Carbon based solids and materials

645 143 0
Carbon based solids and materials

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Carbon-based Solids and Materials Carbon-based Solids and Materials Pierre Delhaes First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc Adapted and updated from three volumes Solides et matériaux carbonés 1, 2, published 2009 in France by Hermes Science/Lavoisier © LAVOISIER 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK John Wiley & Sons, Inc 111 River Street Hoboken, NJ 07030 USA www.iste.co.uk www.wiley.com © ISTE Ltd 2011 The rights of Pierre Delhaes to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988 Library of Congress Cataloging-in-Publication Data Delhaes, Pierre Carbon-based solids and materials / Pierre Delhaes p cm "Adapted and updated from three volumes Solides et matériaux carbonés 1, 2, published 2009 in France by Hermes Science/Lavoisier 2009"-Includes bibliographical references and index ISBN 978-1-84821-200-8 Carbon composites Carbon compounds I Title TA418.9.C6D425 2010 620.1'93 dc22 2010031623 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-200-8 Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne Table of Contents Introduction xiii PART CARBON PHASES, PRECURSORS AND PARENT COMPOUNDS Chapter A Historical Overview 1.1 The alchemy of carbon 1.2 Elemental carbon and its allotropic varieties 1.3 Novel molecular varieties 1.4 Natural forms 1.4.1 Carbon: witness of the evolution of the universe 1.4.2 Natural carbons from Earth 1.4.3 Comparison between natural and artificial carbons 1.5 Contribution from quantum mechanics 1.5.1 Homonuclear diatomic molecules 1.5.2 Curved surfaces: the rehybridization phenomena 1.5.3 Presentation of the crystalline forms 1.5.4 The isotopes of the carbon atom 1.6 Conclusion 1.7 Bibliography 9 10 13 14 14 16 17 19 21 21 Chapter Polymorphism of Crystalline Phases 25 2.1 Thermodynamic stability and phase diagram 2.1.1 Stable and metastable phases 2.1.2 The phase diagram of carbon 2.1.3 Case of the molecular phases 2.1.4 Crystallographic presentation of usual phases 2.2 Classical forms of carbon 2.2.1 Cohesive energy and equation of state for solids 2.2.2 Structures with a fixed coordination number 25 27 28 32 34 37 37 39 vi Carbon-based Solids and Materials 2.3 Molecular and exotic forms 2.3.1 Tri-coordinated structures on curved surfaces 2.3.2 Exotic structures with mixed coordination numbers 2.4 State of the art and conclusion 2.5 Bibliography 43 43 51 53 54 Chapter Non-Crystalline Carbons 61 3.1 Reminder about defects and imperfections in networks 3.1.1 Ideal single crystals 3.1.2 Crystalline imperfections 3.1.3 Non-crystalline solids 3.1.4 Homogenity of a solid 3.2 Thermodynamic approach and the classification of solids 3.2.1 Generalities 3.2.2 Classification of carbon-based materials 3.3 Fabrication and characterization techniques 3.3.1 Thin-film coating techniques 3.3.2 Deposition mechanisms 3.3.3 The role of catalysts 3.3.4 Characterizations at different scales 3.4 Conclusion 3.5 Bibliography 97 Chapter Derivative Compounds and Analogs 62 62 62 63 65 70 70 72 81 81 84 89 91 92 93 4.1 Doping carbons and solid solutions 4.1.1 Doped diamonds 4.1.2 Doped graphitic phases 4.1.3 Fullerenes and nanotubes doping 4.2 2D and 3D analog compounds 4.2.1 Boron nitride 4.2.2 Boron carbides 4.2.3 Carbon nitrides 4.2.4 Carbon-boron nitrides 4.3 Similar materials 4.3.1 Aggregates and inorganic nanotubes 4.3.2 Bulk compounds 4.4 Conclusion 4.5 Bibliography 98 98 103 108 111 111 113 113 115 116 116 117 118 118 Chapter From Aromatic Precursors to the Graphene Plane 127 5.1 Condensed polyaromatic systems 128 Table of Contents 5.1.1 Presentation of condensed aromatic molecules 5.1.2 Thermochemical evolution of organic precursors 5.1.3 Association of aromatic molecules and supramolecular organization 5.1.4 Structural and physico-chemical characteristics of low temperature carbons 5.2 The graphene plane 5.2.1 Characteristics and properties 5.2.2 Growth in the vapor phase and thermodynamic stability 5.2.3 Intercalation and exfoliation processes 5.3 Current situation and conclusion 5.4 Bibliography vii 128 136 141 146 151 152 154 155 160 160 PART PHYSICAL PROPERTIES OF SOLID CARBONS 169 Chapter General Structural Properties 171 6.1 Elastic and mechanic properties 6.1.1 Reminder of the main definitions 6.1.2 Elasticity modulus of crystalline phases 6.1.3 Behavior laws relative to bulk polycrystalline graphites 6.1.4 Behavior laws for carbon filaments 6.2 Thermal properties 6.2.1 Thermodynamic definitions 6.2.2 Specific heat 6.2.3 Thermal dilatation 6.2.4 Thermal conductivity 6.3 Conclusion 6.4 Bibliography 217 Chapter Electronic Structures and Magnetic Properties 172 172 175 179 183 188 188 192 197 200 207 208 7.1 Electronic band structures 7.1.1 Band structure of hexagonal graphite single crystals 7.1.2 Experimental evaluations of energy parameters 7.1.3 Models for graphitic carbons 7.1.4 Electronic dimensionality of π solids 7.2 Static magnetic properties 7.2.1 General presentation of diamagnetism 7.2.2 Graphite single crystal and graphene plane 7.2.3 Different varieties