1. Trang chủ
  2. » Khoa Học Tự Nhiên

Giáo trình đồ thị và các thuật toán

208 218 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 208
Dung lượng 1,64 MB

Nội dung

Mu.c lu.c `au L` o.i n´ oi d ¯ˆ - a.i cu.o.ng vˆ `e d `o thi D ¯ˆ 1.1 1.2 1.3 - i.nh ngh˜ıa v`a c´ac kh´ai niˆe.m D 1.1.1 - `ˆo thi c´o hu.´o.ng D 1.1.2 - `ˆo thi v`a ´anh xa d¯a tri D 10 1.1.3 - `ˆo thi vˆo hu.´o.ng D 10 1.1.4 C´ac d¯i.nh ngh˜ıa ch´ınh 11 Ma trˆa.n biˆe˙’u diˆ˜en d¯`ˆo thi 13 1.2.1 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung 13 1.2.2 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh 15 1.2.3 `e hay ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-d¯ı˙’nh Ma trˆa.n kˆ 17 1.2.4 C´ac biˆe˙’u diˆ˜en cu˙’a d¯`oˆ thi 18 T´ınh liˆen thˆong 23 1.3.1 `en v`a chu tr`ınh Dˆay chuyˆ 23 1.3.2 - u.`o.ng d¯i v`a ma.ch D 24 1.3.3 T´ınh liˆen thˆong 24 http://www.ebook.edu.vn 1.4 1.5 1.6 1.3.4 `au, k−liˆen thˆong Cˆ 28 1.3.5 - `ˆo thi liˆen thˆong ma.nh D 31 Pha.m vi v`a liˆen thˆong ma.nh 33 1.4.1 Ma trˆa.n pha.m vi 33 1.4.2 `an liˆen thˆong ma.nh T`ım c´ac th`anh phˆ 36 1.4.3 Co so˙’ 39 - ˇa˙’ng cˆa´u cu˙’a c´ac d¯`ˆo thi D 41 1.5.1 1−d¯ˇa˙’ng cˆa´u 42 1.5.2 2−d¯ˇa˙’ng cˆa´u 43 C´ac d¯`oˆ thi d¯aˇ c biˆe.t 46 1.6.1 - `ˆo thi khˆong c´o ma.ch D 46 1.6.2 - `ˆo thi phˇa˙’ng D 46 `o thi C´ ac sˆ o´ co ba˙’n cu˙’a d ¯ˆ 49 2.1 Chu sˆo´ 49 2.2 Sˇa´c sˆo´ 52 C´ach t`ım sˇa´c sˆo´ 54 2.3 Sˆo´ ˆo˙’n d¯.inh 55 2.4 Sˆo´ ˆo˙’n d¯.inh ngo`ai 61 2.5 Phu˙’ 65 2.6 Nhˆan cu˙’a d¯`ˆo thi 69 2.6.1 `e tˆ `on ta.i v`a nhˆa´t C´ac d¯i.nh l´ y vˆ 69 2.6.2 Tr`o cho.i Nim 72 2.2.1 http://www.ebook.edu.vn `e d C´ ac b` to´ an vˆ ¯u.` o.ng d ¯i 3.1 3.2 3.3 3.4 - u.`o.ng d¯i gi˜ D u.a hai d¯ı˙’nh 75 75 3.1.1 - u.`o.ng d¯i gi˜ D u.a hai d¯ı˙’nh 75 3.1.2 - `ˆo thi liˆen thˆong ma.nh D 76 - u.`o.ng d¯i ngˇa´n nhˆa´t gi˜ D u.a hai d¯ı˙’nh 78 3.2.1 Tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng khˆong ˆam 78 3.2.2 Tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng tu` yy ´ 82 - u.`o.ng d¯i ngˇa´n nhˆa´t gi˜ D u.a tˆa´t ca˙’ c´ac cˇa.p d¯ı˙’nh 87 3.3.1 Thuˆa.t to´an Hedetniemi (tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng khˆong ˆam) 88 3.3.2 Thuˆa.t to´an Floyd (tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng tu` yy ´) 93 Ph´at hiˆe.n ma.ch c´o d¯ˆo d`ai ˆam 96 Ma.ch tˆo´i u.u d¯`ˆo thi c´o hai tro.ng lu.o ng 96 3.4.1 ˆ CAY 99 4.1 Mo˙’ d¯`ˆau 4.2 Cˆay Huffman 101 4.3 99 4.2.1 C´ac bˆo m˜a “tˆo´t” 101 4.2.2 M˜a Huffman 103 Cˆay bao tr` um 105 4.3.1 `eu rˆo.ng x´ac d¯.inh cˆay bao tr` Thuˆa.t to´an t`ım kiˆe´m theo chiˆ um 107 4.3.2 `eu sˆau x´ac d¯i.nh cˆay bao tr` Thuˆa.t to´an t`ım kiˆe´m theo chiˆ um 107 4.3.3 T`ım cˆay bao tr` um du a trˆen hai ma˙’ng tuyˆe´n t´ınh 108 4.3.4 Thuˆa.t to´an t`ım tˆa´t ca˙’ c´ac cˆay bao tr` um 112 4.3.5 Hˆe co so˙’ cu˙’a c´ac chu tr`ınh d¯ˆo.c lˆa.p 112 http://www.ebook.edu.vn 4.4 4.5 Cˆay bao tr` um tˆo´i thiˆe˙’u 114 4.4.1 Thuˆa.t to´an Kruskal 116 4.4.2 Thuˆa.t to´an Prim 119 4.4.3 Thuˆa.t to´an Dijkstra-Kevin-Whitney 121 B`ai to´an Steiner 122 B` to´ an Euler v` a b` to´ an Hamilton 5.1 127 B`ai to´an Euler 127 5.1.1 `en Euler 129 Thuˆa.t to´an t`ım dˆay chuyˆ 5.2 B`ai to´an ngu.