1. Trang chủ
  2. » Giáo án - Bài giảng

Thiết kế bài giảng vật lý 12 nâng cao (tập 1) phần 2

131 419 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 131
Dung lượng 3,57 MB

Nội dung

CHI/ONG III SONG CO BAI14 SONG CO - PHl/ONG TRINH SONG I - MUC TifiU Ve kiln thiic - Hiiu dupe hien tupng sdng co, nim dupc dinh nghTa song co - Quan sat GV tien hanh thf nghiem vl sdng dpc sdng ngang, tir dd, phan biet dupc sdng dpc va sdng ngang - Giai thich dupc nguyen nhan tao sdng co - Neu dupc y nghTa cac dai lupng dac trung cho sdng co : bien dp, chu ki, tin sd, budc sdng, tdc dp truyin sdng - Xic dinh dupe bien dp sdng va budc sdng cua sdng kenh sdng nude - Lap dupc phuang trinh sdng va dua vao phuang trinh nay, neu dupc tinh tuan hoan theo khdng gian va theo thdi gian ciia sdng Ve ki nSng - Quan sit GV tiln hanh thi nghiem, tir dd, riit kei luan vl chuyin ddng cua mdi phin tir cua mdi trudng va chuyin ddng lan truyin cua sdng - Giai thich hien tupng vat 11 - Giai toan vat If vl phuang trinh sdng co, tdc dp truyin sdng va budc sdng II-CHUXNBI Giao viin - Ld xo dl lam sdng ngang va sdng dpc - Kenh sdng nude (neu ed) - Ve hinh 14.3 va 14.4 SGK tren giiy khd AQ - Chuin bi phin mIm Sdng co hpc cua tic gia Pham Xuan Que va may chieu projector (ne'u cd) - Phie'u hpc tap cho HS 123 Hoc sinh - On lai cac kien thiic vl phuang trinh dao ddng dilu hoa cua lie Id xo, eac dai lupng dac trung cua dao ddng Ill - THifi'T Kfi' H O A T D N G DAY - H O C Hoat d d n g cua hgc sinh Trg giiip cua giao vien Hoat dgng Kiem tra, chuan bj dieu kien xuat phat Dat van de HS suy nghT ca nhan tim cau tra Idi HS y thiic dupe van dl ciia bai hpc GV neu cau hdi kilm tra kie'n thiie cu: - Viei phuang trinh dao ddng ciia lie Id xo va neu y nghTa cac dai lupng dac trung ciia dao ddng dilu hoa? Dgt vdn de : Hing ngay, ta thudng nghe ndi den sdng nude, sdng am, lan sdng dien dai phat truyin di Vay sdng la gi ? Nd cd nhiing tfnh chit gi ? Bai hpc hdm giiip chiing ta nghien ciiu dilu dd Hoat dgng Tim hieu hien tugng sdng co hgc HS quan sat va md ta hien tupng - Khi nem vien d i xudng nude, tren mat nude xuat hien nhirng vdng trdn ddng tam loi, Idm xen ke lan rdng din tao sdng nude 124 GV cho HS xem hinh anh mat nude cd mdt vien da dupc nem xudng qua may chieu projector va yeu ciu HS mo ta hien tupng GV cho HS xem hinh anh sdng nude kenh tao sdng nude Hoat ddng cua hgc sinh Trg giiip cua giao vien HS dua cae nhan xet khac nhau: GV neu cau hdi dl HS tim hiiu hien tupng sdng ca: Nhdn xet ; - Cac phin tir cua mdi | trudng dupc truyin di sdng lan ; truyin Nhdn xet : - Cac phin tii eiia mdi • trudng dao ddng tai chd sdng ; lan truyin ; Ke't lugn : Mieng xd'p nhd ndi tren ; mat nude dao ddng len xudng tai : chd, cdn cac dinh sdng chuyin ; ddng theo phuang nim ngang i cang xa tam dao ddng Vay cac ; phin tir ciia mdi trudng dao ddng tai chd cd chuyin ddng Ian truyin sdng mdi trudng - Nhan xet gi vl chuyin ddng cua mdi phin tu cua mdi trudng truyin sdng ed chuyin ddng Ian truyin sdng mdi trudng ? GV tie'n hanh thi nghiem vdi kenh sdng nude bd mdt mieng xd'p nhd ndi tren mat nude dao ddng va yeu ciu HS riit kei luan GV thdng bao: HS tie'p thu, ghi nhd khai niem - Sdng ea la dao ddng ca lan truyin mdi trudng GV tie'n hanh thi nghiem vdi Id xo hai trudng hop a) va b), yeu ciu HS nhan xet vl phuang dao ddng ciia cac phin tir cua mdi trudng vdi phuong truyin sdng 1^ Trudng hpp a) > - Cae phin tir dao ddng vudng gdc ; vdi phuang truyin