1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử môn toán Quốc Gia 2015 trường THPT TT LT Star Lâm Đồng

7 305 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 777,85 KB

Nội dung

SỞ GIÁO DỤC & ĐÀO TẠO TỈNH LÂM ĐỒNG ĐỀ LUYỆN KỲ THI THPT QUỐC GIA NĂM 2015 Trung Tâm Luyện Thi & Bồi Dưỡng Văn Hóa STAR MÔN: TOÁN - ĐỀ SỐ website: www.maths.edu.vn Thời gian làm bài: 180 phút không kể thời gian phát đề   Câu ( 2,0 điểm ) Cho hàm số: y  x  3x  2, có đồ thị C   a Khảo sát biến thiên vẽ đồ thị C   b Tìm tất điểm đường thẳng y  mà từ kẻ tiếp tuyến đến đồ thị C Câu (1,0 điểm ) a Giải phương trình: sin2x  tan x  b Cho số phức z cho z  10 phần thực z lần phần ảo Tính z      Câu (0,5 điểm ) Giải phương trình: log5 3x    log 2x    3  9y 3x   125 Câu (1,0 điểm ) Giải hệ phương trình:  45x 2y  75x  6y   log2 e x dx Câu ( 1,0 điểm ) Tính tích phân sau: I   x  ln x Câu ( 1,0 điểm ) Cho hình lăng trụ ABC A ' B 'C ', có ABC tam giác cạnh a Đỉnh A ' cách đỉnh A, B,C Góc cạnh bên mặt phẳng đáy 600 Tính thể tích khối chóp A '.BCC ' B ' tính góc    hai mặt phẳng A ' BC , CC ' B ' Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC , đường phân giác góc   A có phương trình AD : x  y  , đường cao CH : 2x  y   0, cạnh AC qua M 0, 1 , AB  2AM Viết phương trình ba cạnh tam giác ABC x   2t  Câu (1,0 điểm) Trong không gian tọa độOxyz , cho đường thẳng  : y   t z   t        t   điểm   M 2,1,2 Viết phương trình mặt phẳng  chứa    cho khoảng cách từ M đến mặt phẳng  Câu (0,5 điểm) Một hộp chứa 30 bi trắng, bi đỏ 15 bi xanh Một hộp khác chứa 10 bi trắng, bi đỏ bi xanh Lấy ngẫu nhiên từ hộp bi viên bi Tìm xác suất để bi lấy màu Câu 10 ( 1,0 điểm ) Cho x, y, z số dương thỏa mãn xy  yz  xz  xyz Chứng minh rằng: 1 1    x  3y  2z y  3z  2x z  3x  2y - Hết - Trang SỞ GIÁO DỤC & ĐÀO TẠO LÂM ĐỒNG ĐÁP ÁN ĐỀ LUYỆN KỲ THI THPT QUỐC GIA NĂM 2015 Trung Tâm Luyện Thi & Bồi Dưỡng Văn Hóa STAR MÔN: TOÁN - ĐỀ SỐ website: www.maths.edu.vn Thời gian làm bài: 180 phút không kể thời gian phát đề Thí sinh làm cách khác đáp án cho đủ số điểm Câu ý a Lời Giải y  x  3x  Điểm Tập xác định: D   x   y  2 y '  3x  6x ; y '    x   y   Hàm số nghịch biến ; , 2;  ; đồng biến 0;2       Điểm cực đại  2;2  , điểm cực tiểu  0; 2   lim y  , lim y    x  Bảng biến thiên:  x y'  0    CĐ  y 0,5 x  CT  2  Đồ thị Điểm đặc biệt: x y 1 2 0,5  Phương trình tiếp tuyến    qua M có hệ số góc k có dạng y  k x  m      Đường thẳng    tiếp tuyến đồ thị C  hệ phương trình sau phải có nghiệm  x  3x   k  