`o.i d¯u.a thu Trung Hoa 131 5.3 B`ai to´an Hamilton 135 5.3.1 `eu kiˆe.n cˆ `an d¯ˆe˙’ tˆ `on ta.i chu tr`ınh Hamilton 138 C´ac d¯iˆ 5.3.2 `eu kiˆe.n d¯u˙’ vˆ `e su tˆ `on ta.i chu tr`ınh Hamilton C´ac d¯iˆ 5.3.3 `eu kiˆe.n d¯u˙’ vˆ `e su tˆ `on ta.i ma.ch Hamilton 142 C´ac d¯iˆ 139 - `ˆ D o thi phˇ a˙’ ng 149 6.1 - inh ngh˜ıa v`a c´ac v´ı du 149 D 6.2 C´ac biˆe˙’u diˆ˜en kh´ac cu˙’a mˆo.t d¯`oˆ thi phˇa˙’ng 151 6.3 C´ac t´ınh chˆa´t cu˙’a d¯`ˆo thi phˇa˙’ng 154 6.4 Ph´at hiˆe.n t´ınh phˇa˙’ng 157 6.4.1 Kiˆe˙’m tra t´ınh phˇa˙’ng 161 6.5 - ˆo´i ngˆa˜u h`ınh ho.c 167 D 6.6 - ˆo´i ngˆa˜u tˆo˙’ ho p 170 D Ma.ng vˆ a.n ta˙’ i 173 http://www.ebook.edu.vn 7.1 Mo˙’ d¯`ˆau 173 7.2 `ong l´o.n nhˆa´t 174 B`ai to´an luˆ 7.3 7.4 7.2.1 `ong l´o.n nhˆa´t 180 Thuˆa.t to´an g´an nh˜an d¯ˆe˙’ t`ım luˆ 7.2.2 - `ˆo thi d¯iˆ `eu chı˙’nh luˆ `ong 181 D 7.2.3 `ong 182 Phˆan t´ıch luˆ `ong l´o.n nhˆa´t 183 C´ac ca˙’i biˆen d¯o.n gia˙’n cu˙’a b`ai to´an luˆ 7.3.1 `eu nguˆ `on v`a nhiˆ `eu d¯´ıch 183 C´ac d¯`ˆo thi c´o nhiˆ 7.3.2 C´ac d¯`ˆo thi v´o.i r`ang buˆo.c ta.i c´ac cung v`a d¯ı˙’nh 184 7.3.3 `e luˆ `ong 185 C´ac d¯`ˆo thi c´o cˆa.n trˆen v`a cˆa.n du.´o.i vˆ `ong v´o.i chi ph´ı nho˙’ nhˆa´t 186 Luˆ 7.4.1 7.5 Thuˆa.t to´an Klein, Busacker, Gowen 186 Cˇa.p gh´ep 189 7.5.1 `e cˇa.p gh´ep 189 C´ac b`ai to´an vˆ 7.5.2 `an 192 Cˇa.p gh´ep l´o.n nhˆa´t d¯`ˆo thi hai phˆ 7.5.3 `an 193 Cˇa.p gh´ep ho`an ha˙’o d¯`ˆo thi hai phˆ A Thu viˆ e.n Graph.h 197 T` liˆ e.u tham kha˙’ o 209 http://www.ebook.edu.vn http://www.ebook.edu.vn `au L` o.i n´ oi d ¯ˆ Trong thu c tˆe´ d¯ˆe˙’ miˆeu ta˙’ mˆo.t sˆo´ t`ınh huˆo´ng ngu.`o.i ta thu.`o.ng biˆe˙’u thi bˇ`a ng mˆo.t h`ınh a˙’nh `om c´ac d¯iˆe˙’m (c´ac d¯ı˙’nh)-biˆe˙’u diˆ˜en c´ac thu c thˆe˙’-v`a v˜e c´ac d¯oa.n thˇa˙’ng nˆo´i cˇa.p c´ac d¯ı˙’nh biˆe˙’u gˆ diˆ˜en mˆo´i quan hˆe gi˜ u.a ch´ ung Nh˜ u.ng h`ınh nhu thˆe´ thu.`o.ng go.i l`a c´ac d¯`oˆ thi Mu.c d¯´ıch cu˙’a gi´ao tr`ınh n`ay cung cˆa´p nh˜ u.ng kiˆe´n th´ u.c co ba˙’n d¯ˆe˙’ nghiˆen c´ u.u c´ac d¯`oˆ thi C´ac d¯`ˆo thi xuˆa´t `eu l˜ınh vu c v´o.i c´ac tˆen go.i kh´ac nhau: “cˆa´u tr´ hiˆe.n nhiˆ uc” cˆong tr`ınh xˆay du ng, `en thˆong”, “cˆa´u tr´ “ma.ch” d¯iˆe.n tu˙’ , “lu o c d¯`oˆ quan hˆe.”, “cˆa´u tr´ uc truyˆ uc tˆo˙’ ch´ u.c” x˜a hˆo.i v`a kinh tˆe´, “cˆa´u tr´ uc phˆan tu˙’.” ho´a ho.c, vˆan vˆan `eu l˜ınh vu c, c´o rˆa´t nhiˆ `eu nghiˆen c´ Do nh˜ u.ng u ´.ng du.ng rˆo.ng r˜ai cu˙’a n´o nhiˆ u.u `an d¯aˆy; mˆo.t nhˆan tˆo´ chu˙’ yˆe´u g´op phˆ `an th´ xung quanh l´ y thuyˆe´t d¯`oˆ thi nh˜ u.ng nˇam gˆ uc ˙ ’ ˙ ’ ˙ ’ ´ ` d¯aˆ y su ph´at triˆen d¯o´ l`a xuˆa t hiˆe.n c´ac m´ay t´ınh l´o n c´o thˆe thu c hiˆe.n nhiˆeu ph´ep to´an v´o.i tˆo´c d¯oˆ rˆa´t nhanh Viˆe.c biˆe˙’u diˆ˜en tru c tiˆe´p v`a chi tiˆe´t c´ac hˆe thˆo´ng thu c tˆe´, chˇa˙’ng ha.n c´ac `en thˆong, d¯˜a d¯u.a d¯ˆe´n nh˜ ma.ng truyˆ u.ng d¯`ˆo thi c´o k´ıch thu.