sdng Trudng hpp b) • - Cic phin tii dao ddng theo | phuang truyin sdng | ^[] > A GV thdng bao: - Khi eac phan tii cua mdi trudng dao 125 Hoat ddng ciia hgc sinh HS tie'p thu, ghi nhd khai niem Trg giiip cua giao v i i n ddng theo phuang vudng gdc vdi phuang truyin sdng, ta ed sdng ngang ^ Khi eac phan tir cua mdi trudng dao ddng theo phuang truyin sdng, ta ed sdng dpc Hoat dgng Giai thich sir tao sdng co HS quan sat, suy nghT ea nhan, sau dd thaof luan chung toan Idp GV cho HS quan sat hinh ve bilu diln md hinh ciia eic phin tii sdng ngang(hinh 14.3 SGK) d nhiing thdi dilm lien tiep va neu cau hdi dl HS giai thfch sur tao sdng co - GiQa eac phin tii cua spi day dan hdi cd luc dan hdi lien kei chiing - Giiia cic phin tit cua spi day dan hdi cd luc lien kei khdng ? Luc dd la luc gi ? - O thdi dilm ban diu t = 0, tat ca eic phin tir cua day diu diing ydn d vi tri - Hien tupng gi xay neu giiia chiing khdng cd luc lien ket ? T - Trong khoang thdi gian / = — phin tir chuyin ddng tu vi trf can bing len vi trf cao nhat Trong dd, luc lien kei dan hdi keo phin tir chuyin ddng theo, nhung chuyin ddng sau mdt chiit Cung nhu the, chuyin ddng dupc truyin de'n phin tir 2, sau phin tir mdt chiit Day cd vi tri II - Phin tir tie'p tuc thuc hien dao ddng va dao ddng lin lupt dupe truyin cho cac phan tir tie'p theo cua day Cae phin tir thuc hien dao ddng cimg tin so, cung bien dp vdi phin tir nhung tri pha hon 126 - Truyin cho phin tir mdt dao ddng theo phuang thing diing cd chu ki dao ddng T Nhan xet su chuyin ddng eiia cac phin tur ke tiep d cac thdi dilm tie'p theo - Hay chi vi tri va hudng chuyin ddng cua cic phin tir so va sd 12 ciia , T 3T 5T Id xo d cac thdi diem —; — \T; —; ? 2 (GV dimg cac mui tdn dl chi hudng chuyin ddng cua cac phin tir HS tra Idi) - Nhan xet gi vl pha dao ddng cua cac phin tir cang d xa tam dao ddng ? Hoat d d n g cua hgc sinh Trg giiip cua giao vien - Cac phin tir cang xa tam dao ddng thi cang tri pha hon cac phin tir gin tam dao ddng GV thdng bao: HS tie'p thu, ghi nhd - Sdng CO dupc tao nhd lire lien kei dan hdi giua eac phan tur ciia mdi trudng truyin dao ddng Mdi trudng nao cd luc dan hdi xuit hien hi bien dang lech thi truyin sdng ngang Neu luc dan hdi xuat hien cd bien dang nen, dan thi mdi trudng truyin sdng dpc Hoat dgng Tim hieu nhOmg dai lugng ddc trung ciia chuyen ddng sdng HS dpc SGK, sau dd thao luan chung toan Idp - Tit ca cac phin trudng diu dao ddng kl va tin sd bing chu nguon dao ddng gpi tin sd ciia sdng tir ciia mdi vdi cimg chu ki, tin sd ciia la chu ki va - Bien dp sdng tai mdi dilm khdng gian chfnh la bidn dp dao ddng cua phin tir mdi trudng tai dilm dd Trong thue te, cang xa tam dao ddng thi bien dp sdng cang nhd - Budc sdng la quang dudng sdng truyin di dupc mdt chu ki dao ddng Hai dilm each mdt budc sdng dao ddng cung pha vdi GV yeu ciu HS dpc SGK muc 2, sau dd neu cac cau hdi dl HS tim hiiu cac dai lupng dac tnmg cua chuyin ddng sdng: - So sinh chu ki va tan so ciia cic phin tir cua mdi trudng vdi chu ki va tin so cua ngudn dao ddng - Bien dp sdng dupc xac dinh nhu the' nao? Nhan xet gi vl bien dp sdng tai nhirng dilm d xa tam dao ddng ? - Budc sdng la gi ? Hai dilm each mdt budc sdng cd dac dilm gi ? - Tdc dp truyin sdng dupc xac dinh bing cdng thiic nao ? - Ban chit ciia qua trinh truyin sdng la 127 Hoat ddng cua hgc sinh Trg giiip cua giao vidn - Tdc dp truyin sdng dupc xic dinh : v= T ^=fX - Sdng truyin dao ddng cho cac phan tir ciia