of graphitic carbons 7.2.4 Quantum phenomena on carbon nanotubes 7.3 Electron spin (or paramagnetic) resonance 7.3.1 General characteristics of ESR/EPR 218 218 220 223 225 227 231 235 238 240 240 241 viii Carbon-based Solids and Materials 7.3.2 The Pauli paramagnetism of graphites 7.3.3 EPR of various carbon varieties 7.3.4 Magnetic interactions 7.4 NMR 7.4.1 Non-crystalline carbons and precursors 7.4.2 Case of graphite and related compounds 7.5 Conclusion 7.6 Bibliography 244 248 251 252 253 254 255 256 Chapter Electronic Transport Properties 265 8.1 Electrical conductivity 8.1.1 Different conduction mechanisms 8.1.2 Transport in the ballistic regime 8.1.3 Non-ohmic transport and applications 8.1.4 Electromechanical properties 8.2 Galvanomagnetic properties 8.2.1 Evolution of graphitic carbons in classical regime 8.2.2 Quantum phenomena in crystalline phases 8.2.3 Comparison between different types of graphitic compounds 8.3 Thermoelectric properties 8.3.1 Graphites and bulk carbons 8.3.2 Carbon filaments 8.3.3 Thermomagnetic effects 8.3.4 Remark on electronic thermal conductivity 8.4 Conclusion 8.5 Bibliography 270 270 282 286 292 293 293 298 302 305 305 307 308 309 310 310 Chapter Optical Properties and their Applications 321 9.1 Properties in linear optics 9.1.1 Experimental techniques and general presentation 9.1.2 Single crystal of graphite 9.1.3 Graphitic carbons 9.1.4 Fullerenes and nanotubes 9.1.5 The diamond crystals 9.1.6 Adamantine carbons 9.2 Nonlinear and photo-induced properties 9.2.1 Luminescence in diamond-type phases 9.2.2 Photo-induced and nonlinear effects in fullerenes 9.2.3 Photo-induced and nonlinear effects in nanotubes 9.3 Analysis methods and applications 9.3.1 Overview of the relevant techniques 9.3.2 Applications in optics and optoelectronics 325 325 329 331 335 338 339 344 345 348 349 351 352 356 Table of Contents ix 9.4 Conclusion 9.5 Bibliography 358 358 Chapter 10 Vibrational Properties 369 10.1 Phonon spectra in crystalline phases 10.1.1 Diamonds 10.1.2 Graphite and graphene 10.1.3 Nanotubes 10.1.4 Carbynes and fullerenes 10.1.5 Comparison between elongation modes 10.2 Specific characteristics of Raman scattering 10.2.1 Raman resonance of graphite 10.2.2 Raman resonance of π systems and electron-phonon interactions 10.2.3 Influence of structural disorder 10.2.4 Characterization of non-crystalline carbons 10.3 Data from infrared spectroscopy 10.3.1 Thermochemical evolution of carbon-based precursors 10.3.2 Analysis of surface functions 10.4 Conclusion 10.5 Bibliography 370 373 374 378 380 381 383 386 387 389 391 394 396 398 399 400 PART CARBON MATERIALS AND USES 409 Chapter 11 Surface and Interface Phenomena 411 11.1 Physical-chemistry characteristics 11.1.1 Surface properties in diamonds and graphites 11.1.2 Case of graphitic-type phases 11.1.3 Adsorption mechanisms 11.2 Electric and electrochemical aspects 11.2.1 Double layer model and electrokinetic potential 11.2.2 Electronic transfers 11.3 Solid interfaces, tribology and mechano-chemical effects 11.3.1 Interactions between solid surfaces in motion 11.3.2 Grinding of graphitic powder 11.3.3 Friction coefficients of diamond phases 11.3.4 Friction coefficients of graphitic phases 11.3.5 Wear and lubrication 11.4 Conclusion 11.5 Bibliography 412 417 421 425 429 429 432 439 440 444 445 447 449 449 450 x Carbon-based Solids and Materials Chapter 12 Chemical Reactivity and Surface Treatment 12.1 Oxidation reactions 12.1.1 Review of the reactions with molecular oxygen 12.1.2 Combustion mechanism of various carbons 12.1.3 Selectivity between different phases 12.1.4 Other gaseous oxidants 12.1.5 Oxidation in the liquid phase 12.1.6 Oxidations in the solid phase 12.1.7 Technical analysis relevant to surface functions 12.2 Hydrogenation and halogenation reactions 12.2.1 Reactions with hydrogen 12.2.2 Reactions with halogens 12.3 Surface treatment and heterogenous catalysis 12.3.1 Surface modifications 12.3.2 Catalytic effects 12.4 Conclusion 12.5 Bibliography 463 464 465 467 468 471 473 475 480 480 482 486 486 489 492 492 Chapter 13 Divided and Porous Carbons 503 13.1 General presentation of heterogenous carbons 13.1.1 Basic classification 13.1.2 Carbons from a solid phase 13.1.3 Carbons from a liquid phase 13.1.4 Porous carbons with a gas phase 13.2 Properties of porous carbons 13.2.1 Porous textures and surface characteristics 13.2.2 Dynamic properties 13.3 Competition between chemical reactions and diffusion 13.3.1 The Thiele model and its ramifications 13.3.2 Chemical deposition in the vapor phase 13.3.3 Formation from energetic processes 13.4 Conclusion 13.5 Bibliography 553 Chapter 14 Carbon Filaments, Composites and Heterogenous Media 504 504 505 510 511 516 519 524 533 533 536 538 540 541 14.1 Carbon filaments 14.1.1 History of nanofilaments 14.1.2 Evolution of carbon fibers 14.1.3 Main physical characteristics of carbon filaments 14.2 Role in composite materials 14.2.1 Multidimensional and multiscale systems 461 554 554 559 562 563 564 Table of Contents 14.2.2 Fiber-matrix interactions 14.2.3 Classes of composites and nanocomposites 14.3 Random heterogenous media 14.3.1 