´o.c l´o.n v`a viˆe.c phˆan t´ıch th`anh `eu v`ao c´ac thuˆa.t to´an “tˆo´t” c˜ cˆong hˆe thˆo´ng phu thuˆo.c rˆa´t nhiˆ ung nhu kha˙’ nˇang cu˙’a m´ay t´ınh Theo d¯o´, gi´ao tr`ınh n`ay s˜e tˆa.p trung v`ao viˆe.c ph´at triˆe˙’n v`a tr`ınh b`ay c´ac thuˆa.t to´an d¯ˆe˙’ phˆan t´ıch c´ac d¯`oˆ thi C´ac phu.o.ng ph´ap phˆan t´ıch v`a thiˆe´t kˆe´ c´ac thuˆa.t to´an gi´ao tr`ınh cho ph´ep sinh viˆen c´o thˆe˙’ viˆe´t dˆ˜e d`ang c´ac chu.o.ng tr`ınh minh ho.a Gi´ao tr`ınh d¯u.o c biˆen soa.n cho c´ac d¯oˆ´i tu.o ng l`a sinh viˆen To´an-Tin v`a Tin ho.c u C d¯ˆe˙’ minh ho.a, nhiˆen c´o thˆe˙’ dˆ˜e d`ang chuyˆe˙’n d¯ˆo˙’i Gi´ao tr`ınh su˙’ du.ng ngˆon ng˜ `an c´o mˆo.t sˆo´ kiˆe´n th´ `e ngˆon ng˜ sang c´ac ngˆon ng˜ u kh´ac; v`a d¯´o, sinh viˆen cˆ u.c vˆ u C Ngo`ai `au hˆe´t c´ac chu o ng tr`ınh thao t´ac trˆen cˆa´u tr´ ra, hˆ uc d˜ u liˆe.u nhu danh s´ach liˆen kˆe´t, nˆen d¯`oi y nˇang lˆa.p tr`ınh tˆo´t ho˙’i sinh viˆen pha˙’i c´o nh˜ u ng k˜ sau: `om ba˙’y chu.o.ng v`a mˆo.t phˆ `an phu lu.c v´o.i nh˜ Gi´ao tr`ınh bao gˆ u.ng nˆo.i dung ch´ınh nhu `e d¯`oˆ thi • Chu.o.ng th´ u nhˆa´t tr`ınh b`ay nh˜ u.ng kh´ai niˆe.m cˇan ba˙’n vˆ ´ ngh˜ıa thu c tiˆ˜en cu˙’a c´ac sˆo´ n`ay • Chu.o.ng tr`ınh b`ay nh˜ u.ng sˆo´ co ba˙’n cu˙’a d¯`ˆo thi Y http://www.ebook.edu.vn • Chu.o.ng t`ım hiˆe˙’u b`ai to´an t`ım d¯u.`o.ng d¯i ngˇa´n nhˆa´t ´.ng du.ng cu˙’a cˆay Huffman n´en d˜ `e cˆay U • Chu.o.ng d¯`ˆe cˆa.p d¯ˆe´n kh´ai niˆe.m vˆ u liˆe.u Ngo`ai xˆay du ng c´ac thuˆa.t to´an t`ım cˆay bao tr` um nho˙’ nhˆa´t • B`ai to´an Euler v`a b`ai to´an Hamilton v`a nh˜ u.ng mo˙’ rˆo.ng cu˙’a ch´ ung s˜e d¯u.o c n´oi d¯ˆe´n Chu.o.ng • Chu.o.ng nghiˆen c´ u.u c´ac t´ınh chˆa´t phˇa˙’ng cu˙’a d¯`ˆo thi.; v`a cuˆo´i c` ung • Chu.o.ng t`ım hiˆe˙’u c´ac b`ai to´an trˆen ma.ng vˆa.n ta˙’i `an phu lu.c tr`ınh b`ay c´ac cˆa´u tr´ `an thiˆe´t d¯ˆe˙’ Ngo`ai ra, phˆ uc d˜ u liˆe.u v`a nh˜ u.ng thu˙’ tu.c cˆ d¯o n gia˙’n ho´a c´ac d¯oa.n chu o ng tr`ınh minh ho.a c´ac thuˆa.t to´an d¯u o c tr`ınh b`ay `an d¯`aˆu tiˆen nˆen khˆong tr´anh kho˙’i kh´a nhiˆ `eu thiˆe´u s´ot T´ac Gi´ao tr`ınh d¯u.o c biˆen soa.n lˆ gia˙’ mong c´o nh˜ u ng d¯´ong g´op t` u ba.n d¯o.c `eu ngu.`o.i m`a khˆong thˆe˙’ liˆe.t kˆe Tˆoi xin ca˙’m o.n nh˜ u.ng gi´ up d¯o˜ d¯a˜ nhˆa.n d¯u.o c t` u nhiˆ hˆe´t, d¯ˇa.c biˆe.t l`a c´ac ba.n sinh viˆen, qu´a tr`ınh biˆen soa.n gi´ao tr`ınh n`ay - `a La.t, ng`ay th´ang nˇam 2002 D PHA M Tiˆe´n So n http://www.ebook.edu.vn Chu.o.ng - a.i cu.o.ng vˆ `e d `o thi D ¯ˆ - i.nh ngh˜ıa v` D a c´ ac kh´ niˆ e.m 1.1 1.1.1 - `ˆ D o thi c´ o hu.´ o.ng - `ˆo thi c´o hu.´o.ng G = (V, E) gˆ `om mˆo.t tˆa.p V c´ac phˆ `an tu˙’ go.i l`a d¯ı˙’nh (hay n´ D ut) v`a mˆo.t tˆa.p E c´ac cung cho mˆo˜i cung e ∈ E tu o ng u ´ ng v´o i mˆo.t cˇa.p c´ac d¯ı˙’nh d¯u o c sˇa´p th´ u tu Nˆe´u c´o d¯u ´ng mˆo.t cung e tu.o.ng u ´.ng c´ac d¯ı˙’nh d¯u.o c sˇa´p th´ u tu (a, b), ta s˜e viˆe´t e := (a, b) Ch´ ung ta s˜e gia˙’ su˙’ c´ac d¯ı˙’nh d¯u.o c d¯a´nh sˆo´ l`a v1 , v2 , , hay gia˙’n tiˆe.n, 1, 2, , n, d¯o´ n = #V l`a sˆo´ c´ac d¯ı˙’nh cu˙’a d¯`ˆo thi Nˆe´u e l`a mˆo.t cung tu.o.ng u ´.ng cˇa.p c´ac d¯ı˙’nh d¯u.o c sˇa´p th´ u tu vi v`a vj th`ı d¯ı˙’nh vi go.i l`a gˆo´c v`a d¯ı˙’nh vj go.i l`a ngo.n; cung e go.i l`a liˆen thuˆo.c hai d¯ı˙’nh vi v`a vj Ch´ ung ta s˜e thu.`o.ng k´ y hiˆe.u m = #E−sˆo´ ca.nh cu˙’a d¯`ˆo thi G C´ac ca.nh thu.`o.ng d¯u.o c d¯´anh sˆo´ l`a e1 , e2 , , em Mˆo.t c´ach h`ınh ho.c, c´ac d¯ı˙’nh d¯u.o c biˆe˙’u diˆ˜en bo˙’.i c´ac d¯iˆe˙’m, v`a e = (vi , vj ) d¯u.o c biˆe˙’u diˆ˜en bo˙’.i mˆo.t cung nˆo´i c´ac d¯iˆe˙’m vi v`a vj Mˆo.t cung c´o gˆo´c tr` ung v´o.i ngo.n go.i l`a khuyˆen `eu ho.n mˆo.t cung v´o.i gˆo´c ta.i vi v`a ngo.n ta.i vj th`ı G go.i l`a d¯a d¯`oˆ thi v`a c´ac Nˆe´u c´o nhiˆ - o.n d¯`oˆ thi c´o hu.