mdi trudng, nghTa la truyin cho chiing nang lupng Qua trinh truyin sdng la qua trinh truyin nang lupng - Mdt HS dung thudc va biit da len xac dinh budc sdng va bien dp sdng ciia sdng kenh sdng nude GV yeu ciu HS xac dinh budc sdng va bien dp sdng ciia sdng kenh sdng nude Hoat dgng Lap phuang trinh sdng, tir dd suy mdt sd' tinh chat ciia sdng GV neu cau hdi dl HS lap phuang trinh sdng: HS suy nghT ci nhan, sau dd thao luan chung toan Idp - Gia sir dao ddng cua phan tii cua sdng la dilu hoa, Ii dp u bie'n thien theo thdi gian : u = A cos cot thi diem M each mdt khoang x cd phuang trinh dao ddng nhu the' nao ? GV neu cac cau hdi gpi y: Ta cd phuang trinh dao ddng ciia dilm la: u = Acoscot = 2;r Acos—t T X Sau khoang thdi gian t = — sdng V dupc truyin tdi diem M nen phuong trinh dao ddng cua M cd dang : 128 - Xet sdng truyin dpc theo true Ox, bd qua luc can dl bien dp dao ddng tai mpi dilm la nhu Dao ddng cua dilm M sdm pha hon hay tri pha han dao ddng ciia dilm ? - Sau khoang thdi gian bing bao nhieu thi dao ddng dupc truyin de'n diem M ? Hoat ddng cua hgc sinh / Trg giiip cua giao vien \ Mw(0 = ^COS — f (1) •Uj^it) = ACOS2TT - - - I T X GV thdng bao: HS tie'p thu, ghi nhd - Phuang trinh (1) la phuang trinh dao ddng ciia dilm M ed toa dp x tren phuang truyin sdng tai thdi dilm t gpi la phuang trinh sdng Xet dilm tren dudng truyin sdng cd toa X = d Thay x = d vao phuang trinh (1) ta dupc: GV neu cau hdi dl HS tim hiiu mdt sd tinh chai cua sdng: 2;r 2TTd Up = A cos - / - ^T A , Chuyin ddng cua P la mdt dao ddng tuin hoan theo thdi gian vdi chu ki T Xet vi tri cic dilm cua sdng tai mot thdi dilm xac dinh IQ Ta ed: M(X,/O) = ^COS 2TT_ T ' ' 2TT X - Tir phuang trinh sdng, suy tinh tuin hoan ciia sdng theo thdi gian va khdng gian - Xet dilm P tren dudng truyen sdng cd toa X = d, sau khoang thdi gian bing bao nhieu thi dilm P thuc hien dupc them mdt dao ddng toan phin ? - Xet tai mdt thdi dilm IQ bat ki, sau quang dudng bing bao nhieu thi hinh dang sdng dupc lap lai nhu cu ? A Tir phuong trinh ta thay li dp u bie'n thien tuin hoan theo toa dp X, nghTa la cii sau mdi khoang cd dp dai bing mdt budc sdng, sdng lai cd hinh dang lap lai nhu cQ Hoat dgng Lam bai tap ap dung HS suy nghT ca nhan, sau dd thao luan chung toan Idp GV yeu ciu HS lam bai tap I phie'u hpc tap 129 Hoat d d n g cua hgc sinh a) a CO V = — = = 4m / v t 0.3 Budc sdng : A = v.r = 4.1,6 = 6,4m b) Phuang trinh sdng ciia P ed dang: Upit) = ACOS2TT '^ ( t x\ [T => Upit) = 0,02cos Trg giiip cua giao vidn GV neu cac cau hdi gpi y: - Tdc dp truyin sdng dupc xic djnh bing cdng thiic nao ? - Budc sdng va tdc dp truyin sdng lien he vdi nhu the nao ? - Phuang trinh truyin sdng tai dilm P cd dang nhu the' nao ? A ^ TTt 0,8 TT^ im) c) Tai thdi dilm t = 3,2s, dilm P cd li dp la : ^7r.3,2 ; r ) Upit) = 0,02 COS 0,8 ~2 = , c o s - = 0(m) Hoat ddng Cung cd bai hgc va dinh hudng nhiem vu hgc tap tie'p theo HS lam viec ea nhan, sau dd thao luan chung toan Idp GV yeu cau HS tie'p tuc lam viec vdi phie'u hpc tap dl ren luyen each lam bai tap trie nghiem khach quan phan sdng CO hpc - HS vl nha lam eac bai tap 1, 2, 3, SGK - On tap cac kien thiic vl phuang trinh sdng PHIEU HOC TAP Cau Cho mdt spi day cao su nim ngang Lam cho dau C ciia day dao ddng theo phuang thing diing vdi bien dp 2cm va chu ki l,6i- Tai thdi dilm r = 0, C cd li dp cue dai Sau 0,3i- thi dao ddng dupc truyin di dupc 1,2m dpc theo day a) Tim budc sdng 130 b) Viei phuang trinh