Electrical conductivity and percolation models 14.3.2 Role of interfacial properties and influence of the matrix 14.3.3 Consequences of the percolation phenomenon 14.4 Conclusion 14.5 Bibliography 566 570 572 575 577 579 581 581 Chapter 15 Use of Carbon Materials 591 15.1 Sensing applications and nanoelectronics 15.1.1 Sensors and actuators 15.1.2 Nanoelectronic 15.2 Carbon for energy 15.2.1 Solar radiations, conversion, and heat storage 15.2.2 Gas storage 15.2.3 Electrochemical storage 15.2.4 Carbons in nuclear energy 15.3 Thermostructural composites and transport 15.3.1 Space applications 15.3.2 Braking disks 15.4 Carbons for chemistry and environmental problems 15.4.1 Applications in industrial chemistry 15.4.2 Carbon and environment 15.5 Biocarbons 15.5.1 Prosthesis and medical implants 15.5.2 Biological fluids and hemocompatibility 15.5.3 Nanotoxicology 15.5.4 Application trends 15.6 General conclusion 15.7 Bibliography xi 592 593 595 596 596 598 599 605 610 611 613 615 615 617 618 618 619 619 620 621 621 Main Signs and Symbols 631 List of Basic Boxes 634 Index 635 626 Carbon-based Solids and Materials [KIM 08] KIM S., SHIBATA E., SERGIIENKO R and NAKAMURA T., Carbon,, vol 46, pp 15231529, 2008 [KIN 97] KINOSHITA K., Carbon: Electrochemical and Physicochemical Properties, John Wiley and Sons, 1997 [KOH 07] KOHN E and DENISENKO A., Thin Solid Films, vol 515, pp 4333-4339, 2007 [KOS 09] KOSTARELOS K., BIANCO A and PRATO M., Nature Nanotechnol., vol 4, pp 627632, 2009 [KRE 05] KRENKEL W and BERNDT F., Mater Science Eng., vol A 412, pp 177-181, 2005 [KUR 97] KURUMADA A., OKU T., HARADA K., KAWAMATA K., SATO S., HIRAOKA T and MCENANEY B., Carbon, vol 35, pp 1157-1165, 1997 [LAC 06] LACHAUD J., ASPA Y., VIGNOLES G.L and GOYENECHE J-M., Congr Fr Therm., vol 1, pp 125-130, 2006 [LAC 07] LACHAUD J., BERTRAND N., VIGNOLES G.L., BOURGET G., REBILLAT F and WIESBECKER P., Carbon, vol 45, pp 2768-2776, 2007 [LEC 95] LE CLOIREC P., Les composés organiques volatils dans l'environnement, Lavoisier éditeur et École des Mines de Nantes, 1995 [LEG 09] LE GOFF A., ARTERO V., JOUSSELME B., DINH TRAN P., GUILLET N., METAYE R., FIHRI A., PALACIN S and FONTECAVE M., Science, vol 326, pp 1384-1387, 2009 [LEG 92] LEGENDRE A., Le matériau carbone, Editeur Eyrolles, Paris, 1992 [LEN 97] LENG C.C and PINTO N.G., Carbon, vol 35, pp 1375-1385, 1997 [LET 98] LETTINGTON A.H., Carbon, vol 36, pp 555-560, 1998 [LI 98] LI C.Y., WAN Y.Z., WANG J., WANG Y.L., JIANG X.Q and HAN L.M., Carbon, vol 36, pp 61-65,1998 [LI 08a] LI C., THOSTENSON E.T and CHOU T-W., Compos Sci Technol., vol 68, pp 12271249, 2008 [LI 02] LI W., REICHENAUER G and FRICKE J., Carbon, vol 40, pp 2955-2959, 2002 [LI 08b] LI Y., SINITSKII A and TOUR J.M., Nature Materials., vol 71, pp 966-971, 2008 [LIN 03] LINK D.D., LADNER E.P., ELSEN H.A and TAYLOR E.T., Fluid Phase Equilibria, vol 211, pp 1-10, 2003 [LIN 66] LINDSEY M., Second Conference on Industrial Carbon and Graphite, 619-628, Society of Chemical Industry, London, pp 619-628, 1966 [LIU 08] LIU C-H., KO T-H., CHANG E-C., LYU H-D and LIAO Y-K., Journal of Power Sources, vol 180, pp 276-282, 2008 [LOG 05] LOGOTHETIDIS S., GIOTI M., LOUISINIAN S and, FOTIADOU S., Thin Solid Films, vol 482, pp 126-132, 2005 Use of Carbon Materials 627 [MAG 05] MAGUIRE P.D., MCLAUGHLIN J.A., OKPALUGO T.I.T., LEMOINE P., PAPAKONSTANTINOU P., MCADAMS E.T., NEEDHAM M., OGWU A.A., BALL M and ABBAS G.A., Diamond Relat Mater., vol 14, pp 1277-1288, 2005 [MCD 08] MCDUFFEE J.J., BURCHELL T.D., HEATHERLY D.W and THOMS K.R., Journal of Nucl Mater., doi:101016, 2008 [MCE 01] MCENANEY B., ALAIN E., YIN Y-F and MAYS T.J., in B RAND, S.P APPLEYARD and M.F YARDIM (eds.), Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, 295-318, NATO series E volume 394, Kluwers Academic Publishers, pp 295-318, 2001 [MEI 97] MEID J.A., Carbon, vol 35, pp 1207-1216, 1997 [MIT 09] MITCHELL L.A., LAUER F.T., BURCHIEL S.W and MCDONALD J.D., Nature Nanotechnol., vol 4, pp 457-456, 2009 [MOC 01] MOCHIDA I., KU C-H and KORAI Y., Carbon, vol 39, pp 399-410, 2001 [MON 05] MONTEIRO-RIVIERE N.A., NEMANICH R.J., INMAN A.O., WANG Y.Y and RIVIERE J.E., Toxicol Lett., vol 155, pp 377-384, 2005 [MOR 00] MORENO G., PARIENTE F and LORENZO E., Anal Chim Acta, vol 420, pp 29-37, 2000 [MOR 06] MORLAY C., LAIDIN I., CHESNEAU M and JOLY J-P., L’actualité Chim., vol 295296, pp 95-99, 2006 [NAG 08] NAGLE L.C and ROHAN J.F., J Power Sources, vol 185, pp 411-418, 2008 [NAL 08] NALLATHAMBI V., LEE J-W., KUMARUGU S.P and POPOV B.N., J Power Sources, vol 183, pp 34-42, 2008 [NEC 06] NECHAEV YU S., Physics-Uspekhi, 49, 563-591, 2006 [NEU 07] NEUVILLE S and MATTHEWS A., Thin Solid Films, vol 515, pp 6619-6653, 2007 [NIG 62] NIGHTINGALE R.E., Graphite in Nuclear Energy, Academic Press editor, New York and London 1962 [NIU 97] NIU C., SICHEL E.K., HOCH R., MOY D and TENNENT H., Appl Phys Lett., vol 70, pp 1480-1482, 1997 [OLI 04] OLIVARES R., RODIL S.E and ARZATE H., Surface and Coatings Technol., vol 177178, pp 758-764, 2004 [PAR 66] PARISOT J., Bull Soc Fr Céram vol 73, pp 13-32, 1966 [PAR 09] PARK S and RUOFF R.S., Nature Nanotechnol., vol 4, pp 