1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Ôn tập củng cố kiến thức vật lý 9 nguyễn thị ngọc mai

122 364 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 122
Dung lượng 36,55 MB

Nội dung

530.076 NGUYEN THI NGOC MAI o CUNG CO KIEN THUC TAI LIEU ON THI VAO L(3P 10 - VIETTHEO CHUAN KIEN THQC, KT N A N G N G U Y i N THI NGOC MAI 5^0,076 ON TAP, CUNG CO KIEN THLTC VAT i t TAI LIEU O N THI V A O L O P 10 VIET THEO C H U A N KIEN THQC, KI N A N G (Tdi ban Idn thii hai) THU VIENTINHBINHTHUAN if?\/L NHA XUAT BAN GIAO DUG VIET NAM A3 noi ddu Nham dap ung nhu cau on tap kien thuc va ren luyen ki nang lam bai cung nhu giup hpc sinh tu tin thi vao lop 10 chuyen hoac khong chuyen, chung toi bien soan bp sach on thi vao lop 10 On tap, cung co kien thifc Idp Bp sach gom c6 nam cuon : Toan, Ngu van, Tieng Anh, Vat li, Hoa hpc Pham vi kien thuc cua bp sach tap trung vao chuong trinh va chuan kien thuc, ki nang lop Bp Giao due va Dao tao ban hanh Cuon On tap, cung cokien thCfc Vat li gom c6 hai phan : Phan mot On tap va cung co kien thiifc A - Vat li 6, 7, B-Vatli9 Phan hai Gidi thieu mot so de thi tuyen sinh vao Idp 10 A - D e bai B - Huong dan giai Ngoai kien thuc trpng tarn va nhung bai tap de cung co kien thuc, cuon sach gioi thieu mot so de thi vao lop 10 kem voi huong dan each giai, qua khoi gpi su sang tao cua cae em on tap va lam bai Hi vpng cac em se su dung cuon sach mot each sang tao de dat dupe ket qua cao ki thi sap toi Mac du da rat co gkng qua trinh bien soan, nhung cung kho tranh khoi nhung so suat, ehung toi mong nhan dupe sy dong gop y kien tii phia ban dpe de Ian tai ban sau, sach dupe hoan ehinh hon Mpi y kien dong gop xin gui ve : Phong Khai thac - Thj tri/dng Cong ty co phan Oau tiTva Phat trien Giao due PhiTcfng Nam 231 Nguyin Van CiT, Quan 5, TP Ho Chi Minh hoac qua email: khaithacbanthao@yahoo.com TAC GIA ON T A P V A CUNG CO K I E N T H U G i A - ON T A P V A CCING C6 KIE'N T H U C V A T L( , , I - C d HOC Dan vi do ddi he thong lUdng hdp phap cua nU6c ta la met (m) Ngoai ra, ngUdi ta dung ddn v i k m , dm, cm, mm, Dan vi the tich thUdng dung la met khoi (m^), l i t (0- Ngoai ra, ngUdi ta dung ddn v i dm^, cm^, cc, 11 = dm^ ; Dan vi khoi litOng he thong lufdng hdp phap ciia nifdc ta la kilogam (kg), ta (ta), tan (t) Ngoai ra, ngifdi ta dung ddn v i g, lang, tan = 1000 kg ; m l = cm^ = cc ta = 100 kg ; lang = 100 g C a c loai lufc a) Trong lUc : P Trong lUc la lUc hut ciia Trai Dat, c6 phiTdng t h i n g diing va c6 chieu hadng ve phia Trai Dat b) Luc ddn hoi: F + Vat chim xuohg k h i : F^ hay hay d^ > d; d^ < d; + V a t Id \\ing t r o n g c h a t long k h i : P = FA T r o n g Ivldng v a k h o i hay = d; Ixidng H e t h i i c giijfa t r o n g liJdng va kho'i Ivfdng : P = lO.m (vdi m t i n h b a n g kg) Vi du : V a t c6 k h o i l i i d n g 100 g t h i t r o n g lUdng