x  m   1  3x  6x  k 2       b Đường thẳng d : y  Gọi điểm M thuộc đường thẳng d  M m;2 0,5 2 Trang Thay   vào 1 ta x  2x  3m  x  6mx     2x   3m x            Trên đường thẳng d kẻ tới đồ thị C ba tiếp tuyến phương trình * có  m  1  9m  6m  15     m  nghiệm phân biệt     m  12     m  5  Vậy m  ; 1   ;2   2;  3  a sin2x  tan x   Điều kiện: cos x   x   k , k   Với x   k  , chia vế phương trình cho cos2 x ta 2 sin x cos x tan x pt  2   tan x  tan2 x  tan x   2 cos x cos x cos x  tan x      tan x   x   k ; k  2 tan x  tan x   VN   Vậy phương trình cho có họ nghiệm S    k  k   4  b Gọi z  a  bi  z  a  b ; a,b               3  1 3 1 Điều kiện: x  0,25 ta số phức z  3 – i  z  3  i Vậy z   17 0,25 ta số phức z   i  z   i Vậy z    *   2x  1      3x  1   2x  1 Phương trình tương đương log5 3x    log5 2x   0,25   a  3  2 2  z  10  b  1  a  b  10 (3b)  b  10 Theo đề ta có      a  a  3b a  3b a  3b    b   a Với  b a Với  b 0,25     0,5   log5 3x   log5 3 0,25 Trang   8x  33x  36x    x   x  8x     x    0,25  So sánh điều kiện * nên phương trình cho có nghiệm S       2 3   9y 3x   125  3xy  9x y  15xy  25  9y    45x 2y  75x  6y  5x 3xy   2y         Dễ thấy x ; y  0; nghiệm hệ, chia vế theo vế hai phương trình 9x 2y  15xy  25 9y 10 xy    18 xy  75xy  50   xy  5x 10  Với xy   y  125  y   x  3 125  Với xy   y  y  x  2  1 5 Vậy hệ phương trình có nghiệm x, y   ;5  ,  ;  3  3 2 log2 e e ln2 x x I    dx ln 10 x  ln x x  ln x dx Đặt t   ln x  t   ln x  2tdt  x 0,5   ta được: 0,5   x   Đổi cận:  x  e  ln 10  t   t  I  ln 10  t 0,5   2tdt t  7  2  t 2t   8 t  dt     t    15  15 ln2 10 ln 10  15 ln 10  1    0,5 Trang Vì A ' A  A ' B  A 'C ABC cạnh a  A '.ABC hình chóp tam giác A' Gọi M trung điểm BC O trọng tâm ABC M' Theo đề ta có A 'O  ABC    Vậy AO hình chiếu A ' A lên mặt phẳng ABC    AA ', ABC   AA ', AO   A ' AO  60 B' Ta có AM đường cao ABC nên có AM   AO   a C A O M a a OM  AM  AM  3 Xét A 'OA vuông tạiO , nên ta có tan A ' AO   A 'O  OA tan A ' AO  C' B 0,5 A 'O OA a tan 600  a Vậy thể tích lăng trụ ABC A ' B 'C ' là: VABC A ' B 'C '  A 'O.S ABC  a Và thể tích chóp A ' ABC là: VA ' ABC  a2 a3 (đvtt)  4 1 a3 a3 (đvtt) A 'O.S ABC   3 12 Nên thể tích khối chóp A ' BCC ' B ' là: VA ' BCC ' B '  VABC A ' B 'C '  VA ' ABC   Gọi M ' trung điểm B 'C '  A ' M '  A ' AM       A ' BC    BCC ' B '   BC  Ta có A ' M   A ' BC  , A ' M  BC M ' M  BCC ' B ' , M ' M  BC     A ' BC  , BCC ' B '   A ' M , M ' M   A ' MM '   a3 (đvtt) Mà BC  A ' AM  BC  A ' M ' MA  