217-224, 2009 [PEG 04] PÉGOURIÉ B., BROSSET C., DELCHAMBRE E., LOARER T., ROUBIN P., TSITRONE E., BUCALOSSI J., GUNN J., KHODJA H., LAFON C., MARTIN C., PARENT P and REICHLE P., Phys Scripta, vol T111, pp 23-28, 2004 628 Carbon-based Solids and Materials [PES 07] PESZYNSKA-BIALCZYK K., ANDERSON K.B., SZYMANSKI T., KRKOSKA M., FILIP P., Carbon, vol 45, pp 524-530, 2007 [POL 06] POLIZU S., SAVADOGO O., POULIN P and L’HOCINE YAHIA, Journal of Nanosci Nanotechnol., vol 6, pp 1883-1904, 2006 [PON 08] PONOMARENKO L.A., SCHEDIN F., KATSNELSON M.I., YANG R., HILL E.W., NOVOSELOV K.S and GEIM A.K., Science, vol 320, pp 356-358, 2008 [POR 07] PORTET C., YUSHIN G and GOGOTSI Y., Carbon, vol 45, pp 2511-2518, 2007 [PY 01] PY X., OLIVES R and MAURAN S., Journal of Heat and Mass Transfer, vol 44, pp 2727-2737, 2001 [PY 06] PY X., GOETZ V and OLIVES R., Actualité Chimique, vol 295-296, pp 72-76, 2006 [QUR 09] QURESHI A., KANG W.P., DAVIDSON J.L and GURBUZ Y., Diamond Relat Mater., vol 18, pp 1401-1420, 2009 [RAF 08] RAFFA V., CIOFANI G., NITODAS S., KARACHALIOS T., D’ALESSANDRO D., MASINI M and CUSHIERI A., Carbon, vol 46, pp 1600-1610, 2008 RAYMUNDO-PINERO E and BEGUIN F., “Activated carbon surfaces in [RAY 06] environmental remediation”, in T.J BANDOSZ (ed.), Interface Sscience and Technology, vol 7, 293-343, Elsevier, pp 293-343, 2006 [RED 97] REDMOUNT M.V and HEINTZ E.A., Chapter 11 in H MARSH, E.A HEINTZ and F RODRIGUEZ-REINOSO (eds.), Introduction to Carbon Technologies, University of Alicante Publications, Alicante, pp 519-536, 1997 [RIE 09] RIETSCH J-C., DENTZER J., DUFOUR A., SCHNELL F., VIDAL L., JACQUEMARD P., GADIOU R and VIX-GUTERL C., Carbon, vol 47, pp 85-93, 2009 [RIT 09] RITTER K.A and, LYDING J.W., Nature Materials, vol 8, pp 235-242, 2009 [RUE 00] RUECKES T., KIM K., JOSELEVICH E., TSENG G.Y., CHEUNG C-L and LIEBER C.M Science, vol 289, pp 94-97, 2000 [RUT 09] RUTHERGIEN C., JAIN D and BURKE P., Nature Nanotechnology, vol 4, pp 811819, 2009 [RYM 09] RYMAN-RASMUSSEN J.P., CESTA M.F., BRODY A.R., SHIPLEY-PHILLIPS J.K., EVERITT J.I., TEWSBURY E.W., MOSS O.R., WONG B.A., DODD D.E., ANDERSEN M.E and BONNER J.C., Nature Nanotechnol., vol 4, pp 747-751, 2009 [SAT 03] SATHIYAMOORTHY D and SURI A.K., Carbon Sci., vol 4, pp 36-39, 2003 [SCH 04] SCHNEIDER C.M., ZHAO B., KOZHUHAROVA R., GROUDEVA-ZOTOVA S., MUHL T., RITSCHEL M., MONCH I., VINZELBERG H., ELEFANT D., GRAFF A., LEONHART A and FINK J., Diamond Relat Mater., vol 13, pp 215-220, 2004 [SGO 08] SGOBBA V and GULDI D.M., J Mater Chem., vol 18, pp 153-157, 2008 [SHI 03] SHIRAISHI S., Chapter 26, “Carbon Alloys”, in E YASUDA, M INAGAKI, K KANEKO, M ENDO, A OYA and Y TANABE (eds.), Carbon alloys, Elsevier, pp 447-457, 2003 Use of Carbon Materials 629 [SHO 64] SHOBERT II E.I., Modern Materials, vol 4, 1-99, Academic Press Inc., pp 1-99, 1964 [SHR 04] SHRIVASTA A., SRIVASTA O.N., TALAPATRA S., VAJTAI R and AJAN P.M., Nature Materials, vol 3, pp 610-614, 2004 [SIM 08] SIMON P and GOGOTSI Y., Nature Mater., vol 7, pp 845-854, 2008 [SMA 06] SMART S.K., CASSADY A.I., LU G.Q and MARTIN D.J., Carbon, vol 44, pp 10341047, 2006 [SNE 99] SNEAD L.L., Chapter 17 in T.D BURCHELL, Carbon Materials for Advanced Technologies, Pergamon Press, pp 389-427, 1999 [SOL 10] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, vol.48,2127-2150, 2010 [SPR 09] SPRINKLE M., SOUKIASSIAN P., DE HEER W.A., BERGER C and CONRAD E.H., Phys Status Solidii, RRL vol 3, pp A91-A94, 2009 [SU 05] SU F., ZENG J., BAO X.,YU Y., LEE J.Y and ZHAO X.Z., Chem Mater., vol 17, pp 3960-3967, 2005 [TAR 01] TARASCON J-M and ARMAND M., Nature, vol 414, pp 359-367, 2001 [TAY 08] TAYLOR A.D., SEKOL R.C., KIZUKA J.M., D’CUNHA S and COMISAR C.M., Journal of Catalysis, vol 259, pp 5-16, 2008 [TES 09] TESSONIER J-P., VLLA A., MAJOULET O., SU D.S and SCHOGL R., Angew Chem Int Ed., vol 48, pp 6543-6546, 2009 [TEX 04] TEXIER-MANDOKI N., PIQUERO T., DAVID P., VIX-GUTERL C., DENTZER J and SAADALLAH S., Carbon, vol 42, pp 2744-2746, 2004 [THE 06] THEBAULT J and OLRY P., L’actualité chimique, vol 295-296, pp 47-51, 2006 [THR 64] THROWER P.A., Br Journal of Appl Phys., vol 15, pp 1153-1159, 1964 [TIA 04] TIAN X., SOGA T., JIMBO T and UMENO M., Journal of Non-Crystalline Crystal Solids, vol 336, pp 32-36, 2004 [TIB 01] TIBETTS G.G., MEISNER G.P and OLK C.H., Carbon, vol 39, pp 2291-2301, 2001 [TOY 00] TOYOTA M and INAGAKI M., Carbon, vol 38, pp 199-210, 2000 [TOY 10] TOYLI D.M., WEISS C.D., FUCHS G.D., SCHENKEL T and AWSCHALOM D.D., Nanoletters, vol 10, 3168-3172, 2010 [TRO 02] TROSTER I., FRYDA M., HERRMANN D., SCHAFER L., HANNI W., PERRET A., BLASCHKE M., KRAFT A and STADELMANN M., Diamond Relat Mater., vol 11, pp 640645, 2002 [TSA 87] TSAI H-C and BOGY D.B., J Vac Sci Technol., vol A5, pp 3287-3311, 1987 [VAL 04] VALENTINI L., MERCURI F ARMENTANO I., CANTALINI I., PICOZZI S., LOZZI L., SANTUCCI S., SGAMELLOTTI A and KENNY J.M., Chem Phys Lett., vol 387, pp 356-361, 2004 630 Carbon-based Solids and Materials [VIX 05] VIX-GUTERL C., FRACKOWIAK E., JUREWICZ K., FRIEBE M., PARMENTIER J and BEGUIN F., Carbon, vol 43, pp 1293-1302, 2005 [VOH 04] VOHRER U., KOLARIC I., HAQUE