la N Chu y : K h o i l i f d n g m k h o n g t h a y doi theo v i t r i dat v a t , v i k h o i lUdng c h i l i f d n g c h a t c h i l a t r o n g v a t Con t r o n g l i i d n g l a lUc h u t ciia T r a i D a t len v a t n e n t r o n g l i l d n g ciia v a t p h u thuoc vao v i t r i cua v a t t r e n T r a i D a t K h o i Ixidng r i e n g : D Cong t h i i c t i n h k h o i l i i d n g r i e n g : D = Trong : D : k h o i lUdng r i e n g (kg/m^) ; m : kho'i l i i d n g (kg) ; V : t h e t i c h (m^) Trong lifoTng rieng : d Cong thiic t i n h t r o n g l i i d n g r i e n g : d = p Trong : d : t r o n g lUdng r i e n g (N/m ) ; P : t r o n g liTdng (N) ; V : the t i c h (m^) Cong thxic t i n h t r o n g lUdng r i e n g theo k h o i lUdng r i e n g : d = TO cong thijfc : d = l O D , t a suy r a : D = May lO.D ^ cor doTn g i a n a) Mat phang nghieng (Hinh 1.1) • r \, - Bo qua m a s a t : „ = - r Trong : F la lUc tac d u n g (N) ; Hinh 1.1 P la t r o n g lUdng v a t (N) ; h la cao cua m a t p h a n g n g h i e n g (m) ; I la chieu d a i cua m a t p h a n g n g h i e n g ( m ) - Co ma sat (hao p h i ) t h i h i e u suat H cua m a t ph&ng n g h i e n g la : Ph 100% b) Don bay (Hinh 1.2) : d i e m tUa ; O O O i , O2 : d i e m d a t lUc ; F i , F2 : cac lUc tac d u n g 0 = / i ; 0 = ^2 D i e u k i e n can bSng ciia don bay : = -y- Hinh 1.2 c) Rong roc : Rong roc la m o t b a n h xe q u a y difdc q u a n h m o t t r u e , v a n h b a n h xe c6 r a n h de d a t day keo LTng d u n g : Gin + Tae d u n g : D o i h i i d n g eiia lUe tae d u n g ; F = P + R o n g roe q u a y diJcJe q u a n h mot t r u e c6' d i n h + R o n g roe c6 d i n h ( H i n h 1.3) - t r e n d i n h eot ed de keo cd, cong n h a n xay dUng d u n g dua gach v i i a len eao, Rong roc q u a y diidc q u a n h + R o n g roc dong ( H i n h 1.4) - I Hinh 1.3 /////////// ® m o t t r u e d i dong, d i chuyen ciing vdi vat + Tae d u n g : T h a y doi Idn ciia Ivtc tae d u n g (giam lUc keo) F = | ; s - = 2h P a l a n g : G o m m o t hoac n h i e u cap r o n g roc D u n g p a l a n g cho phep g i a m Ixic keo, dong t h d i l a m doi h u d n g ciia lUc C i l d u n g m o t cap r o n g roc (mot r o n g roc eo' d i n h , m o t r o n g roc dong) t h i Idi Ian ve lUc ( H i n h 1.4a) F = P ; 2n s = n h (vdi n l a so' cap cua r o n g roc) Chuyen dong deu va chuyen dong khong deu a) Van toe chuyen dong deu s + Cong t h i i e t i n h v a n toe : v = — t Trong : v : v a n toe (km/h ; m/s) ; s : q u a n g dUdng d i ditde ( k m , m) ; b) Van t : t h d i g i a n d i het q u a n g d i f d n g (h, s) toe trung binh chuyen dong khong deu ^ X s - Cong t h i l c t i n h v a n toe t r u n g b i n h t r e n m o t q u a n g dUdng : v^^jj = — - Cong t h i i c t i n h v a n toe t r u n g b i n h t r e n ca q u a n g d i f d n g chuyen dong : _ + S2 + + Sn t l + t2 + + t„ 10 Ap s u a t A p s u a t c h a t l o n g B i n h t h o n g n h a u a) Ap suat F Cong t h i i c t i n h ap s u a t : p = Trong : p : ap suat (N/m^ ; Pa) ; F : ap l u c ( N ) ; S : dien t i c h m a t b i ep (m^) b) Ap suat chat long - Cong thijtc t i n h ap s u a t c h a t l o n g : p = d h Trong : p : ap s u a t chat l o n g (N/m^^; d : t r o n g lifdng r i e n g c h a t l o n g (N/m^) ; h : cao cot c h a t l o n g (m) (h diidc t i n h tvf d i e m t i n h ap suat den m a t t h o a n g c h a t long) c) Binh thong : T r o n g b i n h t h o n g n h a u chiia c i i n g m o t c h a t l o n g d i i n g yen, cac miic chat l o n g d cac n h a n h l u o n l u o n cl c u n g m o t cao d) Nguyen F tdc hoat dong cua may thuy lite : ^ *2 Trong - S ©2 do: F j la lUc tac d u n g l e n p i t t o n g c6 dien t i c h S j ; F2 la lUc tac d u n g l e n p i t t o n g c6 d i e n t i c h S2 11 C o n g ccf h o c C o n g s u a t a) Cong cd hoc - Cong t h i i c t i n h cong cd hoc : A = F s Trong : A : c o n g cd hoc ( J ) ; F : lUc t a c d u n g (N) ; s : q u a n g d U d n g v a t c h u y e n ddi (m) l J = l N l m = l N m Chii y : - Cong t h i i c t r e n c h i s\i d u n g k h i h i f d n g cua lUc tac d u n g trCing vdi h u d n g c h u y e n dong ciia v a t U = I R - I ( y - l ) = I (12 I =^U= 12-1 T h a o R r a k h o i nguon, mach hci nen ciJdng dong d i e n t r o n g m a c h = = > U = 12 V Bai4 = 24 a D i e n t r d den : dm Cudng dong d i e n qua den : U = H i e u d i e n t h e h a i d a u b o n g den : Cong suat t i e u t h u ciia den : = 0,56 A R + r = I R = 13,44 V ^/^^ = = 7,53 W Cong suat t i e u t h u ciia bo den : Rtd+r Cong suat t i e u t h u cua moi den : => Khi U RU2 R — + r n (R + n r r R ( ^=Rtd.4=R = n RU' PA n (1) (R + nvf va n la n g h i c h b i e n = 110%.^/^d„ = 6,6 W, g i a i p h i t d n g t r i n h (1) t i m diidc : n = 2,7 K h i ^(j = 90%.^(j„ = 5,4 W, g i a i p h i l d n g t r i n h (1) t i m diidc : n = 5,5 ^ K h i 90%.^,,^ < < 110% t h i 2,7 < n < 5,5 Do n n g u y e n n e n t a c6 n g h i e m : n = ; ; Bai5 T h d i g i a n chuyen dong tvL A den H r o i den B : t j = — + — T h d i gian chuyen dong t h A n g t i i A den B : t2 = = 140 s = 128 s D a t A H = Zi, B H = Zg C H = x xpTf— , ^ AC CB Zi-x T h d i g i a n chuyen 3n dong : t = + = +'1 V2 = ^ + Vj^pTJ V i1^2 V f^ 107 Dat ^ y = v i ^/x^~+7| - =^ ( y + V2xf = v i ( x ^ + / f ) ( v f - v | ) x - v y x + v^/f - y ^ = (1) D i e u k i e n c6 n g h i e m ciia (1) : A ' = viy2 - ( V ? - viKvfzf - y2) > t m i n => Y m i n => Y = h^'^l t = - ^ + ^ ^ = 124 s va A' = O ^ C H = x = Khido: V, - A = y2 >/|(v2 - v i ) §6,4 =54m = V1V2 D E 12 Bai K h i xe k h d i h a n h t h i xe da k h d i h a n h trade m o t k h o a n g t h d i gian At vdi v a n toe V j va d i difdc q u a n g difdng As = 300 m T a i t h d i diem t = 30 s, xe bat dau d i vao doan