Study of the spiramycin biosynthesis and its regulation in streptomyces ambofaciens

247 593 0
Study of the spiramycin biosynthesis and its regulation in streptomyces ambofaciens

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

N°D’ORDRE UNIVERSITE DE PARIS-SUD XI UFR SCIENTIFQUE D’ORSAY THESE Présentée pour obtenir LE GRADE DE DOCTEUR EN SCIENCE DE L’UNIVERSITE DE PARIS-SUD XI PAR HOANG CHUONG NGUYEN SUJET : Study of the spiramycin biosynthesis and its regulation in Streptomyces ambofaciens DIRECTEURS DE THESE Pr Thuy Duong HO HUYNH Dr Jean-Luc PERNODET Soutenue publiquement le 29 Septembre 2009 JURY Pr Armel GUYONVARCH Pr Pierre LEBLOND Pr Florence MATHIEU Pr Philippe JACQUES Dr Jean-Luc PERNODET Pr Thuy Duong HO HUYNH Président Rapporteur Rapporteur Examinateur Examinateur Examinateur N°D’ORDRE UNIVERSITE DE PARIS-SUD XI UFR SCIENTIFQUE D’ORSAY THESE Présentée pour obtenir LE GRADE DE DOCTEUR EN SCIENCE DE L’UNIVERSITE DE PARIS-SUD XI PAR HOANG CHUONG NGUYEN SUJET : Study of the spiramycin biosynthesis and its regulation in Streptomyces ambofaciens DIRECTEURS DE THESE Pr Thuy Duong HO HUYNH Dr Jean-Luc PERNODET Soutenue publiquement le 29 Septembre 2009 JURY Pr Armel GUYONVARCH Pr Pierre LEBLOND Pr Florence MATHIEU Pr Philippe JACQUES Dr Jean-Luc PERNODET Pr Thuy Duong HO HUYNH Président Rapporteur Rapporteur Examinateur Examinateur Examinateur Remerciements J’ecris ces remerciements en Français parce que, simplement, les gens auxquels je tiens exprimer ma gratitude sont français ou bien qu’ils connaissent bien la langue française En plus, je trouve que le français est une langue qui convient bien pour exprimer des sentiments La plupart de ce travail a été réalisé dans le Laboratoire de Microbiologie Moléculaire des Actinomycètes de l’Institut de Génétique et Microbiologie, UMR CNRS 8621 en collaboration avec le Laboratoire de Génétique de l’Université des Sciences Naturelles Ho Chi Minh Ville dans le cadre d’une thèse en co-tutelle Tout d’abord, je suis très reconnaissant mes directeurs de thèse, Madame Thuy Duong Ho Huynh et Monsieur Jean-Luc Pernodet Madame Ho Huynh a initié cette collaboration, m’a donné la possibilité de venir travailler en France et m’a aidé pour toutes les démarches administratives Elle a toujours suivi mon travail et m’a conseillé Je tiens remercier tout particulièrement Monsieur Pernodet pour la façon dont il a dirigé ma thèse : sa confiance en moi, sa grande disponibilité, sa générosité, son enthousiasme et ses connaissances qu’il a partagées avec moi Grâce lui, j’ai pu également découvrir pleinement la vie ‘‘à la française’’ et passer des moments mémorables un peu partout en France, en Angleterre et en Allemagne Je remercie le Professeur Florence Mathieu et le Professeur Pierre Leblond de me faire l’honneur d’accepter d’être rapporteurs de cette thèse Je remercie le Professeur Philippe Jacques et le Professeur Armel Guyonvarch d’avoir accepté de participer ce jury d’examen Je tiens remercier mes deux tuteurs de thèse, le Professeur Armel Guyonvarch et le Docteur Philippe Mazodier pour avoir suivi ce travail et pour leurs conseils Je remercie aussi le conseiller aux thèses, le Docteur Marie-José Daboussi et le directeur de l’école doctorale GGC, le Professeur Giuseppe Baldacci pour leurs encouragements, le suivi de mon travail et leur soutien J’exprime mes profonds remerciements tous les membres passés ou présents du Laboratoire de Microbiologie Moléculaire des Actinomycètes, du Laboratoire de Métabolisme Energétique des Streptomyces et de l’institut de Génétique et Microbiologie : Fatma Karray pour m’avoir guidé quand j’ai débuté mon travail de thèse, Sylvie Lautru pour sa grande aide aussi bien pour les expériences, en particulier celles de chimie analytique, que pour la rédaction, Muriel Decraene pour toutes les formalités françaises compliquées pour lesquelles je ne sais pas me débrouiller sans elle, et aussi tous les autres pour leurs conseils, leur sympathie et leur soutien, Karine Tuphile, Annick Friedmann, Alain Raynal, Michel Cassan, Claude Gerbaud, Emmanuelle Darbon-Rongère, Marie-Hélène Blondelet-Rouault, Josette Gagnat, Catherine Esnault, Marie-Joëlle Virolle, Sylvain Pendino, Cécile Martel, Jean-Denis Le Manach, Thierry Locatelli Je tiens également remercier les jeunes des labos, Sarka, Maud, Nicolas, Céline, Aleksandra, Noriyasu, Aleksei, Hanane, Amélie, Fabien, Emilie, Florence, Hasna, Delin qui ont suivi au fil de ma thèse mes espoirs aussi bien que mes découragements et m’ont fait bénéficier de leur aide, leur soutien constant et leur bonne humeur Ces quatre dernières années ont été riches en moments de convivialité Les nombreux barbecues, les sorties (culturelles et/ou gastronomiques) et les soirées de fêtes resteront des souvenirs inoubliables REMERCIEMENTS Chapter I: INTRODUCTION The genus Streptomyces 1.1.Taxonomy 1.2 The genome of Streptomyces 1.2.1 Streptomyces chromosomes 1.2.2 Streptomyces extrachromosomal elements 1.2.3 Streptomyces phages 1.3 Morphological development of Streptomyces 1.4 Ecology 6 8 12 13 13 18 2.The biosynthesis of secondary metabolites by Streptomyces and related actinobacteria 2.1 The importance of secondary metabolites for medicine and agriculture 2.2 Biological activities of secondary metabolites from Streptomyces and related actinobacteria 2.2.1 Antibacterial and antifungal agents 2.2.2 Antitumor agents 2.2.3 Enzymes inhibitors 2.2.4 Immunosuppressants 2.2.5 Insecticides and antiparasitic drugs 2.2.6 Herbicides 2.3 The genetics of secondary metabolism in Streptomyces 2.3.1 Initial genetic studies of secondary metabolism in S coelicolor 2.3.2 The isolation of secondary metabolites biosynthetic gene clusters in Streptomyces 2.4 The biosynthesis of polyketides 2.4.1 The assembly-line enzymology of polyketide synthases 2.4.2 The different types of PKSs 2.4.2.1 Type I PKS 2.4.2.2 Type II PKS 2.4.2.3 Type III PKS 2.5 The biosynthesis of nonribosomal peptides 2.6 The regulation of secondary metabolism in Streptomyces 2.6.1 Multiple factors influence the onset of secondary metabolism 2.6.2 Gowth rate and nutriment limitation 2.6.3 Diffusible signalling molecules 2.6.4 Regulatory proteins controlling secondary metabolism in Streptomyces 23 23 25 25 26 27 28 29 29 29 31 31 33 33 36 37 38 