dao ddng ciia mdt dilm P a each diu day mdt doan la 1,6m Chpn md'c thdi gian la liic bit dau truyin dao ddng cho C tir vi tri cd li dp cue dai c) Xac dinh li dp 7' d thdi dilm / = 3,2s Cau Kit luan nao sau day diing ndi vl chu ki va tin sd cua cac phin tir dao ddng ciia mdi trudng truyin sdng ? A Cac phin tii d gin tam dao ddng cd chu ki va tin sd Idn nhat B Tat ca cae phin tir dao ddng vdi cung chu k i cimg tan sd C Cang xa tam dao ddng, cac phan tir cd chu ki va tin sd cang Idn D Tai ea eac phin tir dao ddng vdi chu ki va tin sd bit ki Cau Budc sdng la A khoang each giiia hai phin tir dao ddng tren phuang truyin sdng B quang dudng sdng truyin di dupc phiit C khoang each giira hai phin tir dao ddng eiing pha gin nhat tren phuang truyin sdng D quang dudng sdng truyin di dupc giay Cau Phat bilu nao sau day diing ndi vl pha dao ddng ciia cac phin tir dao ddng mdi trudng truyin sdng ? A Cac phin tir xa tam dao ddng sdm pha hon cac phin tir gin tam dao ddng B Tit ca cae phin tir dao ddng mdi trudng cd ciing pha dao ddng C Cac phin tir gin tam dao ddng sdm pha hon cac phin tir xa tam dao ddng D Cac phin tir nam khoang each bing mdt budc sdng cd cung pha dao ddng Cau Phat bilu nao sau day sai ndi vl tdc dp truyin sdng ? A Td'e dp truyin sdng chinh la tdc dp truyin cac phin tir dao ddng B Td'e dp truyin sdng chinh la tdc dp truyin pha dao ddng C Tdc dp truyin sdng bing thuang sd giira budc sdng va chu ki dao ddng D Td'e dp truyin sdng bing tich sd giira tin so sdng vdi budc sdng Cau Mdt sdng co hpc cd chu ki bing 0,00Is truyin di vdi tdc dp 340mls thi budc sdng ciia nd la A 340m B 34m C 3,4m D 0,34m 131 Cau Ban Anh lam mdt thi nghiem vdi kenh sdng nude, nhin thay mat cit ciia nude kenh sdng nude cd dang hinh sin thi ban ay bd mdt mieng xd'p ndi tren mat nude Sau mdt chu ki dao ddng cua sdng nude kenh sdng thi mieng xd'p se A dich chuyin dupc mdt budc sdng B dich chuyin vl phia cud'i cua kenh sdng nude C dich chuyin len phfa diu ciia kenh sdng nude D dao ddng len xudng tai vi trf tha BAI15 PHAN XA SONG - SONG D U N G I - MUC TifiU Ve kien thiic - Md ta dupc hien tupng thu dupc quan sat giao vien lam thf nghiem vl sir phan xa sdng va hien tupng sdng dimg tren Id xo va tren spi day - Giai thich dupc su tao sdng dtmg - Hiiu dupc hien tupng sdng dirng, phan biet dupc nhirng dilm niit va nhii'ng dilm bung - Van dung cac kien thiic vl sdng dimg dl lam mdt so bai tap don gian nhu xac dinh budc sdng tren spi day cd sdng dimg, xac dinh tdc dp truyin sdng Ve ki nang - Quan sit GV tien hanh thf nghiem, tir dd, riit kdt luan vl su phan xa sdng - Giai thich hien tupng vat li - Giai toan vat li vl hien tupng sdng dimg II - C H U X N BI Giao viin - Ld xo dl lam sdng ngang va sdng dpc - Kenh sdng nude (ne'u cd) - Bd thi nghiem vl sdng diing tren mdt spi day dan hdi - Phie'u hpc tap cho HS 132 A Nang lupng dien trudng mach dao ddng ludn khdng ddi B Nang lupng tir trudng mach dao ddng ludn khdng ddi C Tdng nang lupng dien trudng va nang lupng tir trudng bing hing sd D Khdng cd su bao toan nang lupng mach dao ddng Cau Chpn kei luan diing so sanh dao ddng ciia lie Id xo va dao ddng dien tir tu mach dao ddng LC A Khd'i lupng m ciia vat tuong ling vdi he sd tu cam L ciia eudn day B Dp Cling k cua la xo tuong irng vdi dien dung C ciia tu dien C Gia td'e a tuong ling vdi cudng dp ddng dien / D Van tdc v tuong irng vdi dien tfch q Cau De tan sd dao ddng rieng cua mach dao ddng 7,C tang len lan ta can A giam