´o.ng l`a d¯`oˆ thi khˆong khuyˆen d¯o´ hai ´.ng go.i l`a song song D cung tu.o.ng u `eu nhˆa´t mˆo.t cung (vi , vj ) Chˇa˙’ng ha.n, d¯`oˆ thi H`ınh 1.1 c´o d¯ı˙’nh bˆa´t k` y vi v`a vj c´o nhiˆ cung e8 l`a khuyˆen; c´ac cung e4 v`a e9 l`a song song c` ung tu.o.ng u ´.ng cˇa.p d¯ı˙’nh v3 v`a v4 http://www.ebook.edu.vn e4 v2 • e3 v3 • •v4 e9 e1 e2 • v1 e6 e5 e7 • v5 e8 H`ınh 1.1: V´ı du cu˙’a 2−d¯`ˆo thi c´o hu.´o.ng 1.1.2 - `ˆ D o thi v` a´ anh xa d ¯a tri y hiˆe.u Γ(x) := {y ∈ V | (x, y) ∈ E} Khi d¯´o ta c´o mˆo.t ´anh xa d¯a tri V´o.i mˆo˜i x ∈ V, k´ Γ: V → 2V , x → Γ(x) K´ y hiˆe.u Γ−1 l`a ´anh xa (d¯a tri.) ngu.o c cu˙’a Γ Nˆe´u G l`a d¯o.n d¯`ˆo thi., th`ı d¯`ˆo thi n`ay ho`an to`an d¯u.o c x´ac d¯.inh bo˙’.i tˆa.p V v`a ´anh xa d¯a tri Γ t` u V v`ao 2V V`ı vˆa.y, d¯`oˆ thi n`ay c`on c´o thˆe˙’ k´ y hiˆe.u l`a G = (V, Γ) Nˆe´u xo´a cung e9 H`ınh 1.1 ta nhˆa.n d¯u.o c d¯o.n d¯`oˆ thi v`a d¯o´ c´o thˆe˙’ biˆe˙’u diˆ˜en bo˙’.i ´anh xa d¯a tri Γ Trong tru.`o.ng ho p n`ay ta c´o Γ(v1 ) = {v2 }, 1.1.3 Γ(v2 ) = {v1 , v3 }, Γ(v3 ) = {v4 , v5 }, Γ(v4 ) = {v5 }, Γ(v5 ) = {v1 , v5 } - `ˆ D o thi vˆ o hu.´ o.ng Khi nghiˆen c´ u.u mˆo.t sˆo´ t´ınh chˆa´t cu˙’a c´ac d¯`oˆ thi., ta thˆa´y rˇ`a ng ch´ ung khˆong phu thuˆo.c v`ao `an phˆan biˆe.t su kh´ac gi˜ u.a c´ac d¯iˆe˙’m bˇa´t d¯`aˆu v`a hu ´o ng cu˙’a c´ac cung, t´ u.c l`a khˆong cˆ - iˆ `eu n`ay d¯o.n gia˙’n l`a mˆo˜i c´o ´ıt nhˆa´t mˆo.t cung gi˜ u.a hai d¯ı˙’nh ta khˆong quan kˆe´t th´ uc D ung tˆam d¯ˆe´n th´ u tu cu˙’a ch´ V´o.i mˆo˜i cung, t´ u.c l`a mˆo˜i cˇa.p c´o th´ u tu (vi , vj ) ta cho tu.o.ng u ´.ng cˇa.p khˆong c´o th´ u tu (vi , vj ) go.i l`a c´ac ca.nh Tu.o.ng d¯u.o.ng, ta n´oi rˇa` ng ca.nh l`a mˆo.t cung m`a hu.´o.ng d¯a˜ bi bo˙’ `e h`ınh ho.c, ca.nh (vi , vj ) d¯u.o c biˆe˙’u diˆ˜en bo˙’.i c´ac d¯oa.n thˇa˙’ng (hoˇa.c cong) v`a khˆong quˆen Vˆ c´o m˜ ui tˆen liˆen thuˆo.c hai d¯iˆe˙’m tu.o.ng u ´.ng hai d¯ı˙’nh vi v`a vj 10 http://www.ebook.edu.vn /****** Phan dinh nghia cac kieu du lieu *****/ typedef unsigned char byte; typedef byte Boolean; typedef char DataType[MAXSTRINGS+1]; // Them mot ma ket thuc chuoi /******************************* Cau truc du lieu: don lien ket *******************************/ typedef struct VertexNode *AdjPointer; struct VertexNode { byte Vertex; int Length; int Flow; AdjPointer Next; }; typedef struct { DataType Data; AdjPointer Next; } HeadNode; typedef HeadNode *HeadPointer; typedef HeadPointer ArrayOfPointer[MAXVERTICES]; typedef struct QueueType *QueueNode; struct QueueType { byte Vertex; QueueNode Next; }; typedef struct { QueueNode Head, Tail; } Queue; typedef byte Path[MAXVERTICES]; 198 http://www.ebook.edu.vn typedef byte SetOfVertices[(MAXVERTICES%8)?((MAXVERTICES/8)+1):(MAXVERTICES/8)]; /*********************************** Danh sach da lien ket cho cac canh ***********************************/ typedef struct EdgeNode *EdgePointer; struct EdgeNode { byte Vertex[2]; EdgePointer Link[2]; }; typedef struct { char Data; EdgePointer Next; } ListEdge; typedef ListEdge *ListEdgePointer; typedef ListEdgePointer ArrayOfEdge[MAXVERTICES]; /***** Phan khai bao prototype ham *****/ void Create(AdjPointer *List); Boolean Empty(AdjPointer