1. Trang chủ
  2. » Thể loại khác

AAE556 v g flutter lecture 32 The Vg method

19 282 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 526,11 KB

Nội dung

AAE 556 Aeroelasticity The V-g method g k decreasing V/bωθ mode mode flutter point Airfoil dynamic motion Ma e P=-L θ(t) V xθ aero K θ center T Kh h This is what we’ll get when we use the V-g method to calculate frequency vs airspeed and include Theodorsen aero terms 1.6 1.4 Frequency Ratio (ω / ω ) θ 1.2 0.8 0.6 0.4 0.2 0 0.5 1.5 2.5 Velocity (V/ ω b) θ 3.5 4.5 When we the V-g method here is damping vs airspeed 0.8 0.6 0.4 flutter 0.2 g divergence -0.2 -0.4 -0.6 -0.8 -1 0.5 1.5 2.5 Velocity (V/ ω b) θ 3.5 4.5 To create harmonic motion at all airspeeds we need an energy source or sink at all airspeeds except at flutter i i Input energy when the aero damping takes energy out (pre-flutter) Take away energy when the aero forces put energy in (post-flutter) 2D airfoil free vibration with everything but the kitchen sink &   h && && Mh + Mxθ θ + K h ( g h + g ) + h  = P = − Leiωt ω   ( −ω M + K h ) 1 + i ( g h + g )  h − ω Mxθ θ = P &   θ && && Iθ θ + Mxθ h + Kθ ( gθ + g ) + θ  = M a = M a eiωt ω   ( −ω I θ ) + Kθ 1 + i ( gθ + g )  θ − ω Mxθ h = M a We will get matrix equations that look like this  A B  h / b  0  =     D E   θ  0  m µ= πρ b …but have structural damping that requires that … A(k, ω , g)E(k, ω , g) − B(k)D(k) = The EOM’s are slightly different from those before (we also multiplied the previous equations by µ) B  h / b  0  Each term contains inertial, structural stiffness, structural =     E   θ  0  damping and aero information A D A = µ{1− (ω / ω )[1 + i(gh + g)]} + Lh h B = µ x θ + Lα =- Lh (1 / + a) θ 1  D =µxθ +M h −Lh  +a ÷ 2  E = µ r {1 − ( ω / ω )[1 + i(gθ + g)]} θ − Mh (1 / + a) + Mα − Lα (1 / + a) + Lh (1 / + a) Look at the “A” coefficient and identify the eigenvalue – artificial damping is added to keep the system oscillating harmonically   ωh   A = µ 1 −  ÷ + i ( g h + g fake )  + Lh ω     ( ) We change the eigenvalue from a pure frequency term to a frequency plus fake damping term So what?   ωh 2  ωθ   A = µ 1 −  + ig fakier )  + Lh ( ÷  ÷ ωθ   ω     Ω = (ω / ω )(1 + ig) = Ω + iΩ 2 θ 2 R I The three other terms are also modified  A B   h / b  0  D E   θ  = 0  Each term contains inertial, structural stiffness, structural damping and aero information B = µ x θ + Lα =- Lh (1 / + a) D =+ µ x θ + Mh − L h (1/ + a)   ω   θ E = µ rθ 1 −  ÷ ( + ig )  ω     1  1  1  − M h  + a ÷+ M α − Lα  + a ÷+ Lh  + a ÷ 2  2  2  To solve the problem we input k and compute the two values of Ω2 2  ωθ   ωθ  Ω =  ÷ + ig  ÷ = Ω 2R + iΩ 2I ω  ω  Ω = (Ω ) + i(Ω ) 2 R I Ω = (Ω ) + i(Ω ) 2 R 2 I The value of g represents the amount of damping that would be required to keep the system oscillating harmonically It should be negative for a stable system ω = ω θ / (Ω R )1 g1 = (Ω ) / (Ω ) I R ω = ω θ / (Ω R ) g2 = (Ω 2I )2 / (Ω 2R )2 Now compute airspeeds using the definition of k V1 = bω / k ω = ω θ / (Ω R )1 Remember that we always input k so the same value of k is used in both cases One k, two airspeeds and damping values V = bω / k ω = ω θ / (Ω R ) Typical V-g Flutter Stability Curve g ' = g h + g = gθ + g gh ≈ gθ k decreasing g V/bωθ mode flutter point mode Ω = (ω / ω )(1 + ig′ ) 2 θ Now compute the eigenvectors V1 = bω / k h 2 (bθ / h)1 = −D / E(Ω1 ) ; = (Ω = Ω ) b V = bω / k (h / b θ )2 = − B / A(Ω ) ; θ = (Ω = Ω 22 ) Example Two-dimensional airfoil mass ratio, µ = 20 quasi-static flutter speed VF = 160 ft/sec gθ = g h = 0.03 b = 3.0 ft Example k = 0.32 / k = 3.1250 ω h = 10 rad / sec ωθ = 25 rad / sec Lα = −13.4078− i3.7732 Lh = −0.10371− i40973 Mα = 0.37500 − i3.1250 Mh = 0.50000 The determinant k = 0.32 A = 19.896 − i4.0973 − 3.2Ω B = −11.3767 − i2.5440 D = 2.5311+ i1.22919 E = 9.2380 − i2.3618 − 5.0Ω A E − BD = 16(Ω) + (−129.043+ i28.044)Ω2 + 199.794 − i64 418= Final results for this k value – two g’s and V’s b = 3.0 ft Ω = 4.0326 − i0.87638± 3.0067 − i3.0420 Ω − 4.0326 − i0.87638± (1.9084− i0.79702) Ω12 = 5.9410 − i1.67340 ω = 10.257 rad / sec (ω h = 10 rad / sec) Ω 22 = 2.1242− i0.07936 V1 = 96.157 ft / sec g1 = g + gθ = −0.2817 ω = 17.153 rad / sec (ω θ = 25 rad / sec) V = 160.810 ft / sec g = g + gθ = −0.0374 Final results Flutter g = 0.03

Ngày đăng: 05/08/2016, 00:58

TỪ KHÓA LIÊN QUAN

w