dp tu lam L cdn 1/4 B tang dien dung C gap lan C giam dp tu cam L cdn 1/16 D giam dp tu cam L cdn 1/2 Cau Phat bieu nao sau day sai ndi ve dien tir trudng ? A Khi mdt tir trudng bien thien theo thdi gian, nd sinh mot dien trudng xoay B Khi mot dien trudng bien thien theo thdi gian, nd sinh mot tir trudng xoay C Dien trudng xoay ed dudng siic la nhirng dudng cong bat dau hoac ket thue d vd cue D Tir trudng xoay ed cae dudng cam ling tir bao quanh cae dudng sire cua dien trudng Cau Van tdc lan truyen ciia sdng dien tir A khdng phu thudc vao mdi trudng va tan sd eiia sdng B phu thudc vao mdi trudng va tan sd cua sdng C phu thudc vao mdi trudng nhung khdng phu thudc vao tan sd cua sdng D khdng phu thudc vao mdi trudng va nhung phu thudc vao tan sd ciia sdng Cau 10 Dao ddng nao dudi day cd the cd bien dp giam din theo thdi gian ? A Dao ddng dien ttr cudng biic 239 B Dao ddng dien tir cdng hudng C Dao ddng dien tir tri D Dao ddng dien tir rieng Cau 11 Trong so dd khdi ciia mdt may phat vd tuye'n khdng cd bd phan nao dudi day ? A Bd phat dao ddng cao tan B Bd tach sdng C Bd bie'n dieu (dilu che) D Bd khueeh dai Cau 12 Nguyen nhan gay tit din dao ddng dien tir la A mach dien cd dien trd R ^0 B mach dien cd dien dung C rat Idn C mach dien ed eudn day vdi dp tu cam L Idn D gia trj dien dung C va dp tu cam L nhd Cau 13 Mdt mach dao ddng dien gdm tu dien cd dien dung C = 25pF va eudn day thuin cam ed dp tu cam L =10"" 77 Tin so gdc ciia dao ddng dien mach la A co = 2.\0''\radls) C CO = 3.10''iradIs) B co = 2.]0''(radIs) D o) = 3AO'\rodIs) Cau 14 Dao ddng mach LC dupe gpi la dao ddng dien tir vi A nang lupng cua mach gdm nang lupng dien trudng tap trung d tu dien va nang lupng tir trudng tap trung d cuon day B tdng nang lupng dien trudng va tir trudng la mdt hing sd C nang lupng dien trudng va nang lupng tir trudng cimg bie'n ddi tuin hoan theo mdt tin so chung D ca A, B, C diu diing Cau 15 Cdng thitc tinh nang lupng dien tir cua mdt mach dao ddng LC la 240 A W = ^ L B W = ^ C 2L 2C Cau 16 Dl tan sd dao ddng rieng cua mach dao ddng LC tang len lin ta cin A giam dp tu cam L di lan B tang dien dung tu dien len lin C giam dp tu cam di 16 lan D giam dp tu cam di lan II - BAI TAP TU LUAN Bai Mdt mach dao ddng dien LC co L = 50mH ; C = 5/JF a) Xac djnh tin so dao ddng rieng eiia mach b) Dien ap cue dai tren hai ban tu bing 6V Tfnh nang lupng dien tir mach c) Xac djnh W(^ ; If^; / tai thdi dilm dien ap tren hai ban tu bang 4V Bai Mdt mach dao ddng LC gdm eudn day thuan cam cd dp tu cam L = 50mH va tu dien cd C = 5/uF a) Tinh tin sd dao ddng dien tir mach b) Gia trj cue dai ciia hieu dien t h i giira hai ban tu la UQ = \2V ^ nang lupng dien tir mach Tfnh c) Tai thdi dilm hieu dien the' giira hai ban tu cd gii trj u = %V tinh nang lupng dien trudng, nang lupng tir trudng va cudng dp ddng dien mach d) Ne'u eudn day cd die trd thuin 7? = 0,1Q, d l tri dao ddng mach vdi gia trj cue dai ciia hieu dien the' giu'a hai ban tu dien la UQ= \2V thi phai cung cap cho mach mdt cdng suit bing bao nhieu DAPAND^I I - BAI TAP TRAC NGHlfiM Cau hdi nhieu lua chon A C D C C A C C 10 11 12 13 14 15 16 C D B A B D D C Cau Cau 241 H-BAITAPTULUAN B a i l , a) Tacd / = ^ = ^ 2 ^ ^ i , 77z '^•TT^LC 2;rV50.10~^5.10"^ ^ b) Nang lupng dien tir mach dupc xac djnh w = Wcr,,,=w,^,, = ^-^=^-cul =Uil ^W = 'CUl=-5.\0-^.6^ =9.\0-\j) 2 e) Tai thdi dilm u = 4V ta cd nang lupng dien trudng : Wr=-CU^ ^ =15.10-^42 =4.10" V Suy nang lupng tir trudng tai thdi dilm u = 41/ la : Wi^=W-Wc=5.