List); void Push(AdjPointer *List, byte Item); void Pop(AdjPointer *List, byte *Item); void CreatQueue(Queue *Q); Boolean EmptyQueue(Queue Q); void PushQueue(Queue *Q, byte Item); void PopQueue(Queue *Q, byte *Item); Boolean EmptySet(SetOfVertices S); Boolean InSet(SetOfVertices S, byte Value); void InitSet(SetOfVertices S, byte MaxValue); void AddSet(SetOfVertices S, byte Value); void SubSet(SetOfVertices S, byte Value); void MakeV_out(char *FileName, ArrayOfPointer V_out, byte *NumVertices, 199 http://www.ebook.edu.vn Boolean Weight); void MakeV_in(char *FileName, ArrayOfPointer V_in, ArrayOfPointer V_out, byte *NumVertices); void BuildGraph(char *FileName, ArrayOfEdge E, byte *NumVertices); void DisplayV_out(ArrayOfPointer V_out, byte NumVertices, Boolean Weight); void DisplayV_in(ArrayOfPointer V_in, byte NumVertices); void DFS(ArrayOfEdge E, byte Start, SetOfVertices S); void PathTwoVertex(Path Pred, byte Start, byte Terminal); void PopHeadPtr(byte NumVertices, ArrayOfPointer V_out); /***** Phan cai dat cac ham *****/ void Create(AdjPointer *List) { (*List) = NULL; } Boolean Empty(AdjPointer List) { return((List == NULL) ? TRUE : FALSE); } void Push(AdjPointer *List, byte Item) { AdjPointer TempPtr; TempPtr = (AdjPointer) malloc(sizeof(struct VertexNode)); TempPtr->Vertex = Item; TempPtr->Next = (*List); (*List) = TempPtr; } void Pop(AdjPointer *List, byte *Item) { AdjPointer TempPtr; if (Empty(*List)) { printf(" Thao tac tro khong hop le "); return; 200 http://www.ebook.edu.vn } TempPtr = (*List); (*Item) = TempPtr->Vertex; (*List) = TempPtr->Next; free(TempPtr); } void CreatQueue(Queue *Q) { (*Q).Head = NULL; } Boolean EmptyQueue(Queue Q) { return((Q.Head == NULL) ? TRUE : FALSE); } void PushQueue(Queue *Q, byte Item) { QueueNode TempPtr; TempPtr = (QueueNode) malloc(sizeof(struct QueueType)); TempPtr->Vertex = Item; TempPtr->Next = NULL; if ((*Q).Head == NULL) (*Q).Head = TempPtr; else (*Q).Tail->Next = TempPtr; (*Q).Tail = TempPtr; } void PopQueue(Queue *Q, byte *Item) { QueueNode TempPtr; if (EmptyQueue(*Q)) { printf(" Thao tac tro khong hop le "); return; } TempPtr = (*Q).Head; (*Item) = TempPtr->Vertex; (*Q).Head = TempPtr->Next; free(TempPtr); 201 http://www.ebook.edu.vn } Boolean EmptySet(SetOfVertices S) { int i, k = (MAXVERTICES %8 ) ? ((MAXVERTICES / 8) + 1) : (MAXVERTICES / 8); for (i = 0; i < k; i++) if (S[i] != 0) return(FALSE); return(TRUE); } Boolean InSet(SetOfVertices S, byte Value) { if ((Value < 1) || (Value > MAXVERTICES)) return(FALSE); return((S[(Value - 1) / 8] & (0x80 >> ((Value - 1) % 8))) ? TRUE : FALSE); } void InitSet(SetOfVertices S, byte MaxValue) { int i; if (MaxValue>MAXVERTICES) { printf(" Gia tri khong thuoc tap hop "); return; } for (i = 0; i < MaxValue; i++) S[i/8] |= 0x80 >> (i%8); } void AddSet(SetOfVertices S, byte Value) { int i; if ((Value < 1) || (Value > MAXVERTICES)) { printf(" Gia tri khong thuoc tap hop "); return; } 202 http://www.ebook.edu.vn S[(Value-1)/8] |= 0x80 >> ((Value-1)%8); } void SubSet(SetOfVertices S, byte Value) { if ((Value < 1) || (Value > MAXVERTICES)) { printf(" Gia tri khong thuoc tap hop "); return; } S[(Value-1)/8] &= ~(0x80 >> ((Value-1)%8)); } int feoln(FILE *fp) { char c; if ((c=fgetc(fp))==10) { fseek(fp, -2, 1); return(TRUE); } else if (c==EOF) return(TRUE); else { fseek(fp, -1, 1); return(FALSE); } } void freadln(FILE *fp) { char c; while (((c=fgetc(fp))!