Điều chế và giải điều chế SSB
Trang 1TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP TPHCM
Khoa Công nghệ Điện tử
BÁO CÁO THÍ NGHIỆM VIỄN THÔNG
ĐIỀU CHẾ VÀ GIẢI ĐIỀU CHẾ SSB Nhóm 7
Trang 2Dùng công thức lượng giác
cos cos x y ± sin sin x y = cos( x m y )
Trang 3Giải điều chế SSB:
] 2 sin ) ( 2
cos ) ( [ 2
1 ) ( 2
1 cos
Trang 4Tạo nguồn dao động ở ngõ là các tín hiệu sóng sin, cos và xung TTL Các tín hiệu ở ngõ ra này ta có thể thay đổi tần số tín hiệu được thông qua nút điều chỉnh tần số f, và
độ rộng dãy tần này có thể thay đổi từ 300Hz-10Khz Ở bài này ta sử dụng nguồn tín hiệu ngõ ra là sóng cos(wt)
b. MULTIPLIER – bộ nhân:
Đơn giản là nhân 2 tín hiệu ngõ vào x(t) và y(t) kết quả thu được là tín hiệu tương tự
ở ngõ ra là k.x(t).y(t) sẽ bằng ½ tín hiệu ngõ vào ngăn hiện tượng tràn Chuyển mạch DC-AC được sử dụng loại bỏ thành phần DC khi đưa nút gạt về phía AC
c.QUADRAURE PHASE SPLITTER
Trang 5Có 2 đầu vào và 2 đầu ra, làm nhiệm vụ dịch pha 900 pha của tín hiệu đầu vào
d.ADDER – bộ cộng
Thực hiện cộng hai tín hiệu tương tự ở ngõ vào A và B đồng thời có khả năng điều chỉnh độ lợi thông qua G điều chỉnh cho A và g điều chỉnh cho B kết quả ngõ ra ta thu được tổng của hai tín hiệu GA+gB Độ lợi G,g có thể thay đổi được trong giới hạn 0 < (G,g) < 2
e.PHASE SHIFTER – bộ dịch pha
Trang 6Làm thay đổi pha giữa tín hiệu ngõ vào “IN” với tín hiệu ngõ ra “OUT” pha của tín hiệu có thể thay đổi từ 00 đến 1800 thông qua việc điều chỉnh 2 nút là COARSE và FINE.
- Băng thông BWSSB=fm
- Sóng mang phụ tín hiệu SSB từ 100KHz đến 500KHz
- Thông thường chọn 100KHz hay 200KHz
- Phạm vi ứng dung : dùng trong thông tin sóng ngắn ,hàng hải…
So sánh với điều chế AM
+ So với AM thì điều chế SSB phức tạp hơn
+ Băng thông SSB giảm phân nửa so với AM Tiết kiệm băng tần,
+ Vì chỉ phát phần công suất một biên nên công suất phát SSB
thấp hơn + Tỉ số S/N của điều chế SSB tốt hơn S/N của điều chế AM
PM, VCO với đầu ra là xung số cũng có thể tương tự có tốc độ chu kì xung của nó(FSK, PSK) hoặc có độ rộng xung được điều chế (PWM)
Trang 7_ Ngoài mạch còn có ổn định tần số cao, dải biến đổi điện áp của tần số theo điện ápvào rộng, đơn giản, dễ điều chỉnh và thuận lợi cho việc tổ hợp thành vi mạch Trong
phạm vi 1 MHz đến 50 MHz thường dùng các mạch dao động đa hài
Mạch VCO tiêu biểu_ Ta có đặc tuyến truyền đạt f0 (Vdk) được biểu diễn như sau:
Đặc tuyến truyền đạt f0 (Vdk) tiêu biểu của VCO_ Độ lợi chuyển đổi V đến f của VCO là:
_ Sơ đồ khối của VCO
Trang 8Thực hành
Sơ đồ đấu dây, vị trí các card :
Trang 9Tín hiệu tin tức ut 2kHz, tần số sóng mang tần số 100kHz
Tín hiệu đầu vào sau khi dịch pha 90 0 :
Trang 10Tín hiệu :
Tín hiệu song mang dịch pha
Trang 11Tín hiệu + :phổ tín hiệu ở biên dưới.