\0~^J Mat khac Wi^ = - Li^ =^ / = + j ^ = ± V M iA) Bai a) Tin sd dao ddng dien tir ciia mach dao ddng = - ^ = - ^ ^ L = _ = 2000rad/s = > / = ^ = ^ =^ (77z) VIC VSO 10-^5.10"^ 2;r 2;r TT b) Nang lupng dien tir mach W = W^^ =-CUl = -.5.10-^50.10"^ = 3,6.10-"* (/) c) Tai thdi dilm hieu dien t h i giira hai ban tu la u = %V thi nang lupng dien tir trudng la H / = l c w = - - ^ ^ = , " ' * (/) •^2 Nang lupng tir trudng mach : W, = « / = 1^^=3,6.10""*-1,6.10"''= 2.10"^ (/) -4 Taed^,=iL/^^, = J ^ = J ^ : ^ = , - ( A ) ' 242 V 7, V 50.10"^ d) Neu mach cd dien trd thuin 7? = 0,1Q, de tri dao ddng mach thi phai cung cap cho mach mdt cdng suat P = Ulcoscp Vi mach ed cdng u ' ^ r, VQ IQ '0 ^0 UQIQ huang nen coscp = 0^P' "= U1 "^'' =^/2^/2 " vdi 7o = ^0 7? — — = 120 (A) 0,1 Tir dd tfnh dupe P =Uolo 12.120 = 720 iW) Bl£UDl£MDil I - BAI TAP TRAC NGHlfeM 0,25 dilm/cau x 16 cau = dilm II-BAITAPTVLU^N Bai (2,5 diem) Xac djnh gii t r j / Xac djnh gii tri W Xac dinh gia tri W^• Xac djnh gii tri W^ Xac djnh gia trj / Bai (3,5 dilm) Xac dinh gia t r i / Xac djnhgia trj W Xac djnh gia tri W^ Xac djnh gia tri W^ Xac djnh gia tri / Xac djnh gii trj P 0,5 0,5 0,5 0,5 0,5 dilm diem dilm diem dilm 0,5 diem 0,5 dilm 0,5 dilm 0,5 dilm 0,5 dilm diem 243 0^2 I - B A I T A P T R A C NGHlfiM Khoanh trdn trudc dap an ma em lua chon (Chu y : moi cdu chi duqtc lua chgn mot ddp dn) Cau Dien tich ciia tu dien mach dao ddng dien bie'n thien dilu hoa vdi chu kl T thi cudng dp ddng dien chay mach va dien ap tren hai ban tu A khdng bie'n thien dilu hoa B bie'n thien dilu hoa vdi chu ki T C bie'n thien dilu hoa vdi chu ki 2T T D bien thien dieu hoa vdi chu ki — • Cau Dien tich cua tu dien mach dao ddng dien bien thien theo phuang trinh q = qQeos[o}t + cp) thi cudng dp ddng dien mach bie'n thien theo phuang trinh TT A / = coqQCOS cot + cp + - C /: TT -o)qQ cos cot + cp + — B i = coqQcos[o)t + cp) D i: coqQ cos cot + cp TT Cau Chpn cau sai A Dien trudng va tir trudng diu tic dung luc len dien tfch diing yen B Dien trudng va tir trudng diu tic dung luc len dien tfch chuyen ddng C Dien tir trudng tac dung luc len dien tfch diing yen D Dien tir trudng tac dung luc len dien tfch chuyin ddng Cau Trong so dd khdi ciia may thu vd tuyen khdng cd bd phan nao dudi day ? A Bd chpn sdng B Bd tach sdng C Bd bie'n dieu (dilu che') D Bd khueeh dai Cau Tim eau sai A Sdng dai thdng tin duac d dudi nude, sdng cue ngan truyin thing B Sdng dien tir truyen chan khdng vdi van tdc bang 244 3.\{^m/s C Sdng ngin truyin duac xa tren mat dit vi bj tang dien li phan xa nhieu lin D Sdng dien tir la sdng dpc Cau Khang djnh nao sau day diing ndi ve sdng vd tuyen ? A Cae sdng dai dupe diing de thdng tin dudi nude vi chiing bi nude hap thu phin Idn B Ban nghe radio bang sdng trung rd han ban dem C Mdt dai phat vdi cdng suat Idn ed the truyin sdng ngin di mpi noi tren mat dat D Do cae sdng cue ngan cd nang lupng Idn nen chiing truyin dupe xa tren mat dat Cau Dien tfch ciia tu dien mach dao ddng dien bie'n thien theo phuong trinh q = qQCOs[cot+ (p) Nang lupng dien trudng tu dien dupc xac dinh A Wc =^ + ^cos2(a)t ^ 4C 4C ^ + (p) ^' B Wc=^cos2{o)t + cp) C Wr=-^ + ^cos[2a)t ^ 4C 4C ^ + ,p) ' D Wc=^-^eos2[cot + cp) ^ 4C 4C ^ ' Cau Trong mach dao ddng khdng cd phin trd thuin thi quan he vl dd Idn cua nang lupng tir trudng cue dai vdi nang lupng dien trudng cue dai la A Ull \CUI B ^Lll=^-CUl D Ull+^-CUl=0 