=10)&&(c!=EOF)); } void MakeV_out(char *FileName, ArrayOfPointer V_out, byte *NumVertices, Boolean Weight) { 203 http://www.ebook.edu.vn byte NumVert; HeadPointer HeadPtr; AdjPointer VerPtr; FILE *FileData; if ((FileData = fopen(FileName, "rt")) == NULL) { printf(" File khong tim thay "); return; } NumVert = 0; while (!feof(FileData)) { HeadPtr = (HeadPointer) malloc(sizeof(HeadNode)); HeadPtr->Next = NULL; fgets(HeadPtr->Data, MAXSTRINGS+1, FileData); // Ham fgets(char *s, int n, FILE *fp) chi doc n-1 ky tu while (!feoln(FileData)) { VerPtr = (AdjPointer) malloc(sizeof(struct VertexNode)); fscanf(FileData, "%d", &(VerPtr->Vertex)); if (Weight) { fscanf(FileData, "%d", &(VerPtr->Length)); VerPtr->Flow = 0; } VerPtr->Next = HeadPtr->Next; HeadPtr->Next = VerPtr; } freadln(FileData); ++NumVert; V_out[NumVert] = HeadPtr; } (*NumVertices) = NumVert; fclose(FileData); } void MakeV_in(char *FileName, ArrayOfPointer V_in, ArrayOfPointer V_out, byte *NumVertices); { byte NumVert; 204 http://www.ebook.edu.vn int i, j; HeadPointer HeadPtr; AdjPointer CurrPtr, VerPtr; MakeV_out(FileName, V_out, &NumVert, TRUE); (*NumVertices) = NumVert; for (i=1; iData, V_out[i]->Data); HeadPtr->Next = NULL; for (j=1; jNext; while (CurrPtr!=NULL) { if (CurrPtr->Vertex==i) { VerPtr=(AdjPointer)malloc(sizeof(struct VertexNode)); VerPtr->Vertex = j; VerPtr->Length = CurrPtr->Length; VerPtr->Flow = 0; VerPtr->Next = HeadPtr->Next; HeadPtr->Next = VerPtr; } CurrPtr = CurrPtr->Next; } } V_in[i] = HeadPtr; } } void BuildGraph(char *FileName, ArrayOfEdge E, byte *NumVertices) { byte EndPt, NumVert; int i; char ch[2]; EdgePointer EdgePtr; FILE *FileData; if ((FileData = fopen(FileName, "rt")) == NULL) { 205 http://www.ebook.edu.vn printf(" File khong tim thay "); return; } NumVert = 0; while (!feoln(FileData)) { ++NumVert; E[NumVert] = (ListEdgePointer) malloc(sizeof(ListEdge)); fscanf(FileData, "%s", ch); E[NumVert]->Data = ch[0]; E[NumVert]->Next = NULL; } (*NumVertices) = NumVert; for (i=1; iData); printf("\n"); freadln(FileData); while (!feof(FileData)) { EdgePtr = (EdgePointer) malloc(sizeof(struct EdgeNode)); for (i=0; iVertex[i] = EndPt; EdgePtr->Link[i] = E[EndPt]->Next; E[EndPt]->Next = EdgePtr; } printf("\n"); freadln(FileData); } fclose(FileData); } void DFS(ArrayOfEdge E, byte Start, SetOfVertices Unvisited) { EdgePointer Ptr; byte StartEnd, OtherEnd, NewStart; SubSet(Unvisited, Start); 206 http://www.ebook.edu.vn Ptr = E[Start]->Next; while ((!EmptySet(Unvisited))&&(Ptr!=NULL)) { StartEnd = 0; OtherEnd = 1; if (Ptr->Vertex[0]!=Start) { StartEnd = 1; OtherEnd = 0; } NewStart = Ptr->Vertex[OtherEnd]; if (InSet(Unvisited, NewStart)) DFS(E, NewStart, Unvisited); Ptr = Ptr->Link[StartEnd]; } } void DisplayV_out(ArrayOfPointer V_out, byte NumVertices, Boolean Weight) { int i; AdjPointer CurrPtr; for (i=1; iData); CurrPtr = V_out[i]->Next; while (CurrPtr!=NULL) { printf("%d ", CurrPtr->Vertex); if (Weight) printf("%d ", CurrPtr->Length); CurrPtr = CurrPtr->Next; } printf("\n"); } printf("\n"); } void DisplayV_in(ArrayOfPointer V_in, byte NumVertices) { int i; AdjPointer CurrPtr; for (i=1; iData); CurrPtr = V_in[i]->Next; while (CurrPtr!