Tín hiệu + (phổ tín hiệu ở biên trên.
Trang 12Phổ và tín hiệu theo thời gian sau khi điều chế:(phổ ở biên dưới) Phổ: cos( - )
Phổ và tín hiệu theo thời gian sau khi điều chế:(phổ ở biên dưới) Phổ: cos(+ )
Giải điều chế SSB
Sơ đồ khối:
Trang 13Một bộ giải điều chế sản phẩm không phải là một bộ giải điều chế SSB theo nghĩahẹp Một bộ giải điều chế SSB thực sự có thể phân biệt giữa một dải biên dưới vàbiên trên.
Thí nghiệm này điều tra các loại pha giải điều chế, sơ đồ khối trong số đó được thểhiện trong hình 1
Bộ dịch pha 900 ở phía dưới - Q - nhánh của cấu trúc (khối bên trái) cần phải đưa
ra một bộ dịch pha 900 trên tất cả các tần số quan tâm Trong trường hợp này đây lànhững tín hiệu Như một 'bộ lọc' rất khó để nhận ra Một giải pháp thực tế là bộchia pha vuông góc - QPS - thể hiện trong khối bên phải Điều này duy trì sự dịchchuyển 900 giữa đầu ra của nó, mặc dù sự khác pha giữa một đầu vào và đầu rathay đổi theo tần số Sự thay đổi này có thể chấp nhận khi tín hiệu là lời nói
Lưu ý rằng lý tưởng cần có bộ lọc thông thấp giống hệt nhau trong mỗi đầu ra bộnhân Trong thực tế một bộ lọc thông thấp đơn đưa vào đầu ra tổng hợp
Ưu điểm thực tế của việc này là tiết kiệm của các thành phần (module) Một bất lợicủa việc này là các QPS sẽ được trình bày với các tín hiệu lớn hơn cần thiết tại đầuvào của nó - các thành phần tần số không mong muốn tổng cũng như các thànhphần tần số khác biệt mong muốn Các thành phần không mong muốn làm tăngnguy cơ quá tải
2. Các card và chức năng các card:
a. MULTIPLIER ( bộ nhân ):
Hai tín hiệu đầu vào tương tự X(t) và Y(t) có thể được nhân với nhau Kết quảđược tỷ lệ bởi một yếu tố khoảng ½, với đầu vào tiêu chuẩn
Trang 14• Cách s ử d ụ ng :
Chuyển đổi nối đầu vào có thể được sử dụng để loại bỏ các thành phần đầu vào DCbằng cách chuyển đổi nối AC Cần lưu ý rằng bất kỳ thành phần DC ở đầu ra sẽkhông được gỡ bỏ
Yếu tố "k" (một tham số tỷ lệ kết hợp với "bốn phần tư" bộ nhân) là khoảng mộtnửa Nó được định nghĩa đối với đầu ra từ mô đun và có thể được đo bằng thựcnghiệm
• T hông s ố k ỹ thu ậ t cơ b ả n :
Băng thông khoảng 1MHz
Trang 15• Cách s ử d ụ ng :
Sự quan tâm phải được thực hiện khi điều chỉnh độ lợi để tránh quá tải các module.Quá tải sẽ không gây ra bất kỳ thiệt hại, nhưng nó có nghĩa là hoạt động phi tuyếntính, điều đó có thể tránh được trong các hệ thống tương tự Bộ cộng có khả năngcung cấp một tín hiệu tốt quá mức tiêu chuẩn tham khảo, 4V đỉnh – đỉnh, cho mộtđầu vào tiêu chuẩn
Bộ cộng cũng có thể được sử dụng như một bộ khuếch đại bình thường bằng cách
sử dụng chỉ một đầu vào và chỉnh độ lợi của các đầu vào khác đến mức tối thiểu.Không cần thiết tiếp đất đầu vào không sử dụng