40 40 41 43 45 Macrolide antibiotics and their biosynthesis in Actinobacteria 3.1 Definition and classification of macrolide antibiotics 3.2 The mode of action of macrolide antibiotics 3.3 Resistance to macrolide antibiotics 3.3.1 Target modification 3.3.2 Efflux of macrolides 3.3.3 Inactivation of macrolides 3.4 Biosynthesis of macrolides 3.4.1 Biosynthesis of the macrolactone ring 3.4.2 Biosynthesis of the sugars 3.4.3 Tailoring reactions 3.4.4 Enzymes involved in glycosylation during macrolide biosynthesis 3.5 Combinatorial biosynthesis of new macrolide antibiotics 3.5.1 Combinatorial biosynthesis of the macrolactone ring 3.5.2 Modification of the glycosylation pattern through combinatorial biosynthesis 3.6 The regulation of macrolide biosynthesis 3.6.1 Regulation of erythromycin biosynthesis 3.6.2 Regulation of methymycin/pikromycin biosynthesis 3.6.3 Regulation of tylosin biosynthesis 3.7 Spiramycin biosynthesis in S ambofaciens 47 47 50 52 53 54 54 55 55 57 58 60 62 63 66 68 68 69 70 72 Chapter II: GLYCOSYLATION STEPS DURING SPIRAMYCIN BIOSYNTHESIS IN STREPTOMYCES AMBOFACIENS: INVOLVEMENT OF THREE GLYCOSYLTRANSFERASES AND TWO AUXILIARY PROTEINS 75 Chapter III: A POST-PKS PLATENOLIDE KETOREDUCTASE IS INVOLVED IN SPIRAMYCIN BIOSYNTHESIS IN STREPTOMYCES AMBOFACIENS 103 Chapter IV: REGULATION OF SPIRAMYCIN BIOSYNTHESIS IN STREPTOMYCES AMBOFACIENS 122 22 22 Chapter V: TRANSCRIPTIONAL ORGANIZATION OF THE SPIRAMYCIN CLUSTER AND ACTIVITIES OF THE TRANSCRIPTIONAL ACTIVATORS SRMR AND SRMS 151 GENERAL CONCLUSIONS 176 RESUME DE LA THESE EN FRANÇAIS 182 REFERENCES 200 Lederberg, J (2000) Infectious history Science 288, 287-293 Lee, Y J., Kitani, S., Kinoshita, H & Nihira, T (2008) Identification by gene deletion analysis of barS2, a gene involved in the biosynthesis of gamma-butyrolactone autoregulator in Streptomyces virginiae Arch Microbiol 189, 367-374 Lin, Y S., Kieser, H M., Hopwood, D A & Chen, C W (1993) The chromosomal DNA of Streptomyces lividans 66 is linear Mol Microbiol 10, 923-933 Lina, G., Piemont, Y., Godail-Gamot, F., Bes, M., Peter, M O., Gauduchon, V., Vandenesch, F & Etienne, J (1999) Involvement of Panton-Valentine leukocidinproducing Staphylococcus aureus in primary skin infections and pneumonia Clin Infect Dis 29, 1128-1132 Linton, K J., Jarvis, B W & Hutchinson, C R (1995) Cloning of the genes encoding thymidine diphosphoglucose 4,6-dehydratase and thymidine diphospho-4-keto-6deoxyglucose 3,5-epimerase from the erythromycin-producing Saccharopolyspora erythraea Gene 153, 33-40 Liu, M & Douthwaite, S (2002) Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy Proc Natl Acad Sci U S A 99, 14658-14663 Liu, X H., Zhao, L B., She, Z G & Lin, Y C (2004) Recent progress in bioactive metabolites of marine microorganisms Chi J Antibiot 29, 492-510 Lombo, F., Olano, C., Salas, J A & Mendez, C (2009) Chapter 11 Sugar biosynthesis and modification Methods Enzymol 458, 277-307 Lomovskaya, N D., Chater, K F & Mkrtumian, N M (1980) Genetics and molecular biology of Streptomyces bacteriophages Microbiol Rev 44, 206-229 Lu, W., Leimkuhler, C., Gatto, G J., Jr., Kruger, R G., Oberthur, M., Kahne, D & Walsh, C T (2005) AknT is an activating protein for the glycosyltransferase AknS in Laminodeoxysugar transfer to the aglycone of aclacinomycin A Chem Biol 12, 527-534 MacNeil, D J., Gewain, K M., Ruby, C L., Dezeny, G., Gibbons, P H & MacNeil, T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector Gene 111, 61-68 Malpartida, F & Hopwood, D A (1984) Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host Nature 309, 462-464 Marchler-Bauer, A & Bryant, S H (2004) CD-Search: protein domain annotations on the fly Nucleic Acids Res 32, W327-331 Marsh, P & Wellington, E M (1994) Molecular ecology of filamentous actinomycetes in soil Martin, J F (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story J Bacteriol 186, 5197-5201 211 Martinez, J L (2008) Antibiotics and antibiotic resistance genes in natural environments Science 321, 365-367 Mazodier, P., Thompson, C & Boccard, F (1990) The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes Mol Gen Genet 222, 431-434 McCabe, R E & Oster, S (1989) Current recommendations and future prospects in the treatment of toxoplasmosis Drugs 38, 973-987 McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M & Ashley, G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products Proc Natl Acad Sci U S A 96, 1846-1851 McDowall, K J., Thamchaipenet, A & Hunter, I S (1999) Phosphate control of oxytetracycline production by Streptomyces rimosus is at the level of transcription from promoters overlapped by tandem repeats similar to those of the DNA-binding sites of the OmpR family J Bacteriol 181, 3025-3032 McGuire, J M., Bunch, R L., Anderson, R C., Boaz, H E., Flynn, E H., Powell, H M & Smith, J W (1952) [Ilotycin, a new antibiotic.] Schweiz Med Wochenschr 82, 1064-1065 Melancon, C E., 3rd, Takahashi, H & Liu, H W (2004) Characterization of tylM3/tylM2 and mydC/mycB pairs required for efficient glycosyltransfer in macrolide antibiotic biosynthesis J Am Chem Soc 126, 16726-16727 Mendelson, R & Balick, M J (1995) The value of undiscovered pharmaceuticals in tropical forests Econ Bot 49, 223-228 Mendez, C & Salas, J A (2001a) The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms Res Microbiol 152, 341-350 Mendez, C & Salas, J A (2001b) Altering the glycosylation pattern of bioactive compounds Trends Biotechnol 19, 449-456 Menninger, J R (1985) Functional consequences of binding macrolides to ribosomes J Antimicrob Chemother 16 Suppl A, 23-34 Menzella, H G., Reid, R., Carney, J R., Chandran, S S., Reisinger, S J., Patel, K G., Hopwood, D A & Santi, D V (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes Nat Biotechnol 23, 11711176 Miller, V L & Mekalanos, J J (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR J Bacteriol 170, 2575-2583 Miyajima, K., Tanaka, F., Takeuchi, T & Kuninaga, S (1998) Streptomyces turgidiscabies sp nov Int J Syst Bacteriol 48 Pt 2, 495-502 Moazed, D & Noller, H F (1987) Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA Biochimie 69, 879-884 212 Moore, B S., Hertweck, C., Hopke, J N., Izumikawa, M., Kalaitzis, J A., Nilsen, G., O'Hare, T., Piel, J., Shipley, P R., Xiang, L., Austin, M B & Noel, J P (2002) Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone J Nat Prod 65, 1956-1962 Morimoto, S., Takahashi, Y., Watanabe, Y & Omura, S (1984) Chemical modification of erythromycins I Synthesis and antibacterial activity of 6-O-methylerythromycins A J Antibiot (Tokyo) 37, 187-189 Morimoto, S., Misawa, Y., Asaka, T., Kondoh, H & Watanabe, Y (1990a) Chemical modification of erythromycins VI Structure and antibacterial activity of acid degradation products of 6-O-methylerythromycins A J Antibiot (Tokyo) 43, 570-573 Morimoto, S., Nagate, T., Sugita, K., Ono, T., Numata, K., Miyachi, J., Misawa, Y., Yamada, K & Omura, S (1990b) Chemical modification of erythromycins III In vitro and in vivo antibacterial activities of new semisynthetic 6-O-methylerythromycins A, TE-031 (clarithromycin) and TE-032 J Antibiot (Tokyo) 43, 295-305 Morita, R (1985) Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state Moss, S J., Martin, C J & Wilkinson, B (2004) Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity Nat Prod Rep 21, 575-593 Mulichak, A M., Losey, H C., Walsh, C T & Garavito, R M (2001) Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics Structure 9, 547-557 Nakano, H., Takehara, E., Nihira, T & Yamada, Y (1998) Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis J Bacteriol 180, 33173322 Nakano, Y., Yoshida, Y., Yamashita, Y & Koga, T (1995) Construction of a series of pACYC-derived plasmid vectors Gene 162, 157-158 Newman, D J & Cragg, G M (2007) Natural products as sources of new drugs over the last 25 years J Nat Prod 70, 461-477 Newman, D J., Cragg, G M & Snader, K M (2003) Natural products as sources of new drugs over the period 1981-2002 J Nat Prod 66, 1022-1037 Nissen, P., Hansen, J., Ban, N., Moore, P B & Steitz, T A (2000) The structural basis of ribosome activity in peptide bond synthesis Science 289, 920-930 Noble, J A., Innis, M A., Koonin, E V., Rudd, K E., Banuett, F & Herskowitz, I (1993) The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain Proc Natl Acad Sci U S A 90, 1086610870 Noguchi, N & Katayama, J (1998) Expression in Pseudomonas aeruginosa of an erythromycin-resistance determinant that encodes the mphA gene for macrolide 2'phosphotransferase I from Escherichia coli Biol Pharm Bull 21, 191-193 213 Noguchi, N., Tamura, Y., Katayama, J & Narui, K (1998) Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus FEMS Microbiol Lett 159, 337-342 Noller, H F (1991) Ribosomes Drugs and the RNA world Nature 353, 302-303 Nunez, L E., Mendez, C., Brana, A F., Blanco, G & Salas, J A (2003) The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya Chem Biol 10, 301-311 Oh, S H & Chater, K F (1997) Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms J Bacteriol 179, 122-127 Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M & Horinouchi, S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350 J Bacteriol 190, 4050-4060 Ohnuki, T., Imanaka, T & Aiba, S (1985) Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance J Bacteriol 164, 8594 Oliynyk, M., Samborskyy, M., Lester, J B., Mironenko, T., Scott, N., Dickens, S., Haydock, S F & Leadlay, P F (2007) Complete genome sequence of the erythromycinproducing bacterium Saccharopolyspora erythraea NRRL23338 Nat Biotechnol 25, 447-453 Omoto, S., Iwamatsu, K., Inouye, S & Niida, T (1976) Modifications of a macrolide antibiotic midecamycin (SF-837) I Synthesis and structure of 9,3''-diacetylmidecamycin J Antibiot (Tokyo) 29, 536-548 Omura, S (1984) Macrolide antibiotics : Chemistry, Biology, and Practice: Academic Press, Inc Omura, S., Sano, H & Sunazuka, T (1985) Structure activity relationships of spiramycins J Antimicrob Chemother 16 Suppl A, 1-11 Omura, S., Ikeda, H., Matsubara, H & Sakakane, N (1980) Hybrid biosynthesis and absolute configuration of macrolide antibiotic M-4365 G1 J Antibiot (Tokyo) 33, 1570-1572 Omura, S., Sadakane, N., Tanaka, Y & Matsubara, H (1983) Chimeramycins: new macrolide antibiotics produced by hybrid biosynthesis J Antibiot (Tokyo) 36, 927-930 Omura, S., Iwai, Y., Takahashi, Y., Sadakane, N., Nakagawa, A., Oiwa, H., Hasegawa, Y & Ikai, T (1979) Herbimycin, a new antibiotic produced by a strain of Streptomyces The journal of Antibiotics 32, 255-261 O'Rourke, S., Wietzorrek, A., Fowler, K., Corre, C., Challis, G L & Chater, K F (2009) Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor Mol Microbiol 71, 763-778 Ounissi, H & Courvalin, P (1985) Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli Gene 35, 271-278 214 Pandza, K., Pfalzer, G., Cullum, J & Hranueli, D (1997) Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome Microbiology 143 ( Pt 5), 1493-1501 Pang, X., Aigle, B., Girardet, J M., Mangenot, S., Pernodet, J L., Decaris, B & Leblond, P (2004) Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome Antimicrob Agents Chemother 48, 575-588 Perez, M., Lombo, F., Baig, I., Brana, A F., Rohr, J., Salas, J A & Mendez, C (2006) Combinatorial biosynthesis of antitumor deoxysugar pathways in Streptomyces griseus: Reconstitution of "unnatural natural gene clusters" for the biosynthesis of four 2,6-Ddideoxyhexoses Appl Environ Microbiol 72, 6644-6652 Pernodet, J L., Simonet, J M & Guerineau, M (1984) Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2 Mol Gen Genet 198, 35-41 Pernodet, J L., Alegre, M T., Blondelet-Rouault, M H & Guerineau, M (1993) Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms J Gen Microbiol 139, 1003-1011 Pernodet, J L., Fish, S., Blondelet-Rouault, M H & Cundliffe, E (1996) The macrolidelincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans Antimicrob Agents Chemother 40, 581-585 Pernodet, J L., Gourmelen, A., Blondelet-Rouault, M H & Cundliffe, E (1999) Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens Microbiology 145 ( Pt 9), 2355-2364 Pettis, G S & Cohen, S N (1994) Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer Mol Microbiol 13, 955-964 Pinnert-Sindico, S (1954) Une nouvelle espèce de Streptomyces productrice d'antibiotiques: Streptomyces ambofaciens n sp Ann Inst Pasteur (Paris) 87, 702-707 Portillo, A., Ruiz-Larrea, F., Zarazaga, M., Alonso, A., Martinez, J L & Torres, C (2000) Macrolide resistance genes in Enterococcus spp Antimicrob Agents Chemother 44, 967971 Possoz, C., Ribard, C., Gagnat, J., Pernodet, J