diTdng x a u va g i a m v a n toe, k h o a n g each xe g i a m D e n thdi d i e m t = 50 s t h i xe bat d a u d i vao doan ditdng x a u , h a i xe chuyen dong vdi eung v a n toe V2 v a k h o a n g each xe k h o n g doi V a y xe da k h d i h a n h sau xe m o t k h o a n g t h d i g i a n la At = 20 s => V j = — = = 15 m/s -^0 At T r o n g t h d i gian A t j = 20 s t i f t h d i d i e m t = 30 s den t h d i diem t = 50 s xe c h u y e n dong vdi v a n toe V2 Xe chuy en dong vdi v a n toe V ] va k h o ; i n g each xe g i a m d i m o t doan : Asj = 300 - 200 = 100 (m) T a CO : As, = v , A t i - V A t , = 15.20 - V2.20 = 100 Vo = 10 m/s D e n t h d i d i e m t = 90 s, xe hht d a u r d i doan du'dng x a u , k h o a n g each h a i xe t a n g V a y xe c huy en dong t r e n doan dUdng x a u t r d n g t h d i gian : At2 = 90 - 30 = 60 (s) => d a i doan dUdng x a u : s = V2.At2 = 600 m 108 Bai Phitdng t r i n h can bang nhiet k h i lUdng nxidc m vao binh : (mc + m'c')(ti - t) = mc(t' - t j ) Tinh difdc : m'c' = — mc Phtfdng t r i n h can bang nhiet k h i lUdng nUdc m t h i i hai vao binh (mc + m'c')(t2 - t) = 2mc(t' - t^,) Tinh dUdc : t2 = = 44,8"C Bai Ve anh : A' a) Hinh 2.20 - Tha'u kinh hoi t u : AOA'B' c/5 AOAB AFJA'B' CO FiOIj A'B' AB OA' OA a A ' B ' _ A ' B ' _ F\A' _ FiO + OA' _ AB Oil FiO +b FjO Tii hai phUdng t r i n h t i n h dUdc t i e u cU tha'u k i n h hoi t u : fi = OFi = a.b b-a - Tha'u kinh phan k i : AOA'B' oo AOAB AFgA'B' CO AF2OI2 A ' B ' _ OA/ _ a AB ~ OA " b A'B' AB A'B' OI2 " F.';A' F:>0-0A' F.^0 F;,O f.,- Tit hai phUdng t r i n h , t i n h difdc tieu ciJ thau kinh phan k i : Suy : £2 = f i = 20 cm Bai4 Mac ampe ke no'i tiep vdi RQ vao nguon, doc so'chi I j ciia ampe ke : U = II.(RO + R A ) Mac ampe ke no'i tiep vdi R vao nguon, doc so'chi I2 ciia ampe ke : U = I2.(R + R A ) C Mac ampe ke noi tiep vdi RQ va R vao nguon, doc so' chi I3 ciia ampe ke u = ig.cRo + R + RA) I i ( R o + RA) = h-i^o Txi (!) va (3) : Ii.(Ro + RA) = h-(R + RA) t i m dildc RA theo R Tu: (1) va (2) : (; + R + RA) Thay RA theo R vao, t i n h difdc R Bai R r R, ,>/>2 2 Cudng dong dien qua mach : = R i + R2 Rtd u u u 3R2 Cong suat den I : Cong suat den I I : = R I ^ = R ^ ^ ^ ^ ^ / W = W ?± l !L4 = 2=>f = ^ •''"2 _ S2xq _ l2-d2 /2d? y/\-R,^ /2S1 _ ^1 ^ ^2 _ ( ^ ^ C no Ta (1) va (2) suy r a : ^ = ^ 1,59 ; | = = ^ * 1,26 D E 13 Bai 1 H i n h 2.20a theo d u n g t i le : C h i can ve dUcing d i ciia h a i t r o n g ba t i a sang qua t h a u k i n h AOAB' cr> AOAB A F O r CO AFAB A'F O A'B' OA' AB OA A'B' or FO AB AB FA OA' ^ OF OA " O A - OF A'B' OA' AB OA B' Hinh 2.20a A ' = 150 cm = K h i d i c h u y e n v a t A B r a xa, t i a t i B I song song t r u e c h i n h k h o n g doi T a i v i t r i m i c i i a v a t , t a ve t h e m t i a t i B O t r u y e n t h i n g de c6 v i t r i m d i cua a n h TvC h i n h ve, so