợp để lập thành một tam giác. Câu 5: (4,0 điểm) Cho các số thực x, y. Chứng minh rằng nếu tập hợp ( ) ( ) { } cos cos /n x n y n N π π + ∈ hữu hạn thì ,x y Q∈ . 1 B. ĐÁP ÁN ĐỀ THI HS GIỎI TỈNH TRƯỜNG THPT VIỆT ĐỨC Câu 1: Điều kiện: 3 1x− ≤ ≤ . 3 3 4 1 1 (1) 4 3 3 1 1 x x m x x + + − + ⇔ = + + − + Nhận thấy rằng: ( ) ( ) 2 2 2 2 3 1 3 1 4 1 2 2 x x x x     + − + + − = ⇔ + =  ÷  ÷  ÷  ÷     Nên tồn tại góc 0; 2 π ϕ   ∈     sao cho: 2 2 3 2sin 2 1 t x t ϕ + = = + 2 2 1 1 2cos 2 1 t x t ϕ − − = = + Với [ ] tan ; 0;1 2 t t ϕ = ∈ 2 2 3 3 4 1 1 7 12 9 5 16 7 4 3 3 1 1 x x t t m m t t x x + + − + − + + = ⇔ = − + + + + − + Xét hàm số: [ ] 2 2 7 12 9 ( ) ; 0;1 5 16 7 t t f t t t t − + + = ∈ − + + ( ) [ ] 2 2 2 52 8 60 '( ) 0, 0;1 5 16 7 t t f t t t t − − − = < ∀ ∈ − + + . Hàm số nghịch biến trên đoạn [ ] 0;1 9 7 (0) ; (1) 7 9 f f= = Suy ra phương trình (1) có nghiệm khi phương trình (2) có nghiệm trên đoạn [ ] 0;1 khi chỉ khi: 7 9 9 7 m≤ ≤ Câu 2: 3 2 3 2 3 2 9 27 27 0 9 27 27 0 9 27 27 0 y x x z y y x z z  − + − =  − + − =   − + − =  3 2 3 2 3 2 9 27 27 9 27 27 9 27 27 y x x z y y x z z  = + −  ⇔ = + −   = + −  Xét hàm số đại diện: 2 ( ) 9 27 27 '( ) 18 27f t t t f t t= − + ⇒ = − 3 3 '( ) 0 18 27 0 '( ) 0 2 2 f t t t f t t= ⇔ − = ⇔ = ⇒ > ⇔ > Hàm số đồng biến trên khoảng 3 ; 2   +∞  ÷   nghịch biến trên khoảng 3 ; 2   −∞  ÷   Hàm số đạt giá trị nhỏ nhất tại 3 3 27 27 ( ) 2 2 4 4 t f f t   = ⇒ = ⇒ ≥ ⇒  ÷   2 3 3 27 27 3 3 9 27 27 4 4 2 4 x x y y− + ≥ ⇒ ≥ ⇒ ≥ > 2 3 3 3 2 4 x⇒ ≥ > v à 3 3 3 2 4 z ≥ > . Vậy x, y, z thuộc miền đồng biến, suy ra hệ phương trình ( ) ( ) ( ) f x y f y z f z x =   =   =  là hệ hoán vị vòng quanh. Không mất tính tổng quát giả sử x y≥ ⇒ 3 3 ( ) ( )f x f y y z y z≥ ⇒ ≥ ⇒ ≥ 3 3 ( ) ( )f y f z z x z x⇒ ≥ ⇒ ≥ ⇒ ≥ x y z x x y z⇒ ≥ ≥ ≥ ⇒ = = . Thay vào hệ ta có: 3 2 9 27 27 0 3x x x x− + − = ⇒ = Suy ra: x = y = z = 3 Câu 3: Gỉa sử các số tự nhiên x, y, z thỏa mãn phương trình ( ) 1 n n n x y z+ = Không mất tính tổng quát ta giả sử x y≤ . Vì ( ) ( ) 0 1 1 1 1 1 . . 1 2 n n n n n n n n k n k n n n n n z x y y z y z y z y C y C y C y y ny − − − = + > ⇒ > ⇒ ≥ + ⇒ ≥ + = + + + + + ≥ + So sánh (1) (2) ta có : 1 1n n n x ny nx − − ≥ ≥ vì ( ) x y≤ . Do đó ( ) min , .x n x y x n≥ ⇒ = ≥ Câu 4: Xét tứ diện ABCD, không mất tính tổng quát giả sử AB là cạnh dài nhất của tứ diện đang xét. Bằng phản chứng ta giả sử rằng: Khẳng định của bài toán là sai, nghĩa là không có đỉnh nào trong tứ diện để cho ba cạnh xuất phát từ đỉnh đó có độ dài thích hợp để lập thành một tam giác. Khi đó ta có: AB AC AD> + xét đỉnh A BA BC BD> + xét đỉnh B Suy ra: ( ) 2 1AB AC AD BC BD> + + + Ta xét các tam giác ABC ABD ta có: ( ) 2 2 AB AC CB AB AC AD CB DB AB AD DB < +  ⇒ < + + +  < +  Mâu thuẫn giữa (1) (2) ta suy ra ĐPCM. Câu 5: Đặt ( ) cos n a n x π = ( ) cos n b n y π = . Khi đó: ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 n n n n n n n n a b a b a b a b+ + − = + = + + . Gỉa sử tập hợp ( ) { } n n a b+ hữu hạn, ta suy ra ( ) { } n n a b− cũng là tập hợp hữu hạn, do đó suy ra được { } n a { } n b cũng là tập hữu hạn vì ( ) ( ) 1 2 n n n n n a a b a b= + + −    ( ) ( ) 1 2 n n n n n b a b a b= + − −    . Do tập { } n a hữu hạn nên ( ) 2 : 2 2 m n k m n a a n x m x k n m x k x Q n m π π π π π π ∃ < = ⇒ = + ⇒ − = ⇒ = ∈ − Tương tự ( ) 2 : 2 2 m n k m n b b n y m y k n m y k y Q n m π π π π π π ∃ < = ⇒ = + ⇒ − = ⇒ = ∈ − 3 . ĐĂK LĂK TRƯỜNG THPT VIỆT ĐỨC ĐỀ THI CHỌN HS GIỎI TỈNH NĂM HỌC 2007-2008 (ĐỀ ĐỀ NGHỊ) MÔN TOÁN LỚP 12 - THỜI GIAN 180 PHÚT A. ĐỀ RA: Câu 1: (4,0 điểm ) Định. ( ) { } cos cos /n x n y n N π π + ∈ hữu hạn thì ,x y Q∈ . 1 B. ĐÁP ÁN ĐỀ THI HS GIỎI TỈNH TRƯỜNG THPT VIỆT ĐỨC Câu 1: Điều kiện: 3 1x− ≤ ≤ . 3 3 4 1 1

Ngày đăng: 03/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w