L & Guerineau, M (2001) The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer Mol Microbiol 42, 159-166 Poulsen, S M., Kofoed, C & Vester, B (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin J Mol Biol 304, 471-481 Quintana, E T., Wierzbicka, K., Mackiewicz, P., Osman, A., Fahal, A H., Hamid, M E., Zakrzewska-Czerwinska, J., Maldonado, L A & Goodfellow, M (2008) Streptomyces sudanensis sp nov., a new pathogen isolated from patients with actinomycetoma Antonie Van Leeuwenhoek 93, 305-313 215 Quiros, L M., Aguirrezabalaga, I., Olano, C., Mendez, C & Salas, J A (1998) Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus Mol Microbiol 28, 1177-1185 Raweesri, P., Riangrungrojana, P & Pinphanichakarn, P (2008) alpha-LArabinofuranosidase from Streptomyces sp PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues Bioresour Technol 99, 8981-8986 Raynal, A., Karray, F., Tuphile, K., Darbon-Rongere, E & Pernodet, J L (2006) Excisable cassettes: new tools for functional analysis of Streptomyces genomes Appl Environ Microbiol 72, 4839-4844 Recio, E., Aparicio, J F., Rumbero, A & Martin, J F (2006) Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes Microbiology 152, 3147-3156 Recio, E., Colinas, A., Rumbero, A., Aparicio, J F & Martin, J F (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis J Biol Chem 279, 41586-41593 Redenbach, M., Kieser, H M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H & Hopwood, D A (1996) A set of ordered cosmids and a detailed genetic and physical map for the Mb Streptomyces coelicolor A3(2) chromosome Mol Microbiol 21, 77-96 Redenbach, M., Flett, F., Piendl, W., Glocker, I., Rauland, U., Wafzig, O., Kliem, R., Leblond, P & Cullum, J (1993) The Streptomyces lividans 66 chromosome contains a MB deletogenic region flanked by two amplifiable regions Mol Gen Genet 241, 255-262 Reeves, A R., English, R S., Lampel, J S., Post, D A & Vanden Boom, T J (1999) Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea J Bacteriol 181, 7098-7106 Reuther, J., Wohlleben, W & Muth, G (2006) Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae Plasmid 55, 201-209 Richardson, M A., Kuhstoss, S., Solenberg, P., Schaus, N A & Rao, R N (1987) A new shuttle cosmid vector, pKC505, for streptomycetes: its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library Gene 61, 231-241 Richardson, M A., Kuhstoss, S., Huber, M L., Ford, L., Godfrey, O., Turner, J R & Rao, R N (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis J Bacteriol 172, 3790-3798 Rigali, S., Derouaux, A., Giannotta, F & Dusart, J (2002) Subdivision of the helix-turnhelix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies J Biol Chem 277, 12507-12515 Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A W., Hopwood, D A & van Wezel, G P (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces EMBO Rep 9, 670-675 216 Rigali, S., Nothaft, H., Noens, E E., Schlicht, M., Colson, S., Muller, M., Joris, B., Koerten, H K., Hopwood, D A., Titgemeyer, F & van Wezel, G P (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development Mol Microbiol 61, 1237-1251 Rix, U., Fischer, C., Remsing, L L & Rohr, J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis Nat Prod Rep 19, 542-580 Roberts, M C., Sutcliffe, J., Courvalin, P., Jensen, L B., Rood, J & Seppala, H (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants Antimicrob Agents Chemother 43, 2823-2830 Rodriguez, L., Aguirrezabalaga, I., Allende, N., Brana, A F., Mendez, C & Salas, J A (2002) Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms A tool to produce novel glycosylated bioactive compounds Chem Biol 9, 721-729 Roessner, C A & Scott, A I (1996) Genetically engineered synthesis of natural products: from alkaloids to corrins Annu Rev Microbiol 50, 467-490 Ross, J & Abate, M A (1990) Topical vancomycin for the treatment of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus conjunctivitis Dicp 24, 1050, 1053 Ross, J I., Eady, E A., Cove, J H & Baumberg, S (1995) Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact Gene 153, 93-98 Ruan, X., Stassi, D., Lax, S A & Katz, L (1997) A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain Gene 203, 1-9 Rudd, B A & Hopwood, D A (1979) Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2) J Gen Microbiol 114, 35-43 Ryding, N J., Anderson, T B & Champness, W C (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system J Bacteriol 184, 794-805 Sakakibara, H., Okekawa, O., Fujiwara, T., Otani, M & Omura, S (1981) Acyl derivatives of 16-membered macrolides I Synthesis and biological properties of 3"-Opropionylleucomycin A5 (TMS-19-Q) J Antibiot (Tokyo) 34, 1001-1010 Salas, J A & Mendez, C (2007) Engineering the glycosylation of natural products in actinomycetes Trends Microbiol 15, 219-232 Sambrook, J & Russel, D W (2001) Molecular cloning: A laboratory manual (3 ed.): Cold Spring Harbor Laboratory Press, NY Saudagar, P S., Survase, S A & Singhal, R S (2008) Clavulanic acid: a review Biotechnol Adv 26, 335-351 217 Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A & Franceschi, F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria Nature 413, 814-821 Schoner, B., Geistlich, M., Rosteck, P., Jr., Rao, R N., Seno, E., Reynolds, P., Cox, K., Burgett, S & Hershberger, C (1992) Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins Gene 115, 93-96 Schonfeld, W & Kirst, H A (2002) Macrolide antibiotics Schrempf, H., Kessler, A., Bronneke, V., Dittrich, W & Betzler, M (1989) Genetic instability in streptomycetes Schwartz, D., Berger, S., Heinzelmann, E., Muschko, K., Welzel, K & Wohlleben, W (2004) Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tu494 Appl Environ Microbiol 70, 7093-7102 Schwecke, T., Aparicio, J F., Molnar, I., Konig, A., Khaw, L E., Haydock, S F., Oliynyk, M., Caffrey, P., Cortes, J., Lester, J B & et al (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin Proc Natl Acad Sci U S A 92, 7839-7843 Sharrock, R A., Leighton, T & Wittmann, H G (1981) Macrolide and aminoglycoside antibiotic resistance mutations in the bacillus subtilis ribosome resulting in temperaturesensitive sporulation Mol Gen Genet 183, 538-543 Sheldon, P J., Busarow, S B & Hutchinson, C R (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI Mol Microbiol 44, 449-460 Shelton, D R., Khader, S., Karns, J S & Pogell, B M (1996) Metabolism of twelve herbicides by Streptomyces Biodegradation 7, 129-136 Simon, R., Priefer, U & Puhler, A (1983) A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria Bio/Technology 1, 784-791 Smith, C R (1988) The spiramycin paradox J Antimicrob Chemother 22 Suppl B, 141144 Smokvina, T., Mazodier, P., Boccard, F., Thompson, C J & Guerineau, M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes Gene 94, 53-59 Sobell, H M (1985) Actinomycin and DNA transcription Proc Natl Acad Sci U S A 82, 5328-5331 Sola-Landa, A., Moura, R S & Martin, J F (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans Proc Natl Acad Sci U S A 100, 6133-6138 Sor, F & Fukuhara, H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast Nucleic Acids Res 10, 65716577 218 Spagnoli, R., Cappelletti, L & Toscano, L (1983) Biological conversion of erythronolide B, an intermediate of erythromycin biogenesis, into new "hybrid" macrolide antibiotics J Antibiot (Tokyo) 36, 365-375 Stachelhaus, T., Mootz, H D & Marahiel, M A (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases Chem Biol 6, 493-505 Stackebrandt, E., Rainey, F A & Ward-Rainey, N L (1997) Proposal for a New Hierarchic Classification System, Actino bacteria classis nov International journal of systematic bacteriology 47, 479-491 Stanzak, R., Matsushima, P., Baltz, R H & Rao, R N (1986) Cloning and Expression in Streptomyces lividans of Clustered Erythromycin Biosynthesis Genes from Streptomyces erythreus Bio/Technology 4, 229 - 232 Stassi, D L., Kakavas, S J., Reynolds, K A., Gunawardana, G., Swanson, S., Zeidner, D., Jackson, M., Liu, H., Buko, A & Katz, L (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering Proc Natl Acad Sci U S A 95, 73057309 Stratigopoulos, G & Cundliffe, E (2002) Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer, Streptomyces fradiae J Ind Microbiol Biotechnol 28, 219-224 Stratigopoulos, G., Gandecha, A R & Cundliffe, E (2002) Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced gamma-butyrolactone receptor Mol Microbiol 45, 735-744 Stratigopoulos, G., Bate, N & Cundliffe, E (2004) Positive control of tylosin biosynthesis: pivotal role of TylR Mol Microbiol 54, 1326-1334 Summers, R G., Ali, A., Shen, B., Wessel, W A & Hutchinson, C R (1995) Malonylcoenzyme A:acyl carrier protein acyltransferase of Streptomyces glaucescens: a possible link between fatty acid and polyketide biosynthesis Biochemistry 34, 9389-9402 Sun, Y., Zhou, X., Tu, G & Deng, Z (2003) Identification of a gene cluster encoding meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from Streptomyces nanchangensis NS3226 Arch Microbiol 180, 101-107 Sutherland, J B., Blanchette, R A., Crawford, D L & Pometto, A L (1979) Breakdown of fir phloem by a lignocellulose degrading Streptomyces Current Microbiology 2, 123-126 Swan, D G., Rodriguez, A M., Vilches, C., Mendez, C & Salas, J A (1994) Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence Mol Gen Genet 242, 358-362 Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M R., Appelbaum, P C & Sutcliffe, J (2000) Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage Antimicrob Agents Chemother 44, 2118-2125 Takano, E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation Curr Opin Microbiol 9, 287-294 219 Takano, E., Tao, M., Long, F., Bibb, M J., Wang, L., Li, W., Buttner, M J., Deng, Z X & Chater, K F (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor Mol Microbiol 50, 475-486 Takano, E., Kinoshita, H., Mersinias, V., Bucca, G., Hotchkiss, G., Nihira, T., Smith, C P., Bibb, M., Wohlleben, W & Chater, K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor Mol Microbiol 56, 465-479 Tanaka, A., Takano, Y., Ohnishi, Y & Horinouchi, S (2007) AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs J Mol Biol 369, 322-333 Tang, L & McDaniel, R (2001) Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity Chem Biol 8, 547-555 Tang, L., Fu, H & McDaniel, R (2000) Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases Chem Biol 7, 77-84 te Poele, E M., Bolhuis, H & Dijkhuizen, L (2008) Actinomycete integrative and conjugative elements Antonie Van Leeuwenhoek 94, 127-143 Thibodeaux, C J., Melancon, C E & Liu, H W (2007) Unusual sugar biosynthesis and natural product glycodiversification Nature 446, 1008-1016 Thompson, J & Cundliffe, E (1980) Resistance to thiostrepton, siomycin, and sporangiomycin in actinomycetes that produce them J Bacteriol 142, 455-461 Tomono, A., Tsai, Y., Yamazaki, H., Ohnishi, Y & Horinouchi, S (2005) Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus J Bacteriol 187, 5595-5604 Trujillo, M E & Goodfellow, M (2003) Numerical phenetic classification of clinically significant aerobic sporoactinomycetes and related organisms Antonie Van Leeuwenhoek 84, 39-68 Tsui, H C., Feng, G & Winkler, M E (1996) Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K12 from clustered Esigma32-specific promoters during heat shock J Bacteriol 178, 57195731 Tu, D., Blaha, G., Moore, P B & Steitz, T A (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance Cell 121, 257-270 Turpin, P E., Dhir, V K., Maycroft, K A., Rowlands, C & Wellington, E M (1992) The effect of Streptomyces species on the survival of Salmonella in soil FEMS Microbiol Ecol 101, 271-280 Van Lanen, S G & Shen, B (2008) Advances in polyketide synthase structure and function Curr Opin Drug Discov Devel 11, 186-195 220 Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G F., Chater, K F & van Sinderen, D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum Microbiol Mol Biol Rev 71, 495-548 Vester, B & Douthwaite, S (2001) Macrolide resistance conferred by base substitutions in 23S rRNA Antimicrob Agents Chemother 45, 1-12 Vicente, C M., Santos-Aberturas, J., Guerra, S M., Payero, T D., Martin, J F & Aparicio, J F (2009) PimT, an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis Microb Cell Fact 8, 33 Vilches, C., Hernandez, C., Mendez, C & Salas, J A (1992) Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus J Bacteriol 174, 161-165 Vivian, A & Hopwood, D A (1970) Genetic control of fertility in Streptomyces coelicolor A3(2): the IF fertility type J Gen Microbiol 64, 101-117 