s a n h a n h m d i v i a n h c i i , t a suy r a t i n h c h a t a n h A ' B ' m i : - l a a n h t h a t sau t h a u k i n h - l a i gan t h a u k i n h so vdi a n h c u - nho h d n a n h cu Bai 1 D i e n trcl den : R4 = — = 12 Q M a c h : [(R3 n t R4)//R2] n t R j T i n h dUdc : Rtd = Q ; I^h = 1,9 A D e n sang h i n h t h u d n g : I = Do U = I2R2 Suy r a : U Rtd = 0,5 A U A B - I c h R l = dch - l34)R2, t i n h dUdC leh = A U A B = (Ich - 1.34)^2 = ( R + R4)l34> t i n h dUdc R3 = Q Ill Bai Ba d i e n t r d mac no'i t i e p : I nhiJ n h a u ^/^1 = I2RI;.^4 = I2R2;,#3=:I2R3 R2 Ri y/'i ' Rj //\ = Ba dien t r d mac song song ; U n h u n h a u Goi cong suat t i e u t h u d i e n ciia cac d i e n t r d R^, R2, R3 I a n l\Jdt la ^ , ^^5, J/'Q T a CO : ^ A = Ri = I"Ri =Ri 100 3U^ 2Ri Rq U2 U2 Rl R Theo t r e n : U R l + R o + Rq N2 = RlJ ( I u ^ lOORi 3^1 J ,^/> = 15 W = 3//'4 = W = 7,5 W 9U^ ^j = 9U^ lOORi lOO.r, = 60Q R2 = - R l = 20 Q ; R3 = R i = 120 Q Bai G o i n h i e t ciia he t h o n g k h i co can b a n g n h i e t I a n I , I I , I I I l a t j , t , t (mQ.Cg + m c ) ( t - t ^ ) = mc(t - t ) K h i CO can bang n h i e t I a n I I : mo.Co(ti - t g ) = m c ( t - t j ) K h i CO c a n b a n g n h i e t I a n I : (1) (2) V d i t j - t o = 6°C, t - t i = 4''C Tiif (2) - (1), t a t i m difdc : mQ.Co = 4mc hay - " ^ ^ = mc K h i CO can b a n g n h i e t I a n I I I : (mQ.Cy + 2mc) (ts - t2) = mc(t - i^) (3) 90 Tiif (3) - (2), t a t i m dUdc : tg - t = ^ = 2,9°C 112 j Bai5 Goi t h d i g i a n chuyen dong cua h a i ngifdi cho den liic gap n h a u l a t Ta CO BC^ = AC^ + A B ^ ^ (vg if = (V i tf + f : T h a y so'va g i a i phiTdng t r i n h , t a t i n h dUdc : t = 180 s Suy r a : AC = Vj t = 720 m Goi t h d i g i a n ngUdi I I c h u y e n dong t r e n doan dUdng B M la x Ta CO M D ^ = (AD - B M ) " + : ^ [v2(t - x)]- = (vi t - V2 x)^ + f T h a y so', k h a i t r i e n va r u t gon, t a t h u dUdc phUdng t r i n h : I 144x^ - 54tx + 291600 - t - = D i e u k i e n de phUdng t r i n h c6 n g h i e m x : A = (27t)2 - 144.(291600 - 9t^) > Suy r a : t > 144 s hay t ^ j n = 144 s 27t Khinay: x = — = 27 s => B M = V g x = 351 m A D = v j t = 576 m DE 14 Bai 1 Chon he q u y chieu : - A B Chieu dUdng t\i A den B ( H i n h 2.21) ^ ^ „ Hinh2.21 - 100- - Goc toa dp : t a i A - Goc t h d i g i a n : liic h a i xe k h d i h a n h t o i = to2 - + + PhUdng t r i n h c h u y e n dong ciia xe : X j = X Q I + V J (t - tgi) = 40t PhUdng t r i n h chuyen dong ciia xe : X = Xo2 + V ( t - to2) = 100 - 60t X Q A = ; (+) v, X Q B K h i h a i xe gap n h a u : Xi = X2 o 40t = 100 - 60t loot = 100 ^ t ^ (h) V i t r i gap n h a u each A : x = 40.1 = 40 k m V a y h a i xe gap n h a u sau gid c h u y e n dong va each A la 40 k m 113 Do t h i chuyen dong cua hai xe (Hinh 2.22) U(kni) Hai xe each 50 k m trUdc k h i gap vao luc : X2 - x i = 100 - 60t - 40t => 50 = 100 - 100 t o 100 t = 50 2,5 =^ t = 0,5 h Hinh 2.22 Bai Goi t la nhiet k h i binh C can bang nhiet PhUdng t r i n h can bang nhiet : Qtoa = Q t h u 3t = 90 ^ t = 30°C o m.c.