AAE556 Lecture 33 V-g Method revisited Purdue Aeroelasticity Final EOM’s for forced response h Fo A + B θ = mb b ω is known because we pre-select it ω Lh 2 A=− − ω + ωh µ ω B = −ω xθ − µ 2 1 Lα − + a Lh Purdue Aeroelasticity Moment equilibrium equation h D ÷+ Eθ = b 2 ω ω 1 D = −ω xθ − Mh + Lh + a µ µ 2 2 ω ω E = −ω rθ2 + ωθ2 rθ2 + Mh + a − Mα µ 2 µ ω2 ω 1 + Lα + a − Lh + a µ 2 µ 2 Purdue Aeroelasticity Theodorsen’s method The system is self-equilibrating h Fo A ÷+ Bθ = =0 mb b ω Lh ω ω =− − + ω µ ω ω ATM BTM ω2 ω2 = − xθ − ω µω h 1 Lα − + a ÷Lh Purdue Aeroelasticity Moment equilibrium equation h D ÷+ Eθ = b ω ω ω 1 = − xθ − Mh + L + a÷ 2 h ω µω µω 2 DTM ETM 2 ω 2 ωθ2 ω 1 ω = − rθ + rθ + M h + a ÷− M α ω ω ω µ 2 ω µ ω 1 ω 1 + Lα + a ÷− Lh + a ÷ ω µ 2 ω µ 2 2 Purdue Aeroelasticity Eigenvalue Equation of Motion #1 h h h ω 1 2 −ω − ω xθθ + ωh − Lh + Lα − + a ÷Lh θ b b µ b 2 Divide by ω ÷= ωh2 h h h 1 − − xθ θ + − Lh + Lα − + a ÷Lh θ b ω b µ b 2 ÷= Include structural damping ωh2 h h 1 h 1 − − xθ θ + ÷( + ig ) − Lh + Lα − + a ÷Lh θ b b µ b 2 ω Purdue Aeroelasticity ÷= Equation #2, moment equilibrium h ω h 2 2 −ω xθ ÷− ω rθ θ + ωθ rθ θ − M θθ θ + M θ h ÷ = µ b b M θθ 1 1 = M α − + a ( Lα + M h ) + + a Lh 2 2 Divide by ω Mθ h 1 = − + a ÷Lh 2 h ωθ2 1 h − xθ ÷− rθ θ + rθ θ − M θθ θ + M θ h ÷ = ω µ b b Include structural damping h ωθ2 1 h − xθ ÷− rθ θ + ( + ig ) rθ θ − M θθ θ + M θ h ÷ = ω µ b b Purdue Aeroelasticity Matrix equations ωh2 h h ωθ2 h 1 − − xθ θ + ÷( + ig ) ÷ − Lh + Lα − + a ÷Lh θ b 2 ω ωθ b µ b ÷= h ωθ2 1 h − xθ ÷− rθ θ + ( + ig ) rθ θ − M θθ θ + M θ h ÷ = ω µ b b ω h ωθ ÷ h b − ÷( + ig ) ωθ + x ω 2 θ θ r θ Lh + µ M θ h xθ h b 2 rθ θ 1 h L − + a ÷Lh b 0 α 2 = 0 θ M θθ Purdue Aeroelasticity The eigenvalue problem ωh2 ω ÷ h b − + ÷( + ig ) ωθ ω θ xθ 2 rθ θ Lh + µ M θ h ωθ2 h ω ÷ Ω b = h x θ θ rθ xθ h b 2 rθ θ 1 h L − + a ÷Lh b = 0 α 2 θ M θθ xθ Lh + rθ µ M θ h 1 h Lα − + a ÷Lh b θ M θθ Purdue Aeroelasticity Another look at it This should be easy for a ωθ2 h ω ÷ Ω b = h x θ θ rθ xθ Lh + rθ µ M θ h th grader with MATLAB 1 h Lα − + a ÷Lh b θ M θθ ωθ2 Lh ωθ2 Lα Lh − + a ÷÷ 1 + ÷ ÷ xθ + h ωh ÷ µ ωh µ µ 2 h b Ω b= 1 Mθ h M θθ θ θ x + r + ÷ θ rθ θ µ ÷ r µ θ 10 Purdue Aeroelasticity The flutter problem – a complex eigenvalue with flutter frequency and airspeed unknown a = elastic axis location (shear center) ωh = bending-torsion frequency ratio ωθ S xθ = θ = dimensionless static unbalance mb rθ = dimensionless radius of gyration about SC µ =density ratio ω = frequency k=reduced frequency 11 Purdue Aeroelasticity