Volchegursky, Y., Hu, Z., Katz, L & McDaniel, R (2000) Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea Mol Microbiol 37, 752-762 Volff, J N & Altenbuchner, J (1998) Genetic instability of the Streptomyces chromosome Mol Microbiol 27, 239-246 Vrijbloed, J W., Madon, J & Dijkhuizen, L (1994) A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration J Bacteriol 176, 7087-7090 Vrijbloed, J W., Jelinkova, M., Hessels, G I & Dijkhuizen, L (1995) Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica Mol Microbiol 18, 21-31 Waksman, S A & Woodruff, H B (1941) Actinomyces antibioticus, a New Soil Organism Antagonistic to Pathogenic and Non-pathogenic Bacteria J Bacteriol 42, 231-249 Waldron, C., Matsushima, P., Rosteck, P R., Jr., Broughton, M C., Turner, J., Madduri, K., Crawford, K P., Merlo, D J & Baltz, R H (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa Chem Biol 8, 487-499 Wang, G., Hosaka, T & Ochi, K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations Appl Environ Microbiol 74, 2834-2840 Weisblum, B (1995) Insights into erythromycin action from studies of its activity as inducer of resistance Antimicrob Agents Chemother 39, 797-805 Weissman, K J (2006) The structural basis for docking in modular polyketide biosynthesis Chembiochem 7, 485-494 Weissman, K J (2009) Introduction to polyketide biosynthesis Methods Enzymol 459, 316 221 Wellington, E M., Stackebrandt, E., Sanders, D., Wolstrup, J & Jorgensen, N O (1992) Taxonomic status of Kitasatosporia, and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL Int J Syst Bacteriol 42, 156-160 Wellington, E M., Marsh, P., Toth, I., Cresswell, N., Huddleston, A S & Schilhabel, M (1993) The selective effects of antibiotics in soil Widdick, D A., Dodd, H M., Barraille, P., White, J., Stein, T H., Chater, K F., Gasson, M J & Bibb, M J (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005 Proc Natl Acad Sci U S A 100, 4316-4321 Wiener, P (1996) Experimental studies on the ecological role of antibiotic production in bacteria Evol Ecol 10, 405-421 Wietzorrek, A & Bibb, M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold Mol Microbiol 25, 1181-1184 Wiley, P F., Baczynskyj, L., Dolak, L A., Cialdella, J I & Marshall, V P (1987) Enzymatic phosphorylation of macrolide antibiotics J Antibiot (Tokyo) 40, 195-201 Williams, D R., Carter, G T., Pinho, F & Borders, D B (1989) Process-scale reversedphase high-performance liquid chromatography purification of LL-E19020 alpha, a growth promoting antibiotic produced by Streptomyces lydicus ssp tanzanius J Chromatogr 484, 381-390 Williams, S T (1982) Are antibiotics produced in soil? Pedobiology 23, 427-435 Wilson, D J., Xue, Y., Reynolds, K A & Sherman, D H (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae J Bacteriol 183, 3468-3475 Witkowski, A., Joshi, A K., Lindqvist, Y & Smith, S (1999) Conversion of a betaketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine Biochemistry 38, 11643-11650 Wittmann, H G., Stoffler, G., Apirion, D., Rosen, L., Tanaka, K., Tamaki, M., Takata, R., Dekio, S & Otaka, E (1973) Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins Mol Gen Genet 127, 175-189 Wondrack, L., Massa, M., Yang, B V & Sutcliffe, J (1996) Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides Antimicrob Agents Chemother 40, 992-998 Wright, F & Bibb, M J (1992) Codon usage in the G+C-rich Streptomyces genome Gene 113, 55-65 Wright, L F & Hopwood, D A (1976a) Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolar A3(2) J Gen Microbiol 96, 289-297 Wright, L F & Hopwood, D A (1976b) Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2) J Gen Microbiol 95, 96-106 222 Wu, L J & Errington, J (1997) Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis Embo J 16, 2161-2169 Xu, J., Tozawa, Y., Lai, C., Hayashi, H & Ochi, K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2) Mol Genet Genomics 268, 179-189 Xue, Y., Zhao, L., Liu, H W & Sherman, D H (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity Proc Natl Acad Sci U S A 95, 12111-12116 Yamagishi, S., Matsui, T., Ueda, S., Fukami, K & Okuda, S (2009) Clinical utility of acarbose, an alpha-glucosidase inhibitor in cardiometabolic disorders Curr Drug Metab 10, 159-163 Yamazaki, H., Tomono, A., Ohnishi, Y & Horinouchi, S (2004) DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus Mol Microbiol 53, 555-572 Yazawa, K., Mikami, Y., Sakamoto, T., Ueno, Y., Morisaki, N., Iwasaki, S & Furihata, K (1994) Inactivation of the macrolide antibiotics erythromycin, midecamycin, and rokitamycin by pathogenic Nocardia species Antimicrob Agents Chemother 38, 2197-2199 Yoshida, S., Yoneyama, Y., Shiraichi, S., Watanabe, A & Takahashi, N (1977) Isolation and Physical Properties of New Piericidins Produced by Streptomyces pactum Agricultural and Biological Chemistry 41, 849-853 Yu, D., Ellis, H M., Lee, E C., Jenkins, N A., Copeland, N G & Court, D L (2000) An efficient recombination system for chromosome engineering in Escherichia coli Proc Natl Acad Sci U S A 97, 5978-5983 Yuan, Y., Chung, H S., Leimkuhler, C., Walsh, C T., Kahne, D & Walker, S (2005) In vitro reconstitution of EryCIII activity for the preparation of unnatural macrolides J Am Chem Soc 127, 14128-14129 223 Résumé La spiramycine, un antibiotique macrolide synthétisé par la bactérie Streptomyces ambofaciens, est constituée par un macrocycle lactonique, le platénolide, sur lequel trois sucres sont fixés Un groupe d’une quarantaine de gènes dirigeant la biosynthèse de la spiramycine avait été identifié Sur la base d’analyses bioinformatiques, une fonction dans la biosynthèse, la résistance la spiramycine ou la régulation de l’expression des gènes de biosynthèse avait été proposée pour la majorité des protéines codées par ce groupe de gènes Mais pour plusieurs étapes importantes, il restait identifier et caractériser les gènes réellement impliqués Pour les trois étapes de glycosylation, parmi les quatre glycosyltransférases putatives, seuls trois sont nécessaires la biosynthèse de spiramycine Le sucre transféré par chacune des trois glycosyltransférases a été identifié Deux de ces glycosyltransférases ont besoin d’une protéine auxiliaire pour leur activité et deux protéines auxiliaires ont été identifiées Une autre étape importante de la biosynthèse