(50-t) = m c ( t - ) o - t = t - » Goi la kho'i liidng nifdc ban dau c6 binh A ; t' : nhiet hon hdp Phifdng t r i n h can bang nhiet : Q t ^ j = Q t ^ u 10 m i = 20m m i ( - ) = 20m mi(50 - t') = 50m - 30m c=> m t ' - 30m = 50mi - m j t ' - 50m + mt' ce> m.c.(t' - 30) = (mi - m).c.(50 - t') mi m _ = Bai Ve h i n h (Hinh 2.23) - Goi OB la phap tuyen => OB la tia phan giac cua SOA Ta SOA = AOC + a = 90° + a CO : SOB = 90° + a SOA - Goc hdp bdi tia tdi va mat phang gUdng : - Goc SOM = 90° - SOB = 90° - 90° + a 90° - a Hinh 2.23 114 Ap dung : K h i a = ° ^ MOC = 90° + 20° I = 55° Bai4 TT2 Dien trd den : 192 = -^f^ =— = 20 Q TrUbng hcfp (Hinh 2.24) : V i U i = U2 ; I i = I2 ^ ^1 = ^2 = 7,2 W +^ TrUbng hdp (Hinh 2.25) : V i R ys^B mac no'i tiep vdi R2 : UAB _ RAB _ U2 R2 _ R^B U-U2 R2 ^ R AB = 1^2 Rj + Rg R i + R3 ^ R = 13,3 Q Dien trci den (Hinh 2.26) : R2 = H|m2 = R, = 30 Q ^^dm2 > 4,8 • R2 M V i RjyiN mSc no'i tiep vdi R4 : U4 12 12 Bai R4 ^ RMN U ^ J_ = _±_ = J_ + J_ ^ R4 R4 R4 RMN ^1 = 12 Q ^2 - Tim Ij va I2 : Ta CO dong dien di vao chot M va di chot N Do U = 4RA U4 = 3RA tijtc la : U C N > U D N hay Vc > V Q Nen dong dien di qua ampe ke A2 c6 chieu tu: C sang D U c N = UcD + U D N = R A = I2RA + 3RA ^ I2 = A Xet tai niit D ta CO : I i + I2 = I = I i + - A => I i = A - Tim R, RA : Ta viet phifdng t r i n h hieu dien the : UMN = UMD + UDN = 28 = 2RA + 3RA ^ R A = 5,6 Q TUdng t u ta cung c6 : U ^ N - U M C + U C N = 5R = 5,6 = ^ R = ^ 28 = R + 4.5,6 (vi IR = N C = ^ = m N Hinh 2.27 B T r o n g t h d i g i a n t , nguldi d i c h u y e n dUdc m o t doan dUdng B N = Z = v t T r o n g t h d i gian nay, bong cua d i n h d a u d i c h u y e n difdc m o t doan : /' = B C = B N + N C = ^ V a n toe d i c h u y e n cua bong t o i ciia d i n h d a u : /' ^ = T= 3v = 1,8 m/s Bai4 - K h i K i m d , K2 dong : R2 va R3 b i doan m a c h , d o n g d i e n c h i qua R j So'chi ciia ampe ke la : Ij = ^ = 0,4 A => R j = 15 Q - K h i K j dong, K2 md : R i va R2 b i doan m a c h , dong d i e n c h i qua R3 So'chi ciia ampe k e ' l a : Lj = ^ = , A => R3 = 30 Q K3 - K h i K j va K2 md : R j , R2, Ra mSc no'i t i e p So'chi ciia ampe ke la : I2 = U Ri + R o + R.> = , A =^ R o = 15 Q K h i K i va K o dong : R j , R2, R3 mflc song song So c h i cvia ampe ke la : I4 = — ^ = U 1 Ri Ro + Rq = lA 11' Bai T i n h d U d c c U d n g d o d o n g d i e n d i n h m i i c c i i a m o i d e n : Ii = , A ; l = 0,5A;l3=lA D o I = I2 + I3 n e n k h o n g t h e d i e u c h i n h Cdch de b a d e n s a n g b i n h t h u d n g : M a c RQ s o n g s o n g v d i d e n Uo = U i = V ; ^ = ^ l „ = I + I3 - I j = A = Q ^0 UX = U A B - U