BC  M ' M BC  A ' M   0,5 Mà A ' MM '  AA 'M so le AO Ta có tan AA 'O   A 'O a 3   AA 'O  300 a OM tan MA 'O   A 'O a   MA 'O  17 a Mặt khác AA 'M  AA 'O  MA 'O  470 Trang   Gọi M ' x ; y điểm đối xứng M qua đường phân giác AD  M '  AB   Véctơ MM '  x ; y0  , trung điểm đoạn A  x y  1 MM ' I  ;  , VTPT đường thẳng AD 2    H    M' n AD  1; 1  VTCP u AD  1;1 MM '.u AD   MM '  AD Ta có   I  AD I  AD     x  y   x  1    x   M '  1; y  0 y    0    2    M I B D C 0,5   Đường thẳng qua AB qua M ' 1; vuông góc CH  phương trình cạnh AB : x  2y    Ta có A  AB  AD nên tọa độ điểm A nghiệm hệ phương trình  x  2y    A 1;1  x y          Đường thẳng AC qua A 1;1 ; M 0; 1  phương trình cạnh AC : 2x  y   Lại có C  AC  CH nên tọa độ điểm C nghiệm hệ phương trình    2x  y    C   ; 2   2x  y           Vì B  AB  B 2b  1;b  AB  2b  2;b  0,5 Ta có AB  5b  10b  AM  Vì AB  2AM  5b  10b    b  1 b      Vậy có điểm B 3; 1 ; B 5;   (Dễ thấy B 5;  AB  2AM '  AB, AM ' ngược hướng nên không thỏa yêu cầu) 5  BC   ; 1   5; 2  VTPT BC nBC  2;5 2        Vậy phương trình cạnh BC : 2x  5y  11      Ta có N 1;1;2   , mà mặt phẳng    chứa    ,  N          có dạng    : A x  1  B y  1  C z  2  Gọi n  A; B;C VTPT mặt phẳng  Vậy phương trình mặt phẳng  Ax  By  Cz  A  B  2C      0,5 Vì    nên u n   C  B  2A     Vậy mặt phẳng  trở thành Ax  By  B  2A z  3A  3B  Trang Theo đề có khoảng cách từ M tới mặt phẳng    A    AB  3   AB 5A2  2B  4AB Chọn A  B   C  1 Vậy phương trình mặt phẳng  : x  y  z  0,5     1 Số trường hợp lấy viên bi từ hai hộp ngẫu nhiên là: n   C 52 C 25  1 C 10 Trường hợp 1: Số cách để lấy hai viên bi trắng từ hộp hộp 2: n1  C 30  Trường hợp 2: Số cách để lấy hai viên bi đỏ từ hộp hộp 2: n2  C 71.C 61  C 91 Trường hợp 3: Số cách để lấy hai viên bi đỏ từ hộp hộp 2: n3  C 15 0,25 Vậy xác suất để bi lấy màu là: 1 C 10  C 71.C 61  C 15 C 91 n1  n2  n3 C 30 P n   1 n C 52 C 25   10 Ta có xy  yz  xz  xyz  0,25 1   1 x y z Theo bất đẳng thức Cauchy, ta có 1 1 1       x  3y  2z x  2z  3y  x  2z 3y    1 11 1 11 2          x  2z x  z  z  x z z   x z  1 1     1  Vậy            x  3y  2z   x z  3y  12  3x y 3z  1  1     Tương tự ta có   y  3z  2x 12  3y z 3x  Mặt khác ta có 0,5   1  1       z  3x  2y 12  3z x 3y  Cộng vế 1 ,    3 ta được:  3 1 1  1 1 1               x  3y  2z y  3z  2x z  3x  2y 12  3x y 3z 3y z 3x 3z x 3y  11 1      6x y z  0,5 1 1     x  y  z  Dấu xảy  x y z 1     x y z Giáo viên đề: Lê Quang Điệp Trang

Ngày đăng: 09/11/2015, 16:13

TỪ KHÓA LIÊN QUAN