M.H., ROTH S and DETLAFF-WEGLIKOWSKA, Carbon, vol 47, pp 1159-1164, 2004 [WAN 09] WANG X., MAEDA K., THOMAS A., TAKANABE K., XIN G., CARLSSON J.M., DOMEN K and ANTONIETTI M., Nature Mater., vol 8, pp 76-80, 2009 [WAN 10] WANG Z., WEI J., MORSE P., DASH J.G., VILCHES O.E and COBDEN D.H., Science, vol 327, pp 552-555, 2010 [WAT 08] WATT-SMITH M.J., RIGBY S.P., RALPH T.R and WALSH F.C., Journal of Power Sources, vol 184, pp 29-37, 2008 [WEI 07] WEI J., JIA Y., SHU Q., GU Z., WANG K., ZHUANG D., ZHANG G., WANG Z., LUO J., CAO A and WU D., Nanoletters,, vol 7, pp 2317-2321, 2007 [WEL 09] WELSHER K., LIU Z., SHERLOCK S.P.,ROBINSON J.T., CHEN Z., DARANCIANG D and DAI H., Nature Nanotechnol., vol 4, pp 773-780, 2009 [WIG 89] WIGMANS T., Carbon, vol 27, pp 13-22, 1989 [XIO 07] XIONG X., LI J-H and HUANG B-Y., Carbon, vol 45, pp 2692-2695, 2007 [YAN 01]YANG K-L., YING T-Y., YIACOUMI S., TSOURIS C and VITTORATOS E.S., Langmuir, vol 17, pp 1961-1969, 02001 [YAN 04] YANG P., KWOK S.C.H., FU R.K.Y., LENG Y.X., WANG J., WAN G.J., HUANG N., LENG Y and CHU P.K., Surface and Coatings Technol., vol 177-178, pp 747-751, 2004 [YAZ 08] YAZYEV O.V and KANELSON M.I., Phys Rev Lett., vol 100, 047209, 2008 [YIN 06] YIN J., XIONG X., ZHANG H and HUANG B., Carbon, vol 44, pp 1690-1694, 2006 [YOO 04] YOON S-H., PARK C-W., YANG H., KORAI Y., MOCHIDA I., BAKER R.T.K and RODRIGUEZ N.M., Carbon, vol 42, pp 21-32, 2004 [ZHE 99] ZHENG T and DAHN J.R., Chapter 11 in T.D BURCHELL, Carbon Materials for Advanced Technologies, chapter 11, 241-387, edited by T.D BURCHELL, Pergamon Press, pp 241-387, 1999 Main Signs and Symbols Constants, functions and physical dimensions Fundamental constants and principal variables h Planck constant ; k Boltzmann constant (and R perfect gas constant) e and m : electric charge and mass for an electron r vector of the crystalline network and k associated wave-vector c helicity vector for a SWCNT ρ density (or specific mass) of a solid E vectors of the electric field, H and B magnetic field and magnetic induction ν frequency and ω (= 2πν) pulsation of a periodic wave t characteristic time and τ residence time k rate constant of a chemical reaction q or Q flux of matter or heat flux Characteristic dimensions D physical or electronic dimensionality of the system a or c crystal lattice parameters d chemical bond length with a coordination number z L characteristic length l coherence or characteristic length S surface and V volume considered Carbon-based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd 632 Carbon-based Solids and Materials Thermodynamic functions defined for a temperature T and a pressure P U internal energy; H enthalpy ; A free energy G free enthalpy or Gibbs enthalpy; S entropy ΔH and ΔG variations of enthalpy and free enthalpy associated to a change of state or a chemical reaction Characteristic energies and temperatures Ec cohesive energy of a solid Ea activation energy relative to a physical or chemical transformation Θ characteristic Debye or electronic type temperatures Chemical signs and analysis techniques Compounds and materials BSU basic structural unit DLC diamond-like carbon a.C-(H) amorphous carbon (hydrogenated) CBN carbon boron nitride solid solutions HOPG highly oriented pyro-graphite LMO local molecular orde MCMB microcarbon mesobeads PAH Poly-aromatic hydrogenated compounds SWCNT/DWCNT/MWCNT single wall carbon nanotube (either double or multiwall) VGCF vapour-grown carbon fiber VOCs volatile organic compounds Processes and mechanisms ASA/TSA active surface area and total surface area CVD/CVI chemical vapour deposition (or infiltration) PECVD plasma-enhanced CVD HACA hydrogen abstraction C2H2 addition Main Signs and Symbols 633 HTT high temperature treatment TPD Temperature programmed desorption VLS vapor-liquid-solid model Models and Physical properties BET Bruner Emmet Taylor model CTE coefficient of thermal expansion DFT density functional theory EDLC electrical double layer capacitor ESR/EPR electron spin (paramagnetic) resonance FET field emission transistors ILSS interfacial shear stress LED light emitting device MEMS/NEMS micro-electromechanical sensor,nano-electromechanical sensor NLO non linear optics NMR nuclear magnetic resonance PEFC/ DMFC proton exchange fuel cell, direct methanol fuel cell RKKY Ruderman-Kittel-Kasuya-Yosida magnetic interaction RRR residual ratio resistance SQUID Superconducting quantum interferometric device SWMcC Slonczewski-Weiss-Mc Clure electronic model TEP thermo-electric power TPD thermophysical desorption TPS thermal protection system Analysis techniques EELS electron energy loss spectroscopy EXAFS extended X-ray absorption fine structure FTIR Fourier transforms infra-red spectroscopy SAXS/SANS small angle X-rays (neutrons) scattering SEM and TEM scanning electron microscopy and transmission electron microscopy STM and AFM scanning tunnel microscopy and atomic force microscopy XPS/UPS X-ray (or ultra-violet) photoelectron spectroscopy List of Basic Boxes Box 1.1 p 20 − Principle of radiochronology Box 2.1 p 26 − Reminder of thermodynamic definitions and criteria for phase stability Box 3.1 