Lưu ý rằng độ lợi G và g là tiêu cực Tất cả đầu vào và đầu ra nối DC
• T hông s ố k ỹ thu ậ t cơ b ả n :
Dãi độ lợi 0 < G <2;
0 < g <2;
Băng thông khoảng 1MHz
Đầu ra DC ngoài qui định < 10mV, đầu vào hở mạch
Trang 16c. QUADRATURE PHASE SPLITTER ( bộ chia pha vuông góc ):
Khi tín hiệu tương tự giống nhau được áp dụng cho cả hai đầu vào, hai tín hiệu đầu
ra sẽ khác nhau trong pha 90 độ Các mạng bộ chia pha là băng rộng, thường baogồm khoảng từ 200Hz đến 10kHz
• Cách s ử d ụ ng :
Các bộ chia pha vuông góc bao gồm hai pha dịch chuyển mạng băng rộng Cácmạng pha đáp ứng rất khác nhau với tần số một cách miễn phí, đưa ra một sự khácbiệt pha 90 độ giữa các đầu ra, trong một dải tần số rộng
Trong giao tiếp các ứng dụng quan trọng nhất là các thế hệ và giải điều chế củamột dải biên của "phương pháp pha"
• T hông s ố k ỹ thu ậ t cơ b ả n :
Dải tần số 200Hz đến 10kHz thường
Pha đáp ứng 90 độ giữa đầu ra, cho tín hiệu đầu vào giống nhau cả hai mạng
d. TUNEABLE LPF ( bộ lọc thông thấp có thể chỉnh được ):
Trang 17Tần số cắt của bộ lọc LowPass này có thể thay đổi bằng cách sử dụng điều khiểnTUNE Hai dải tần số, WIDE và NORMAL, có thể được lựa chọn bởi một chuyểnđổi ở mặt trước Bộ điều khiển GAIN cho phép biên độ tín hiệu được thay đổi nếucần thiết.
NORMAL cung cấp điều khiển chính xác hơn so với băng tần âm thanh thấp, được
sử dụng cho các kênh tin viễn thông Phạm vi WIDE mở rộng phạm vi của bộ lọc đến trên 10kHz Đầu ra CLK cung cấp một dấu hiệu của tần số cắt của bộ lọc
• T hông s ố k ỹ thu ậ t cơ b ả n cho module TLPF V1 – V3:
Bộ lọc Dãy 900 Hz < NORMAL < 5 kHz và
2,0 kHz < WIDE < 12 kHz, liên tục thay đổi theo từng phạm vi
Trang 18Lọc Thứ tự thứ 7, Elliptic
Sự suy giảm băng (tần) dừng > 50dB và dải thông gợn sóng < 0.5dB
• T hông s ố k ỹ thu ậ t cơ b ả n cho module TLPF V4:
Bộ lọc Dãy 200 Hz < NORMAL < 5 kHz và
200 kHz < WIDE < 12 kHz, liên tục thay đổi theo từng phạm vi
Lọc Thứ tự thứ 5, Elliptic
Sự suy giảm băng (tần) dừng > 50dB và dải thông gợn sóng < 0.5dB
Điện áp đầu vào tối đa +5V đến -5V (TTL cấp tín hiệu đầu vào là chấp nhận được)
e. VCO:
Chức năng module bộ dao động điều khiển áp trong hai chế độ: hoặc như là một bộdao động điều khiển áp với điện áp đầu vào tương tự hoặc như một máy phát FSKvới đầu vào kỹ thuật số Cả hai chế độ có hai dải tần số hoạt động được lựa chọnbởi dãi một chuyển đổi Tần số VCO và độ nhạy đầu vào có thể được điều khiển từbảng điều khiển phía trước
Trang 19• Cách s ử d ụ ng VCO:
HOẠT ĐỘNG VCO TIÊU CHUẨN