est la réduction d’une fonction cétone sur le platénolide ; le gène codant cette céto-réductase été identifié parmi trois candidats Enfin parmi les quatre régulateurs putatifs de la biosynthèse de spiramycine, deux, SrmR et SrmS, sont réellement impliqués dans la régulation SrmR est un activateur transcriptionnel nécessaire l’expression du gène srmS SrmS active la transcription des gènes de biosynthèse L’organisation transcriptionnelle de l’ensemble du groupe de gènes a été établie, permettant l’identification de 16 régions promotrices sur lesquelles l’effet de SrmR et SrmS a été étudié Abstract Spiramycin, a macrolide antibiotic synthesized by the bacterium Streptomyces ambofaciens, consists in a lactone macrocycle, the platenolide, on which three sugars are attached A group of about forty genes directing the biosynthesis of spiramycin had been identified Based on bioinformatic analysis, a function in biosynthesis, resistance to spiramycin or regulation of the expression of biosynthetic genes had been proposed for most proteins encoded by this gene cluster But for several biosynthetic steps, the genes involved had to be identified and characterized For the three glycosylation reactions, among the four putative glycosyltransferases encoded in the cluster, only three are necessary for spiramycin biosynthesis Sugars transferred by each of these three glycosyltransferases have been identified Two of these glycosyltransferases require an auxiliary protein for their activity and two auxiliary proteins have been identified Another important step in the biosynthesis is the reduction of a keto group on platenolide; the gene encoding the ketoreductase has been identified among three candidates Finally, among the four putative regulators of spiramycin biosynthesis, two, SrmR and SrmS are really involved in regulation SrmR is a transcriptional activator required for expression of the gene srmS SrmS activates the transcription of biosynthetic genes The transcriptional organization of the entire gene cluster has been established, allowing the identification of 16 promoter regions on which the effect of SrmR and SrmS has been studied [...]... from Streptomyces are used in the treatment of cancer: actinomycin D, anthracyclines (e.g daunorubicin, doxorubicin, epirubicin, pirirubicin and valrubicin) bleomycin, mitomycin C These compounds bind to DNA Among them, actinomycin D is the oldest metabolite used in cancer therapy It is produced by Streptomyces antibioticus, isolated by Waksman and Woodruff (Waksman & Woodruff, 1941) Actinomycin D binds... more copies of chromosome Then, the sporogenic cell stops its extension and begins synchronous, multiple cell division, under the effect of the whiA and whiB gene products The next step is the formation of septum, directed by the bacterial tubulin homologue FtsZ In virtually all bacteria, FtsZ assembles into a cytokinetic ring, the Z ring that defines the site of division and recruits other cell-division... blindness) and in veterinary medicine for the prevention and treatment of various parasitic infections Avermectins and spinosyns both belong to the macrolide family and their structure are presented in figure 15 27 Avermectins (Streptomyces avermitilis) Spinosyn A (Saccharopolyspora spinosa) Figure 15 Structures of avermectins and spinosyn A 2.2.6 Herbicides Herbicides inhibit normal plant growth and. .. groups of organisms, and have diverse, unusual, and often complex chemical structures Secondary metabolites are nonessential for the growth of the producing organism, at least under the conditions studied, and are often made after the phase of active vegetative growth They present a wide range of biological activities, including the inhibition or killing of other microorganisms (the narrow definition of. .. Actinobacteria synthesize about two thirds of the known antibiotics, the genus Streptomyces being at the origin of more than half of the known antibiotics The proportions are roughly the same for the compounds that are use in human and animal medicine Streptomyces and closely related genera produced compounds belonging to all major families of antibiotics: beta-lactams, cyclines, macrolides, aminoglycosides,... polyenes… These antibiotics are used as antibacterial and antifungal agents in medicine and agriculture The chemical diversity of these compounds is illustrated in figure 11 23 Cephamycin C (beta-lactam, Streptomyces clavuligerus) Tetracycline (cycline, Streptomyces rimosus) Spiramycin I (macrolide, Streptomyces ambofaciens) Kanamycin (aminoglycoside, Streptomyces kanamyceticus) Vancomycin (glycopeptide,... recombination AICEs represent a special class of ICEs, because unlike other ICEs, they have the ability to replicate autonomously like a plasmid For some of the AICEs, the integrated and replicative forms can even coexist Most of the AICEs integrate in a specific tRNA gene in the host chromosome and this gene is not inactivated after integration because the AICE and the chromosome share a segment of identity... cyclosporin A It was approved by FDA in 1994 for use 26 as an immunosupressant in liver transplantation (Demain & Sanchez, 2009) Its structure is presented in figure 14 Figure 14 Structure of tacrolimus 2.2.5 Insecticides and antiparasitic drugs These compounds are used in agriculture, medicine, industry, and households The use of insecticides is believed to be one of the major factors behind the increase in. .. mating pair via cell-to-cell junctions DNA transfer is initiated by the relaxase that nicks DNA at the origin of transfer (oriT) to generate a single-stranded molecule The resulting structure, the relaxosome, is then coupled to the transferosome (related to type IV secretion systems) by the intermediate of a coupling protein In Streptomyces, the conjugation machinery is actually much simpler with a single... to minimize the number of gene acquisition and gene loss events From (Ventura et al., 2007) 1.4 Ecology Streptomyces are mostly living in soil, where they represent a large proportion of the cultivable bacteria In soil, they can exist in the form of spores or vegetative mycelium In soils, Streptomyces are present mostly as dormant spores, providing a large proportion of the Streptomyces colony forming