p 67 − Advantage of X-ray and neutron diffractions Box 3.2 p 79 − Plasma characteristics and their interactions with surfaces Box 3.3 p 87 − Nucleation and deposition growth Box.4.1 p 101 − Doping crystalline diamond Box 5.1 p 132 − Electronic structure of π-electron systems Box 5.2 p 147 − Summary on characterization techniques relative to graphitic structures and textures Box 5.3 p 157 − Graphite intercalation compounds Box 6.1 p 174 − Tensorial character of the physical properties of crystals Box 6.2 p 189 − Lattice vibrations and macroscopic models Box 7.1 p 227 − Definitions and measurements of magnetic quantities Box 8.1 p 267 − Phenomenological definitions of transport properties Box 8.2 p 271 − Expression of transport properties Box 8.3 p 282 − Phenomena in the ballistic regime Box 9.1 p 323 − Definitions of optical properties Box 9.2 p 327 − Analytical absorption spectroscopies Box 9.3 p 344 − Relaxation mechanisms from an excited molecular state Box 9.4 p 348 − Macroscopic definitions of nonlinear optical properties Box 10.1 p 371 − Dynamics of vibrations in a crystal lattice Box 10.2 p 384 − Reminders on Raman phenomena in solids Box 11.1 p 412 − Thermodynamic of surfaces Box 11.2 p 433 − Techniques of electrochemical characterizations Box 11.3 p 440 − Basics on surface mechanics Box 12.1 p 462 − Physical chemistry of gas-surface interactions Box 13.1 p 516 − Textural characterization of porous solids Box 13.2 p 524 − Mass transfer in a porous solid Box 13.3 p 535 − Open thermodynamic systems and non-equilibrium chemical structures Box 14.1 p 565 − Fibers, wires, sheets and architectures Box 14.2 p 573 − Models of effective media and percolation theory Box 15.1 p 606 − Induced neutron irradiation damage on graphites Box 15.2 p 610 − Ablation phenomenon Carbon-based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd Index A ablation, 75, 463, 610-612 active surface area, 467-471 actuators, 580, 593 adhesion, 413, 442, 567 adsorption-desorption mechanisms, 425-429, 462, 516, 521, 524, 527531, 598 aerogels, 513-515, 602 aerosols, 511 aerosprays, 511 aggregates, 73-74, 116 allotropy, 7, 9, 116 armchair (form), 46, 47,152, 153, 226, 283, 467, 477 asphaltenes 145 B ballistic regime, 202, 271, 282-285, 301-310, 595 band structures, electronic, 159, 218, 222, 228, 236, 248, 284-285 basic structural units 76, 145, 254, 256, 508-510 Carbon-based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd batteries, primary and secondary, 436, 485, 600-603 biocarbons, 618, 620 biocompatibility, 530-531 biopiles, 599, 605 Bloch, functions, 225, 271, 275 theorem, 133 bonds, chemical, 18-19 boron nitride, 110-113, 144, 177-180, 202 Boudouard equilibrium, 90, 464 Bragg law, 68, 147 brakes, 610-612 breakthrough curve, 528-529 brushes, 449 C capacitors, 436, 599, 602-603 carbon, blacks, 61-62, 249, 423, 508-510 element, isotopes, 20 nitrides, 106, 113, 118, 395, 438 carbon-boron nitrides, 107, 115 636 Carbon-based Solids and Materials carbonization (primary and secondary), 77-78, 149-150, 243 carbines, 18, 34-36, 74, 382 catalycity, 463, 471 catalysis support, 490-492, 605 charge, carriers (electrons and holes), 220, 297 transfer (electronic), 157-159 ,292, 432, 602 chars, 243, 478 chemical functions, 476-479 vapor deposition 72, 81, 84, 105108, 136, 536 vapor infiltration 570, 613 chromatography, 525-526 coals, 11, 14, 145, 149, 240-241, 398, 483 colloids, 145-146, 471-472, 504, 513, 518 composite, carbon, 183 ,607,6 09, 612-614 materials, 475 ,487, 504, 510, 537, 570 compressibility coefficients, 42, 117 condensators, 436, 599, 602-603 coordination number, 19, 39-43, 5152, 97 cyclotron resonance, 229, 230 D Debye temperatures, 194-195, 247 density, 35, 39, 65, 150 deposition growth and mechanism, 86-88 diagenesis, 11, 398 diamagnetism, Landau, 229-230, 233-237 London, 228, 234 diamonds, crystal, 34, 42, 53, 248-250, 338, 453, 595 natural, 14, 99, 338 dielectric (function and constants), 323-325 diffraction of, neutrons, 64, 67-69, 147, 427, 518, 523 X-rays, 7, 37, 63, 147, 197-199, 206, 232, 390, 509, 523 dimensionality, electronic, 133-135, 160, 225-227, 293 physical, 194, 207, 225, 574 doping by boron or nitrogen, 103-107 E effective mass, 224, 304 elastic constant and tensor, 172-177, 180, 207, 447 electrical conductivity (or resistivity), 150, 268, 272, 274, 576-579 electrochemical (potential and device), 433-435, 591 electrokinetic potential, 429 electromagnetic shielding, 579 electromechanical properties, 292 electron energy losses, 110, 332, 335337 electronic, affinity, 432-433 thermal conductivity, 305, 309 transfers, 432-433 energies of, adhesion, 88, 569 adsorption, 414, 516-517 bonding, 28 cohesion, 28, 36-38 environment, 241, 411, 615 equations of state, 27, 37-39, 173, 189 Index erosion, 605, 609 exfoliation process, 155-156, 438 exotic structures, 51-52 F failure (and fracture) mechanisms, 182-184, 607 Fermi level, 221-222 fiber-matrix interactions, 568-570 fibers of carbon, ex-Poly-acrylonitrile, 560-561, 568, 570 ex-pitch, 560-563 ex-mesophase, 283, 560-563 vapor grown, 91, 282 field emission 290-293 filaments, 91-92, 183-187, 200, 250, 287, 291, 