Tần số VCO đầu ra được điều khiển bởi một điện áp đầu vào tương tự Điện áp đầuvào, Vin, được thu nhỏ - khuếch đại - bởi nút điều khiển GAIN phía trước bảng.Một điện áp DC có thể được thêm vào Vin trong nội bộ, do đó thiết lập bắt đầuhoặc tần số trung tâm, f0 Các tần số trung tâm được định nghĩa là tần số VCO đầu
ra, khi không có điện áp được áp dụng cho đầu nối Vin Các đầu vào Vin là nội bộgắn với mặt đất nếu không có tín hiệu được áp dụng
Đèn LED quá tải Vin được thắp sáng khi tổng của các điện áp - thu nhỏ Vin cộngtần số trung tâm DC offset - vượt quá giới hạn hoạt động nội bộ của dao động.Giảm GAIN - quay chiều kim đồng hồ - và / hoặc thay đổi các tần số trung tâm, f0,
để tắt các đèn LED
Việc chuyển đổi dải tần số lựa chọn giữa HI hay băng sóng mang và LO hay băng
âm thanh Cả hai đầu ra sóng sin và kỹ thuật số có sẵn
Trang 20HOẠT ĐỘNG VCO ĐẶC BIỆT - KIỂM SOÁT TỐT TẦN SỐ
Trong một số ứng dụng, kiểm soát tốt có thể được yêu cầu trên tần số đầu ra củaVCO Điều này có thể dễ dàng đạt được bằng cách làm theo bốn bước sau:
MODULES YÊU CẦU: VCO và BIẾN ĐỔI DC
Bước 1 - Thiết lập đầu ra BIẾN ĐỔI DC module gần bằng không (đánh dấu númtại vị trí 12 giờ)
Bước 2.1 - Xoay nút điều khiển GAIN của VCO tới không, hoàn toàn ngược chiềukim đồng hồ
Bước 2.2 - Bây giờ, quay nút điều khiển GAIN lên, chiều kim đồng hồ, chỉ mộtchút (chỉ một vài độ)
Bước 3 - Cài đặt tần số đầu ra VCO module càng gần càng tốt đến các tần số quantâm Sử dụng núm tần số điều chỉnh, f0 Sử dụng bộ đếm tần số để đo tần số đầu racủa VCO
Bước 4 - Cuối cùng, vá lỗi đầu ra BIẾN ĐỔI DC module đến nút điều khiển đầuvào tần số VCO module, Vin, với một dẫn vá lỗi tiêu chuẩn
NÚT ĐIỀU KHIỂN tần số TỐT của module VCO bây giờ được thực hiện bằngcách chuyển núm điều chỉnh điện áp BIẾN ĐỔI DC module
• Cách s ử d ụ ng FSK:
Một PCB gắn kết chuyển thanh trượt lựa chọn giữa phương thức hoạt động FSK vàVCO Hai tần số ra-vào, FSK1 và FSK2, (MARK và SPACE), được thiết lập bằngcách thay đổi PCB gắn kết, ngón tay điều chỉnh xén Khi ở chế độ VCO, chuyểnđổi dải tần số lựa chọn giữa HI hay băng sóng mang và LO hay băng âm thanh.Các dữ liệu đầu vào kỹ thuật số chỉ chấp nhận các tín hiệu mức TTL Cả hai đầu rasóng sin và kỹ thuật số có sẵn
GAIN và CENTER FREQ, f0, điều khiển và đầu nối Vin không được sử dụng ởchế độ FSK
• T hông s ố k ỹ thu ậ t cơ b ả n :
Trang 21Dãy tần số 1.5KHz < LO < 17kHz; sóng sin và TTL
(<300Hz với điện áp đầu vào từ bên ngoài, Vin)
70kHz < HI < 130kHz; sóng sin và TTL
Điện áp đầu vào -3V < Vin <3V
LED chỉ thị giới hạn quá tải Vvco> +- 3V; Vvco là điện áp nội bộ cuối cùng ápdụng cho các mạch VCO
Trang 22Mô phỏng
Tín hiệu đầu vào sin
Tín hiệu
Trang 23Tín hiệu
Trang 24Tín hiệu đầu ra sau khi qua bộ lọc: các tần số cao sẽ được loại bỏ chỉ còn lại tần số
thấp của tín hiệu.