Cau Mdt mach dao dpng dien,tir LC ed dien tich cue dai tren ban tu la 1/iC va ddng dien cue dai qua eudn la 0,3\4A Sdng dien tir mach dao ddng tao thudc loai 245 A Sdng dai hoac cue dai B Sdng trung C Sdng ngin D Sdng cue ngin Cau 10 Ddng dien mdt chilu chay mdt day din thing, xung quanh day din cd A dien trudng B tir trudng C cd dien tir trudng D khdng cd trudng nao ca Cau 11 Trong may phat dao ddng dieu hda diing tranzito, ngudn nang lupng bd sung cho mach 7-C chinh la B eudn cam irng C A tu dien C C tranzito D pin Cau 12 Trong thiei b ; den tir nio dudi day cd mdt miy thu va mdt may phat sdng vd tuyln A May vi tfnh B May dien thoai d l ban C May dien thoai di ddng D Cai dilu khiln ti vi tir xa Cau 13 Kit luan nao sau day diing ndi vl pha dao ddng cua q, u va / mach dao ddng dien ? A Dien tich q cua tu dien va dien ap u tren hai ban tu dien ddng pha B Dien tfch q cua tu dien va cudng dp ddng dien / qua tu dien ddng pha C Cudng dd ddng dien / qua tu dien va dien ap u tren hai ban tu dien ddng pha D Pha dao ddng cua q, u va i ludn khac Cau 14 Trong mach dao ddng diing tu dien C, thi tin sd rieng cua mach la f] = 30kHz, dimg tu dien C2 thi tan sd ciia mach la/2 = 0,04MHz Nlu mach diing hai tu C,, C2 mic ndi tilp thi tan sd rieng cua mach la A 50kHz B 70kHz C lOkHz D 0,024MHz Cau 15 De may thu vd tuyen cd the thu dupe sdng vd tuyln ed budc sdng X thi giua A va eac thdng sd 7, va C cua mach dao ddng cua may phai thoa man he thire A ; ^ ^ / Z c = - • A B C.2TT4LC D ^ ^ = AC 2TTyfLC=-c 2;r 246 = - - c Cau 16 Nhiet lupng khdng toa dao ddng dien tir nao ? A Dao ddng dien tu tri B Dao ddng dien tir rieng C Dao ddng dien tir tit dan D Dao ddng dien tii cudng biic II-BAIT^PTULUAN Bai Mdt ngudn phat sdng vd tuye'n dat tai dilm O phat sdng dien tir ed tin sd 10 77z va bien dp 200Wm Vecto dien trudng tai O song song vdi true Oz ; vecto cam ling tir tai O cd phuang song song vdi true Ox cua he true toa dp vudng gdc Oxyz va bien dp bing 2.10-'*r a) Viet phuang trinh dao ddng ciia cudng dp dien trudng va cam ii'ng tir tai O La'y pha dao ddng ban diu bing b) Viet phuang trinh truyin sdng dien tir theo phuang Oy Coi ring bien dp truyin sdng khdng thay ddi theo thdi gian Bai Cho mdt eudn cim ed dp tu cam L = lOmH va hai tu dien cd dien dung C] = 5/UF va C2 = 2/uF Hdi cd bao nhidu each mic de tao mdt mach dao ddng, tfnh cac tan sd cua cac mach dao ddng dd BAPANDi2 I - B A I Ty^P T R A C NGHlfiM I cau hoi nhieu lira chon Cau Cau B A A C D C A B 10 11 12 13 14 15 16 A c D C A A B B II-BAITAPTULUAN Bai a) Phuong trinh dao ddng eiia cudng dp dien trudng va cam ling tir tai O dupc xac dinh : 247 E = EQ COS 2;r/r = ^00 cos 2.1 o'^ TTtiV I m) B = BQC0S2TT ft = 2.\0~'^ cos2.\0'' TTtiT) b) Phuang trinh truyin sdng dien tir tai diem M cd toa dd y trdn true Oy la: E = EQ cos 2;r/(/ - - ) = ^o cos 2;r/(r - ^ ) y iVIm) 3.10* £' = 200eos2.10';r r rr B = BQ cos 2;r/(/ ) y = BQ cos 2;r/(r - ^y^) V c (T) =>B = 2.10"''cos2.10'';r r 3.10^; Bai Mach dao ddng L, C, = 712772 2;rVl0.10"^5.10"^ 2TT4LC'] Mach dao ddng L, C2 1 = 1125772 /2 = 2TTJLC^ 2TT^\0.\0'\2.\0-^ Mach dao ddng L va (C, mic ndi tilp vdi C2) Dien dung tuong duong la C /3 = 2.5 = I,43//7^ 2+5 C,C2 C,+C = 13317/2 2;rVZc 2;r7l0.10"^l,43.10~^ Mach dao ddng L va (C, mic song song vdi C2) /4 = 248 2TT^LiC]+C2) = = 6027/z 2TT\II0.10~\7.