305, 439, 485 films (thin), 80-83, 84, 92 fluorocarbons, 483-485 foams, 514 fractals, 514, 518, 523 free radicals, 137 friction coefficient and mechanism, 439-442, 445-449, 613, 614 fuel cells, 603-605 fullerenes, 9, 33-34, 45, 74, 233, 239, 335, 381, 508 G g-factor 244-251 galvanomagnetic properties, 293-298 gas storage (hydrogen and methane), 527, 598 Gibbs energy, 26, 414 glassy carbon, 77, 196, 197, 438, 511, 602 grafting technique, 486 graphane, 482 graphene (plane and ribbon), 47,151152, 237, 256, 286, 299-303, 331, 576, 595 637 graphitization process, 7, 77-78, 103, 104, 151, 204, 224-225, 567, 600, graphite, hexagonal, 18,30, 177, 194 rhombohedral 30-40, 177, 224, 226, 233, 247, 381, 444, 601 graphyne, 50-51 grinding, 75, 241, 444-445 H, I Hall (effect), 265, 294, 298 hardness, 38, 53-54, 117, 178 heat storage and transfer, 356, 524, 530, 531, 532, 538, 596, 611 hetero, fullerenes, 108 nanotubes, 109 Huckel rule and models, 16, 39, 130132 hydrophilic-hydrophobic balance, 417-420, 486, 522, 530 implants, medical, 618-619 implantation technique, 100 infra-red spectroscopy, 99, 476 intercalation processes and compounds, 155, 157-158, 483, 600-601 interfaces, free energy and properties, 249,475,580 ionization potential, 289-290, 432433 K, L kerogens, 11-13, 14, 76, 253, 398 kinetics of oxidations, 467-472 Kohn anomaly, 388 Landau levels, 230-231, 248, 274, 298-301, 309, 311 638 Carbon-based Solids and Materials lattice vibrations (phonons), 171, 189-190, 201, 203, 207, 208, 271, 272, 275, 278, 297, 307, 353, 371375, 442 lattice defects, point and linear, 77, 152, 237, 605606 topological, 152 length scales, 67, 187, 416, 537, 564 liquid crystals, 141, 143 localization regimes, 283, 297 lubrication, 422, 440-442, 449, 485, 613 M magnetic interactions 228, 241, 251 susceptibility, 229-231 mechano-chemical effect, 439-441 mercury porosity, 521 mesophase (carbonaceous), 142-144, 505, 508-511, 514, 560 meteorites, 10, 14, 53 magnetoresistances, 268-270, 297299, 301 microbeads, 510 microcrystalline model and microcrystallites, 64, 148, 174, 206 molecular orbitals, 16, 132 morphologies, 67, 91, 537-539, 556 Mott law, 342 N nanocarbons (nanostructured carbons), 239, 558, 618 nanocomposites, 505, 570-572 nanodiamonds, 78, 621 nanoelectronics, 160, 310, 596 nanotubes, multiple wall, 49, 110, 252, 285, 289, 303, 310, 479, 505, 619620 single wall, 9, 46-48, 187, 240, 285, 303, 488-489, 505, 595, 619-620 near field microscopies (atomic force and tunneling), 139, 148, 157159, 186, 187, 283, 293, 304, 417, 420, 518, 524, 567, 577 neutron irradiations, 182, 606-607 nucleation, heterogenous, 85, 88, 538 homogenous, 87, 136 nuclear magnetic resonance, 19, 231, 476, nuclear reactors, fission, 469, 526, 605-608 fusion, 9, 482 O onions, 91, 392, 508-510 optical, absorption, 150, 335, 350, 393, 397 microscopy, 141-142, 334, 335, 505, 507 reflection, 331 orientational domain 77, 142, 146 oxidation, chemical, 439, 471, 473, 610 oxide, graphitic, 253, 471 P paramagnetism, Curie, 228,249 Pauli, 229,244 percolation (theory and models), 66, 505, 573 Index permeability, 524 piezoresistance, 579 pitches, 76, 145, 559 phase (thermodynamic), diagram and transitions, 25, 28-30, 112 stable and metastable, 18, 25-29, 70-72 phonons, acoustic, 375 optical, 208, 375, 377, 386, 388, 390, 391 photo-electrons, 326 photo-induced properties, 344-345 plasmas (reactive and thermal), 79-81 plasmons, 221, 324, 333, 336, 337 Poisson constant, 178, 186, 200 pollution, 617 polycrystalline and polygranular graphites, 179-183, 449, 605, 607-608, 615 polymorphism (and pseudopolymorphism), 25, 61 polytypes, 31, 63, 117 porosities (micro-meso-macro), 511, 540, 599, 602 pyrolytic carbons (or pyrocarbons), 81, 85, 91, 137-138, 238, 280, 536538, 608 pyrographites, 280, 438 pyrolysis, 136-140, 514 R radiochronology, 20 Raman, resonance, 385-390 scattering, 375-380, 382 redox reactions, 156, 433-434 reflectivity and reflection (optical anisotropy), 223, 333-335 639 refractive index, 325, 338, 339 resonance, electron spin (or paramagnetic), 76, 230, 240, 353 rheology, 516, 560 S scanning tunneling microscopy 148, 417, 567 Schwarzenes and Schwarzites, 48-49, 239 sensors, 580, 593, 620 shear modulus, 175-178, 568 single crystal of graphite, 147, 155, 159, 173, 178, 179, 203, 206, 226, 227, 234,236, 239, 244, 254, 277, 278, 280, 284, 292, 295, 303, 304, 309, 310, 329, 374, 560, 561 solar energy, 596 specific heat, 190, 192-197 mass, 35, 39, 65, 150 soots, 137, 506-507, 617 stacking of planes 63, 112, 234 superconductivity 100, 240 supramolecular organization, 141, 508 surface (atomic), curved, 9, 18, 32-45 surface, total area, 519 energy, 417-418 T Tauc energy gap, 341-342 templates, 513 tensile strength, 179, 186, 559, 562, 568 textures, 67, 90-92, 146, 519, 538 640 Carbon-based Solids and Materials tight binding method, 132-133, 218 thermal, conductivity, 190, 200-208, 309 diffusion, 531 dilatation (or expansion), 197, 198202, 580 thermodynamic functions and stability, 25-27, 154 thermo-chemical storage, 597 toxicology, 618-619 transistors, 288-290, 357, 595-596 tribology and tribochemistry, 439, 440, 442, 447, 448, 450, 473 Tuinstra-Koenig relation, 376, 390, 479 V-Z Van der Waals interactions, 18, 98, 155, 160, 226, 379 Van Hove singularity 133, 226, 336, 350 Van Krevelen (diagram), 12, 151, 398, 512 viscoelasticity 181-182 viscosity, 143-144 ,524 volatile organic compounds, 526, 617 voltammograms, 435, 437-438 wear, 440, 449, 613 wetting, 88, 412-422, 486, 569 X-ray scattering, 354, 518, 523 Young modulus, 560 Zeta potential, 430-431 zig-zag (form), 47 [...]