=NULL) { printf(" %d %d", CurrPtr->Vertex, CurrPtr->Length); CurrPtr = CurrPtr->Next; } printf("\n"); } } void PathTwoVertex(Path Pred, byte Start, byte Terminal) { if (Terminal != Start) { PathTwoVertex(Pred, Start, Pred[Terminal]); printf(" -> %2d", Terminal); } } void PopHeadPtr(byte NumVertices, ArrayOfPointer V_out) { byte Item; int i; AdjPointer CurrPtr; for (i=1; iNext; while (CurrPtr != NULL) Pop(&CurrPtr, &Item); free(V_out[i]); } } #endif 208 http://www.ebook.edu.vn T` liˆ e.u tham kha˙’ o [1] Appel K., The proof of the four-colour problem, New Scientist 72, 154-155 (1976) [2] Arlinghaus S., Arlinghaus W., Nystuen J., The Hedetniemi matrix sum: an algorithm for shortest path and shortest distance, Geographical Analysis, Vol 22, No 4, Oct., 351-360 (1990) [3] Bellman R., On a routing problem, Quart of Applied Mathematics, 16, 87 (1958) [4] Berge C., L´y thuyˆe´t d¯`ˆo thi v`a u ´.ng du.ng, NXB Khoa ho.c v`a K˜ y thuˆa.t H`a Nˆo.i, 1971 [5] Berge C., Two theorems in graph theory, Proc Nat Ac Sc., 43, 842 (1957) [6] Berry R C., A constrained shortest path, Paper presented at the 39th National ORSA Metting, Dallas, Texas (1971) [7] Bondy J A., Properties of graphs with constraints on degrees, Studia Sci Math Hung 473-475 (1969) [8] Bondy J A., Chvatal V., A method in graph theory, Discrete Math 15, 111-135 (1976) [9] Brooks R L., On coloring the nodes of a network, Proc Cambridge Phil Soc., Vol 37, 194-197 (1941) [10] Busacker R G., Gowen P J., A procedure for determining a family of minimal-cost network flow patterns, Operations Research Office, Technical paper 15 (1961) [11] Cayley A., Collected papers, Quart Jl of Mathematics, 13 Cambridge, 26 (1897) [12] Chase S M., Analysis of algorithms for finding all spanning trees of a graph, Report No 401, Department of Computer Science, University of Illinois, Urbana, Oct (1970) [13] Chvatal V., On Hamilton’s ideals, J Combinat Theory B 12 163-168 (1972) [14] Christofides N., Graph theory an algorithmic approach, Academic Press INC (1975) 209 http://www.ebook.edu.vn [15] Coxeter H S M., Introduction to geometry, Wiley, New York (1961) [16] Danzig G B., All shortest routes in a graph, in Th´eorie des graphes, Proceedings of the International Symposium, Rome 1966, Dunod, Paris, 91-92 (1967) [17] Dirac G A., Some theorems on abstract graphs, Proc London Math Soc 2, 68-81 (1952) [18] De Freisseix H., Rosenstiehl P., The depth-search theorem for planarity, in Proceedings of the Cambridge Combinatorial Conference, North Holland, Amsterdam (1982) [19] Deo N., Graph theory with applications to engineering and computer science, PrenticeHall Inc (1974) [20] Dijkstra, E W., A note on two problems in connection with graphs, Numerische Mathematik, 1, 269 (1959) [21] Dreyfus S E., Wagner R A., The Steiner problem in graphs, Networks, 1, 195 (1972) [22] Euler L., Solutio problematis ad geometriam situs pertinentis, Commun Acad Sci Imp Petropol 8, Opera Omnia (1), Vol 7, 128-140 (1736) [23] Euler L., Commentationes Arithmeticae collectae, St Petersburg, (1766) [24] Fary I., On straight line representation of planar graphs, Acta Sci Math Szeged, Vol 11, 229-293 (1948) [25] Floyd R W., Algorithm 97-Shortest path, Comm of ACM, 5, 345 (1962) [26] Ford L R Jr., Network flow theory, Rand Corporation Report 923 (1946) [27] Ford L R., Fulkerson D R., Flows in networks, Princeton University Press, Princeton (1962) [28] Gilbert E N., Pollack H O., Steiner minimal trees, Jl of SIAM (Appl Math.), 16 (1968) [29] Gomory R E., Hu T C., Synthesis of a communication network, Jl of SIAM (App Math.), 12 348 (1964) [30] Gondran M., Minoux M., Vajda S., Graphs and algorithms, John Wiley & Sons (1990) [31] Hamming R W., Coding and information theory, Prentice Hall (1980) [32] Hanan M., On Steiner’s problem with rectilinear distance, Jl of SIAM (Appl Math.), 14 255 (1966) 210 http://www.ebook.edu.vn [33] Hopcroft J E., Tarjan R E., Isomorphism of planar graphs, in Complexity of Computer Computations, Plenum, New York (1972) [34] Hopcroft J E., Tarjan R E., Efficient planarity testing, J ACM 21, 549-568 (1974) [35] Hu T C., Integer programming and network flows, Addison-Wesley, Reading, Massachusetts (1969) [36] Kerchenbaum A., Van Slyke R., Computing minimum spanning trees efficiently, Proc of the Ann Conf of ACM, Boston, 518 (1972) [37] Kirchhoff G., in “Annalen der Physik and Chemie” 72, 497 (1847) [38] Klein M., A primal method for minimal cost flows with applications to the assignment and transportation problems, Man Sci., 14, 205 (1967) [39] Kruskal J B Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc American Mathematical Soc., 7, 48 (1956) [40] Kraitchik M., Le probl`eme des Reines, Bruxelles (1926) [41] Kevin V., Whitney M., Algorithm 422-Minimum spanning tree, Comm of ACM, 15, 273 (1972) [42] Las Vergnas M., Probl`emes de couplage et probl`emes hamiltoniens en th´eorie des graphes, Doctoral thesis, Univsit´e de Paris VI (1972) uc d˜ u liˆe.u, Scitec [43] Larry N., Sanford L., Lˆa.p tr`ınh nˆang cao bˇa` ng Pascal v´o.i c´ac cˆa´u tr´ [44] Mei-Ko Kwan, Graphic programming using odd or even points, Chinese Math 1, 273 (1962) [45] Moore E F., The shortest path through a maze, Proc Int Symp on the Theory of Switching, Path II, 285 (1957) [46] Murchland J D., A new method for finding all elementary paths in a complete directed graph, London School of Economics, Report LSE-TNT-22 (1965) [47] Ore O., Note on Hamilton circuits, Amer Math Mothly, 67, 55 (1960) [48] Ore O., The four colour problem, Academic Press, New York (1967) [49] Prim R C., Shortest connection networks and some generalizations, Bell Syst Tech Jl., 36, 1389 (1957) [50] Paton K., An algorithm for finding a fundamental set of cycles of a graph, Comm ACM, Vol 12, No 9, Sept., 514-518 (1969) 211 http://www.ebook.edu.vn [51] P´osa L., A theorem concerning Hamiltonian lines, Magyar Tud Akad Mat Kutat´o Inst Kozl 255-226 (1962) [52] Shirey R W., Implementation and analysis of efficient graph planarity testing algorithms, Ph.D Dissertation, Computer Sciences, University of Wisconsin, Madison, Wisc (1969) [53] Tarjan R., Depth-first search and linear graph algorithms, SIAM J Computer 146-160 (1972) [54] Tutte W T., How to draw graph, Proc London Math Soc., Ser 3, Vol 13, 743-768 (1963) [55] Whitney H., 2−Isomorphic graphs, Am J Math Vol 55 245-254 (1933) 212 http://www.ebook.edu.vn

Ngày đăng: 07/12/2015, 15:09

TỪ KHÓA LIÊN QUAN