\0'^ Bie'uDI^MDi2 I-BAI TAP T R A C NGHlfiM 0,25 dilm/cau x 16 cau = diem II-BAITAPT^TLUAN Bai (3 dilm) Xac dinh gia tri E Xac dinh gia tri B Viet phuang trinh E Viet phuang trinh B Bai (3 diem) : o,5 dilm : o,5 dilm : i dilm : i dilm Xac dinh gia tri// Xac dinh gia tri/j Xac dinh gia tri/^ Xac dinh gia tri/, : 0,5 dilm : 0,5 diem : i dilm : i diem Xac dinh gia tri dd Idch pha Aq) : 0,5 diem 13 xay dung bieu thiic x = 2k + — "hon gia tri k iCIt luan vl sd cue tieu giao thoa : 0,5 dilm : 0,5 diem : 0,5 dilm MUC LUC Trang Ldi noi dau CHUONG I OQNG Ll/C HOC V A l R A N Bai Chuyen dgng quay ciia vat ran quanh mgt true c6 djnh Bai PhiTdng trinh ddnglirc hgc cue vat ran quay quanh mgt true CO dinh Bai Mdmen dgng Itrpng dinh luat bao toan mdmen dgng liTdng 23 Bai Ddng nang cua vat ran quay quanh mgt true cd' djnh 29 Bai Bai tap ve ddng lire hgc vat ran 34 Bai kiem tra chuang I 40 CHUONG II DAO DONG CO Bai Dao dgng dieu hoa 53 Bai Con lac ddn - Con lac vat If 64 Bai Nang luTdng dao dgng dieu hoa 73 Bai Bai tap ve dao ddng dieu hda 79 Bai 10 Dao ddng tat dan va dao ddng tri 86 Bai 11 Dao dgng cudng btfc Cong hi/6ng 91 Bai 12 Tong hop dao dgng 100 Bai 13 Thuc hanh : Xac dinh chu ki dao ddng cua lac don hoac lac Id xo va gia tdc trgng triTdng 106 250 Bai kiem tra chuang ll 110 CHUONG III SONG CO Bai 14 Sdng cd - phu-png trinh sdng 123 Bai 15 Phan xa sdng - sdng dCrng 132 Bai 16 Giao thoa sdng 140 Sa/77 Sdng am - nguon nhac am 148 Bai 18 Hieu irng Ddp pie 165 6a/79 Bai tap ve sdng CO 171 Bai 20 Thuc hanh : Xac dinh td'e dp truyen am 180 Bai kiem tra chuang III 186 CHUONG IV DAO DONG VA SONG DIEN TLT Bai 21 Dao dgng dien tir 200 Bai 22 Bai tap ve dao ddng dien ti/ 212 Bai 23 Dien tir tru-dng 218 Bai 24 Sdng dien tir 222 Bai 25 Truyen thdng bang sdng dien t i / 229 Bai kiem tra chuang IV 237 Muc luc 250 251 Thiet k§'bai giang V A T L I 12 - NANG CAO - TAP MOT TRAN THUY HANG - HA DUYEN TUNG NHA XUAT BAN HA NOI Chiu trdch nhiem xudt bdn : NGUYfiN K H A C O A N H Bien tap : PHAM QUOC TUAN Vebia : T A O THANH HUY^N Trinh bdy : CHU MINH Sda bdn in : PHAM QUOC TUAN In 1000 cuon, khd 17 x 24 cm, tai Cong ty TNHH in Ha Anh Giay phep xuat ban so : 217 - 2008/CXB/lOO k TK - 05/HN In xong va nop li/u chieu nam 2008 Sach lien ket v6i Cong ty CO phan In va Phat hanh sach Viet Nam • ••"iiiiiiiiif INPHAVI , ITlh Phat hanh tai Cong ty co phan In va Phat hanh sach Viet Nam 33.000 O Dia chi : 78 - Dong Cac - Dong Da - Ha Noi DT : (04) 5.11 5921 - Fax : (04) 5.11 5921 Gid: 33.000d [...]... Acp • kTT => Acp = 2^ ;r, suy ra hai dao ddng dupc truyin de'n tir hai ngudn 5,, 52 ddng pha 2TT => A^ = — [d2-d]) A ^ d2-d] = 2kTT =kA vdi A: = 0,±l, 2, Ne'u dilm M khdng dao ddng thi: Acp cos- 0 ^ ^ = [2k + X)'L 2 ^ ^2 ^ Acp = [2k + \)TT, suy ra hai dao ddng dupc truyin de'n tir hai ngudn 5|, 52 ngupc pha 2TT =>Acp = ~[d2-d]) A ^d',-d^ r = [2k + \)TT 1 1 = k+ - A 2 vdi ^ = 0,±1, 2, - Nhiing dilm dao... la: 2TTd a = 2 Acos TT ... lOOHz phat cao han so vdi am cd tan so /2= 120 077Z - Am cd tin sd /2 = 120 077z phat cao han so vdi am cd tin s o / , = 90077Z Dp cao phu thudc vao tin so cua am: Tan sd Idn nghe tha'y am cao, tin... X2 toa dp X] va JC2 la : - Xac dinh dp lech pha cua hai dilm dd M(r) = cos 2^ ft—^^1 /L ; M(r) = Acos fo /> 2^ 2^ ft -X2 Suy dp lech pha giua hai dilm : | A^ = y( ^2- ^i) = ^ ^^[x2-X]) : = 2, 5cm... Acp = 2^ ;r, suy hai dao ddng dupc truyin de'n tir hai ngudn 5,, 52 ddng pha 2TT => A^ = — [d2-d]) A ^ d2-d] = 2kTT =kA vdi A: = 0,±l, 2, Ne'u dilm M khdng dao ddng thi: Acp cos- ^ ^ = [2k + X)'L

Ngày đăng: 30/03/2016, 16:21