Ngày đăng: 19/05/2016, 11:22

Từ khóa liên quan

Mục lục

  • LE GRADE DE DOCTEUR EN SCIENCE DE L’UNIVERSITE

  • DE PARIS-SUD XI

  • HOANG CHUONG NGUYEN

    • RESUME DE LA THESE EN FRANÇAIS 182

    • REFERENCES 200

    • For submission to “Antimicrcobial Agents and Chemotherapy”

      • ‡ Present address: Centre de Biotechnologie de Sfax, BP 1177 3018 Sfax, Tunisie

      • MATERIAL AND METHODS

      • Strains, plasmids and culture conditions

      • Strains and plasmids used in this studied are listed in Table 1. Standard media and culture conditions were used for Escherichia coli and Streptomyces strains (16, 31). The following antibiotics were incorporated in the medium when required for selection: ampicillin (Amp), thiostrepton (Tsr), apramycin (Apr), hygromycin B (Hyg) and puromycin (Pur). For spiramycin production, Streptomyces strains were grown in MP5 medium (24). The detection and quantification of spiramycin in culture supernatants by bioassay or by HPLC was performed as described previously (6).

      • pOSV236

      • AmpR, TsrR, PurR, oriT, E. coli-Streptomyces shuttle plasmid expressing the Xis and Int proteins for site-specific excision of excisable cassettes. Derived from pOSV508 (Raynal et al., 2006)

      • This work

        • Gene nomenclature

        • Some genes of the spiramycin biosynthetic gene cluster were named before, for instance srmGI to srmGIV for the PKS genes (17) or srmB, srmR, srmX for a resistance gene, a regulatory gene and a biosynthetic gene respectively (5). When the sequence of the complete cluster was determined, the putative genes identified were named orf followed by a number, orf1 to orf34c for the ones upstream of the PKS genes, orf1 being close to srmGI, and orf1*c to orf11* for the ones downstream of the PKS, orf1*c being close to srmGIV. In the name of a gene a “c” indicates that it is oriented in the same way as the PKS genes (Figure 1B). This last nomenclature did not take into account the involvement of the genes in spiramycin biosynthesis, resistance or the regulation thereof. We propose now to replace orf by srm in the nomenclature used by Karray et al (14), but to do this for the genes located between srm7* and srm32c, i.e. for the genes which have been proposed to be involved in spiramycin biosynthesis, resistance or the regulation thereof (14).

        • Preparation and manipulation of DNA

        • DNA extraction from E. coli and Streptomyces, in vitro DNA manipulation, bacterial transformation with DNA and introduction of DNA in Streptomyces by E. coli/Streptomyces intergeneric transfer were performed according to well-established protocols (16, 31). DNA amplifications by PCR were carried out using either Taq polymerase from Qiagen or the GC-rich PCR system from Roche. Oligonucleotides used as primers in this study are listed in Table 2.

          • RESULTS

            • Identification of the glycosyltransferases involved in spiramycin biosynthesis

            • Strain

              • Characteristics

                • Spiramycin production

                  • Identification of the sugars added by the glycosyltransferases

                  • During spiramycin biosynthesis, the sugars are added in a preferred order (23). Mycaminose is the first sugar attached to platenolide, at C5, yielding forocidin. Then forosamine is attached to C9, yielding neospiramycin. Mycarose is the last to be attached and it is linked to mycaminose, to give spiramycin. As three glycosyltransferase seemed required for spiramycin biosynthesis, each of them should be specific for one sugar. Sequence comparisons with characterized enzymes that transfer mycaminose, mycarose or forosamine, and analyses performed with SEARCHGTr, a program for analysis of glycosyltransferases involved in glycosylation of secondary metabolites (12), did not allow us to make unambiguous predictions concerning the sugars transferred by the three glycosyltransferases. To determine which sugar was transferred, we analyzed by LC-MS the culture supernatant of the wild-type strain and of the mutant strains deleted for a glycosyltransferase gene. The results are presented in figure 2.

                  • Figure 2. LC-MS analysis of the metabolites produced by S. ambofaciens strains. Extracted ion currents (EIC) are shown for compounds with m/z values corresponding to those of the three forms of spiramycin, of the two forms of platenolide and of the glycosylated intermediates of spiramycin biosynthesis. A) strain OSC2, B) strain SPM121 (Δsrm3*c::att3), C) strain SPM108 (Δsrm17::att3), D) strain SPM110 (Δsrm26::att3). 1: spiramycin I; 2: spiramycin II; 3: spiramycin III; 4: platenolide I, 5: platenolide II; 6: forocidin; 7: neospiramycin.

                  • In the supernatant of the wild type strain, the three form of spiramycin were detected, together with small amounts of the two forms of the aglycone, platenolide. No other biosynthetic intermediate could be detected. In the supernatant of the mutant strain SPM121 (Δsrm3*c::att3) the two forms of platenolide were found but no glycosylated intermediate could be detected. This is consistent with the involvement of Srm3* in the attachment of the first added sugar, mycaminose. In the supernatant of the mutant strain SPM108 (Δsrm17::att3), in addition to the two forms of platenolide, forocidin was the only glycosylated intermediate detected. This indicated that in this mutant strain mycaminose could be attached to platenolide, but that further glycosylation is not possible, consistent with the involvement of Srm17 in forosamine attachment. In the supernatant of the mutant strain SPM110 (Δsrm26::att3), the two forms of platenolide, forocidin and neospiramycin could be detected. This indicated that Srm26 is involved in the attachment of mycarose.

                  • Involvement of the auxiliary proteins in glycosylation

                  • The gene srm2*c encoding a putative auxiliary protein is located immediately upstream of the gene encoding the mycaminosyltransferase Srm3*c. The other gene encoding a putative auxiliary protein is srm16, located upstream of the gene encoding the forosaminyltransferase Srm17. According to other studies of auxiliary proteins, Srm2*c might be required for the full activity of Srm3*c and Srm16 might be required for the full activity of Srm17. To study the role of the putative glycosyltransferase auxiliary proteins Srm2*c and Srm16 in spiramycin biosynthesis, the ability of the corresponding mutant strains to synthesize spiramycin was examined. To take in account a possible interplay of the auxiliary proteins, a mutant with deletion of both genes srm2*c and srm16 has been constructed and was also studied. The inactivation of these genes had no effect on the growth of the strains. Culture supernatants were studied by bioassay, HPLC and LC-MS and some results are presented in figure 3 and summarized in table 4.

Tài liệu cùng người dùng

Tài liệu liên quan