1. Trang chủ
  2. » Thể loại khác

AAE556 Lecture 33 Vg Method revisited

11 694 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 222,29 KB

Nội dung

AAE556 Lecture 33 V-g Method revisited Purdue Aeroelasticity Final EOM’s for forced response h  Fo A   + B θ = mb b ω is known because we pre-select it ω Lh 2 A=− − ω + ωh µ ω B = −ω xθ − µ 2  1    Lα −  + a  Lh      Purdue Aeroelasticity Moment equilibrium equation h  D  ÷+ Eθ = b 2 ω ω 1  D = −ω xθ − Mh + Lh  + a  µ µ 2  2 ω ω   E = −ω rθ2 + ωθ2 rθ2 + Mh + a − Mα µ 2  µ ω2   ω 1  + Lα  + a  − Lh  + a  µ 2  µ 2  Purdue Aeroelasticity Theodorsen’s method The system is self-equilibrating h  Fo A  ÷+ Bθ = =0 mb b ω Lh ω ω =− − + ω µ ω ω ATM BTM ω2 ω2 = − xθ − ω µω h  1    Lα −  + a ÷Lh      Purdue Aeroelasticity Moment equilibrium equation h  D  ÷+ Eθ = b ω ω ω 1  = − xθ − Mh + L + a÷ 2 h ω µω µω 2  DTM ETM 2 ω 2 ωθ2 ω 1  ω = − rθ + rθ + M h  + a ÷− M α ω ω ω µ 2  ω µ ω 1  ω 1  + Lα  + a ÷− Lh  + a ÷ ω µ 2  ω µ 2  2 Purdue Aeroelasticity Eigenvalue Equation of Motion #1  h  h h ω 1   2 −ω − ω xθθ + ωh −  Lh +  Lα −  + a ÷Lh  θ b b µ  b  2   Divide by ω  ÷=  ωh2 h  h  h 1   − − xθ θ + −  Lh +  Lα −  + a ÷Lh  θ b ω b µ b  2    ÷=  Include structural damping  ωh2  h h 1 h  1   − − xθ θ +  ÷( + ig ) −  Lh +  Lα −  + a ÷Lh  θ b b µ b  2   ω  Purdue Aeroelasticity  ÷=  Equation #2, moment equilibrium    h ω h 2 2 −ω xθ  ÷− ω rθ θ + ωθ rθ θ −  M θθ θ + M θ h ÷ = µ  b b M θθ 1  1  = M α −  + a ( Lα + M h ) +  + a  Lh 2  2  Divide by ω Mθ h 1  = −  + a ÷Lh 2  h  ωθ2 1 h − xθ  ÷− rθ θ + rθ θ −  M θθ θ + M θ h ÷ = ω µ b b Include structural damping h  ωθ2 1 h − xθ  ÷− rθ θ + ( + ig ) rθ θ −  M θθ θ + M θ h ÷ = ω µ b b Purdue Aeroelasticity Matrix equations  ωh2  h  h   ωθ2  h 1   − − xθ θ +  ÷( + ig )  ÷ −  Lh +  Lα −  + a ÷Lh  θ b 2   ω   ωθ  b µ  b   ÷=  h  ωθ2 1 h − xθ  ÷− rθ θ + ( + ig ) rθ θ −  M θθ θ + M θ h ÷ = ω µ b b     ω h  ωθ   ÷  h b   −  ÷( + ig )  ωθ     + x ω   2   θ   θ r θ     Lh +  µ  M θ h xθ  h  b 2 rθ   θ     1    h  L − + a ÷Lh    b  0   α 2      =    0  θ      M θθ  Purdue Aeroelasticity The eigenvalue problem  ωh2   ω   ÷  h b   −  +  ÷( + ig )  ωθ   ω  θ   xθ 2   rθ   θ   Lh +  µ  M θ h  ωθ2    h   ω ÷   Ω  b  =  h   x    θ    θ  rθ    xθ   h  b 2 rθ   θ     1    h  L − + a ÷Lh    b  = 0   α 2           θ    M θθ  xθ   Lh + rθ  µ   M θ h  1     h   Lα −  + a ÷Lh     b           θ  M θθ Purdue Aeroelasticity Another look at it This should be easy for a  ωθ2    h   ω ÷   Ω  b  =  h   x    θ    θ  rθ     xθ   Lh + rθ  µ   M θ h th grader with MATLAB  1     h   Lα −  + a ÷Lh     b           θ  M θθ   ωθ2   Lh   ωθ2   Lα Lh     −  + a ÷÷  1 + ÷  ÷ xθ + h    ωh ÷ µ   ωh   µ µ 2      h     b Ω  b=   1   Mθ h   M θθ   θ     θ    x + r + ÷  θ   rθ  θ µ ÷ r µ     θ  10 Purdue Aeroelasticity The flutter problem – a complex eigenvalue with flutter frequency and airspeed unknown a = elastic axis location (shear center) ωh = bending-torsion frequency ratio ωθ S xθ = θ = dimensionless static unbalance mb rθ = dimensionless radius of gyration about SC µ =density ratio ω = frequency k=reduced frequency 11 Purdue Aeroelasticity

Ngày đăng: 05/08/2016, 00:59

TỪ KHÓA LIÊN QUAN

w