I - U = V ; R = ^ Cdch = + I = 1,5 A = 2Q : M a c RQ v a o A v a M UO = U A B - U = V ; R o = ^ I = l2 + l - I i = lA = 6Q UX = U A B - U - U I R^ = ^ = = V ; I ,= II= 0,5A 6a 118 MuC L U C Trang Ldi noi ddu Phdn mot ON T A P VA C U N G CO K I E N THlTC A - O n t a p v a c i i n g c o k i e n thijfc V a t l i 6, 7, I - Ccf hoc I I - N h i e t hoc 12 I I I - Q u a n g hoc 15 I V - D i e n hoc 18 B - O n t a p v a c u n g co k i e n thtfc V a t l i I - D i e n hoc 22 I I - D i e n t i f hoc 46 I I I - Q u a n g hoc 52 Phdn hai G l l T H I E U M O T S O D E T H I T U Y E N S I N H V A O L O P 10 A - De bai I - De t h i t u y e n s i n h vao 16p 10 k h o n g c h u y e n 71 I I - De t h i t u y e n s i n h vao 16p 10 c h u y e n 80 B - Hufofng d a n g i a i I - De t h i t u y e n s i n h vao 16p 10 k h o n g c h u y e n I I - De t h i t u y e n s i n h vao 16p 10 c h u y e n 88 105 TAI Chiu track nhiem xudt ban : C h u t i c h H o i d o n g T h a n h v i e n k i e m T o n g G i a m doc N d O T R A N A I T o n g b i e n t a p k i e m P h o T o n g G i a m doc NCJlivfeN Q U Y T H A O To chikc hdn thuo vd chiu tnich nhiem noi dunii •' Tong G i a m doc C T f l ' f'liui nr va I'hat t r i c n G i a o iliu- Phiftfng Nam I ' H A M VAN P h o T o n g l)ien t a p Bien PHIJNG T H A N H HONG I'HAN X U A N THANH tap Idn dau : HHY^N - D I N H T H I T H A I Bien Q U V N H tap tdi bdn : D I N H T H IT H A I Thie't Q U Y N H ke- Che bdn : N(;uYi:N K I M T O A N Trinh bay bia : NGUYftN M A N H H U N G Cong ty Co phan Dau t i / va Phat trien Giao due Phucng Nam Nha xuat ban Giao due Viet Nam giu" quyen eong bo tae pham ON TAP CUNG CO KIEN THUG VAT L I LIEU O N T H I V A O L O P 10 - V I E T T H E O C H U A N K I E N T H L / C , KT N A N G Ma so: T9L32p3-DTN S(Ydang ky K H X B : 20-2()13/CXB/100-1982/GD In 5.000 cuon, kho 17 x 24cm In tai Cong ty cd phan in Ben Tre In xong va nop liTu chieu thang nam 2013 120 C N G T Y C P H A N DAU TU VA PHAT TRIEN GIAO DgC P H U O N G NAM Dia ch?: 231 Nguyin van CC/, Quan 5, TP Ho Chf Minh Di$n tho^i: (08) 38 357 197 - Fax 38 350 002 Website : http://www.sachhoctro.com.vn MOflBANTIMOpC BO SACH ON THIVAO L(5fP 10 flEMG A N H I Ban doc c6 the mua sach tai cac Cong ty Sach - Thiet bj trUdng hoc d cac dja phUdng hoac cac ciTa hang sach cua Nha xuat ban Giao due Viet Nam : 187 Giang V6 ; 14/3 Nguyin Khanh Toan ; 232 Tay Sdn ; ] -Tai TP Ha Npi : 25 Han Thuyen ; 51 L6 Due ; 45 Hang Chuoi ; • 67B CCfa B I C ; 45 Pho Vpng ; ngo 385 Hoang Quoc Viet ] 78 Pasteur; 247 Hai Phong ; 71 Ly ThUdng Kiet i - Tai TP Da Ning : -Tai TP Ho Chi Minh, 2A Dinh Tien Hoang, quan ; 231 Nguyin Van CU ; 240 Tran Blnh Trpng, quan ; 116 Dinh Tien Hoang, phUdng 1, quan Binh Thanh - Tai TP Can Thd : 162D dUdng thang 2, quan Ninh Kieu J Website : www.nxbgd.vn UMIM

Ngày đăng: 22/07/2016, 00:16

TỪ KHÓA LIÊN QUAN

w