... current representation of all varieties of known carbons 1.1 The alchemy of carbon Coal derived from animal or plants was the first source of carbon utilized by mankind as a result of mastering fire The word carbon comes from the Latin Carbon- based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd 4 Carbon- based Solids and Materials “carbo” meaning coal, which is the natural... editions) LE CHATELIER H., Leçons sur le carbone, la combustion, les lois chimiques, Dunot et Pinat Hermann, Paris, 1908 xvi Carbon- based Solids and Materials LOISEAU A., LAUNOIS P., PETIT P., ROCHE S., SALVETAT J.P (eds.), Understanding Carbon Nanotubes, From Basic to Applications, Springer, Heidelberg, 2006 PIERSON H.O., Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, New... industry, or carbonization in laboratories of an organic molecule occurs These processes are linked to the antagonist effects of hydrogen (an indicator of 2D polymerization) and oxygen (a cross-linker), which are associated with specific structural and physical changes [OBE 80] This approach highlights a similar behavior 12 Carbon- based Solids and Materials for both natural and artificial carbons and emphasizes... forms of carbon, including their precursors and closely related analogs The second part focuses on their intrinsic properties, and the third describes the applications of carbon- based materials The themes and contents are summarized in the table of contents In the first part (Chapters 1 to 5), we define and describe natural forms of carbon, referring in particular to the allotropes of graphite and diamond,... S., SETTON R., Carbon, Molecules and Materials, Taylor and Francis, London, 2002; 1st French edition: Le carbone dans tous ses états, Gordon and Breach Publishers, OPA, London, 1997 DRESSELHAUS M.S., DRESSELHAUS G., SUGIHARA K., SPAIN I.L., GOLDBERG H.A., Graphite Fibers and Filaments, Springer-Verlag, Berlin, 1988 DRESSELHAUS M.S., DRESSELHAUS G., EKLUND P.C., Science of Fullerenes and Carbon Nanotubes,... II, and in the second half of the 20th century, the exponential development in scientific research led to huge advances in the science of carbon with the discovery of new and unexpected structures (presented in Figure 1.2) Focusing on the main events, it is necessary to first mention the unsuccessful 8 Carbon- based Solids and Materials attempts by Von Baeyer in 1885 [BAE 85] to prepare long, linear carbon- chains... can form bonds with other light elements and with itself, laying the foundation on which chemistry and biology have been developed, and ultimately allowing the miracle of life to happen We will focus on its ability to bind with itself in different ways, leading to various solids, both natural and artificial It is worth mentioning that carbon- based materials were and still are the main source of energy... wood and coal, as combustible, then through their valorization as materials [HAL 03] Hence, charcoal resulting from controlled combustion, has been used as a combustible but also as a filter due to its remarkable absorbency From this viewpoint the comparison to artificial carbons using preestablished scientific and technological knowledge has been extremely fruitful as 14 Carbon- based Solids and Materials. .. Romandes, Lausanne, 1997 GROUPE FRANÇAIS D’ETUDES DU CARBONE (GFEC), Les Carbones, vol 1 and 2, Masson, collection Chimie-Physique (A PACAULT ed.), Paris, 1963 and 1965 INAGAKI M., New Carbons, Control of Structure and Functions, Elsevier Science Ltd, Amsterdam, 2000 KELLY B.T., Physics of Graphite, Applied Science, London, 1981 KITTEL C., Introduction to Solid State Physics, 3rd edition, John Wiley and. .. infrared 10 Carbon- based Solids and Materials spectra recorded for polycyclic aromatic hydrocarbons (PAH) without completely solving the problem Carbon- containing dust can also be characterized by absorption in the ultraviolet (UV) spectra (at 217.5 nm), the origin of which is currently discussed by comparison to model compounds prepared in the laboratory ([PAP 96], [CHO 03]) The chemistry and isotopic ... The word “carbon” comes from the Latin Carbon-based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd 4 Carbon-based Solids and Materials “carbo” meaning coal, which... thermodynamic stability are outlined prior to Carbon-based Solids and Materials Pierre Delhaes © 2011 ISTE Ltd Published 2011 by ISTE Ltd 26 Carbon-based Solids and Materials discussing any metastable.. .Carbon-based Solids and Materials Pierre Delhaes First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc Adapted and updated from three

Ngày đăng: 17/02/2016, 15:02

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan