1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI VÀO LỚP 10 THPT ĐỀ 13

4 116 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 83,5 KB

Nội dung

Đề số 13 Bài 1: Cho biểu thức A = x 4( x 1) + x + 4( x 1) x 1ữ x 4( x 1) a) Tìm điều kiện x để A xác định b) Rút gọn A Bài : Trên mặt phẳng tọa độ cho hai điểm A(5; 2) B(3; -4) a) Viết phơng tình đờng thẳng AB b) Xác định điểm M trục hoành để tam giác MAB cân M Bài : Tìm tất số tự nhiên m để phơng trình ẩn x sau: x - m2 x + m + = có nghiệm nguyên Bài : Cho tam giác ABC Phân giác AD (D BC) vẽ đờng tròn tâm O qua A D đồng thời tiếp xúc với BC D Đờng tròn cắt AB AC lần lợt E F Chứng minh a) EF // BC b) Các tam giác AED ADC; àD ABD tam giác đồng dạng c) AE.AC = à.AB = AC2 Bài : Cho số dơng x, y thỏa mãn điều kiện x2 + y2 x3 + y4 Chứng minh: x + y3 x + y2 x + y HƯớNG DẫN Bài 1: a) Điều kiện x thỏa mãn x x 4( x 1) x + 4( x 1) x 4( x 1) > x x x x x > x KL: A xác định < x < x > b) Rút gọn A A= ( x 1)2 + ( x + 1)2 x x ( x 2)2 x 1 + x +1 x x x Với < x < A= x A= Với x > A= x Kết luận Với < x < A = Với x > A = x x Bài 2: a) A B có hoành độ tung độ khác nên phơng trình đờng thẳng AB có dạng y = ax + b A(5; 2) AB 5a + b = B(3; -4) AB 3a + b = -4 Giải hệ ta có a = 3; b = -13 Vậy phơng trình đờng thẳng AB y = 3x - 13 b) Giả sử M (x, 0) xx ta có MA = ( x 5)2 + (0 2)2 MB = ( x 3)2 + (0 + 4)2 MAB cân MA = MB ( x 5)2 + = ( x 3)2 + 16 (x - 5)2 + = (x - 3)2 + 16 x=1 Kết luận: Điểm cần tìm: M(1; 0) Bài 3: Phơng trình có nghiệm nguyên = m4 - 4m - số phơng Ta lại có: m = 0; < loại m = = = 22 nhận m 2m(m - 2) > 2m2 - 4m - > - (2m2 - 2m - 5) < < + 4m + m4 - 2m + < < m4 (m2 - 1)2 < < (m2)2 không phơng Vậy m = giá trị cần tìm Bài 4: A F E ằ ã ã = EFD (= sd ED ) (0,25) a) EAD B ằ ã ã FAD = FDC (= sd FD ) (0,25) ã ã ã ã mà EDA (0,25) = FAD EFD = FDC D EF // BC (2 góc so le nhau) ằ = DF ằ b) AD phân giác góc BAC nên DE 1 ằ = sđ ADE ã sđ AE 2 ã ã ã ã ACD EAD = ADE = DAC ã ẳ DF ằ )= = sđ( AED sđ ACD D ADC (g.g) ằ ã ẳ DF ằ ) = (sd AFD ẳ DE ằ ) = sd ABD ã ã ã = sd AF = sd ( AFD Tơng tự: sđ ADF ADF = ABD 2 AFD ~ (g.g c) Theo trên: + AED ~ DB AE AD = hay AD2 = AE.AC (1) AD AC AD AF = + ADF ~ ABD AB AD AD2 = AB.AF (2) Từ (1) (2) ta có AD2 = AE.AC = AB.AF Bài (1đ): Ta có (y2 - y) + 2y3 y4 + y2 (x3 + y2) + (x2 + y3) (x2 + y2) + (y4 + x3) mà x3 + y4 x2 + y3 x3 + y3 x2 + y2 (1) + Ta có: x(x - 1)2 0: y(y + 1)(y - 1)2 x(x - 1)2 + y(y + 1)(y - 1)2 x3 - 2x2 + x + y4 - y3 - y2 + y (x2 + y2) + (x2 + y3) (x + y) + (x3 + y4) mà x2 + y3 x3 + y4 x2 + y2 x + y (2) (x + 1)(x - 1) (y - 1)(y3 -1) x - x - x + + y - y - y3 + (x + y) + (x2 + y3) + (x3 + y4) C mà x2 + y3 x3 + y4 x+y2 Từ (1) (2) (3) ta có: x + y3 x + y2 x + y ... A(5; 2) AB 5a + b = B(3; -4) AB 3a + b = -4 Giải hệ ta có a = 3; b = -13 Vậy phơng trình đờng thẳng AB y = 3x - 13 b) Giả sử M (x, 0) xx ta có MA = ( x 5)2 + (0 2)2 MB = ( x 3)2 + (0

Ngày đăng: 06/11/2015, 22:04

w