LOI N O I £>AU I Tap sdch nay gom 2 phan: Phan I: Nguyen ham-Tich phan vaung dung Phan 11: So phuc Moi phan diroc trinh bay theo tung chirong, moi chuong bao gom cac chuyen de, moi
Trang 1C-UON T R A N B A H A
AM NANG LUYI^THI DAI HOC IIGUYEN HOM
* * THU VIENTINHBINHTHUAfO
mk nXr ikn i«i n c wfc cu M Mi
Trang 2LOI N O I £>AU I
Tap sdch nay gom 2 phan:
Phan I: Nguyen ham-Tich phan vaung dung
Phan 11: So phuc
Moi phan diroc trinh bay theo tung chirong, moi chuong bao gom cac
chuyen de, moi chuyen de du-oc phan thanh cac van de co ban, moi van de
bao gom: Tom t5t kien thurc - phuong phap giai - bai tap ap dung - bai tap
tu luyen Cuoi moi chvrong deu co phan Bai tap tong hop va Bai tap luyen
thi bao gom cac bai tap nang cao duoc tuyen chpn qua cac de thi dai hoc va
cac de thi hoc sinh gioi
Hi vong rang tap sach nay co the giup ich cho hoc sinh trong cac ki thi
hoc sinh gioi, ki thi dai hoc Rat mong su gop y cua doc gia va dong nghiep
de Ian xua't ban sau tot hon
Trdn Bd Ha Gido vien THPT Chuyen Le Quy Don - Dd Ndng
Tu nghiep tgi: lustitut de Recherche Pour L 'enseignement des Mathe 'matiques
Paris-France
Nha sach Khang Viet xin tran trong giai thieu tai Quy doc gia va xin
long nghe moi y kien dong gop, decuon sdch ngay cang hay han, botch han
Thuxinguive:
Cty T N H H Mpt Thanh Vien - Dich vu Van hoa Khang Vi?t
71, Dinh Tien Hoang, P Dakao, Quan 1, TP H C M
Tel: (08) 39115694 - 39111969 - 39111968 - 39105797 - Fax: (08) 39110880
Hoac Email: khangvietbookstore@yahoo.com.vn
Cty TNHH MTV D VVH Khang Vi^t
2 Tinh chat co ban:
+ Neu F(x) la mot nguyen ham cua f(x) tren D thi F(x) + C cixng la nguyen ham ciia f(x) tren D (C la hang so)
+ Neu F(x) va G(x) la cac nguyen ham cua ham so f(x) tren D thi ton tai hSng soCdeG(x) = F(x) + C
+ Ky hieu: jf(x)dx = F(x) + C(laho nguyen ham ciia ham so f(x)) + Neu f(x) va g(x) co nguyen ham tren D thi:
l[f(x) + g(x)dx = Jf(x)dx + l(x)dx
jkf(x)dx = kjf(x)dx, ke R
+ Neu Jf(x)dx = F(x) + C thi Jf(ax + b)dx = - F(ax + b) + C
a + Moi ham so lien tuc tren D deu co nguyen ham trenD Y<.'
3 Bang cong thiic nguyen ham ca ban:
C ldx = x + C f w ^ ^
je'""dx= + C n ; Jx«dx= + C a ^ - 1 )
Trang 3C 'dm nang luy^n thi DH - Nguyen ham - Tich phdn - So phm I/uui Bd Ha
B C A C D A N G T O A N C O BAN:
Chuyen del: K H A I N I E M N G U Y E N H A M
Van de 1: C H l / N G MINH F(x) LA MQT NGUYEN HAM CUA f(x) TREN D
Phuang phap: Chung minh F '(x) = f(x), Vx e D
B a i l : Chung minh: F(x) = ln(x + V x " +1) la mot nguyen ham cua:
Vay F(x) = ln(x +Vx^ + 1 ) la mot nguyen ham cua f(x) tren R
Bai 2: Chung minh F{x) = xsinx + cosx la mpt nguyen ham ciia:
f(x) = xcosx tren R
Giai
F '(x) = sinx + xcosx - sinx = xcosx Vx e R
Vay: F(x) = xsinx + cosx la mot nguyen ham cua f(x) = xcosx
- 2 1 Vay F(x) = —j= la mpt nguyen ham ciia f(x) = — j = r
Vx xVx
Bai 4: Chung minh ham so F(x) = 1 1
3cos'x cosx la mpt nguyen ham ciia
ham so: f(x) = ^ ' " ^ tren mien D = R \ - + kn; k e Z)
cos X 2
Vx 7t — + kn, ta c6:
2
Ljy li\tin Ml V uv vn t^^nungnci
sinx sinx s i n x ( l - c o s " x) sin^ x
F'(x)= — 1 = = — r - = t ( x )
cos X cos X cos X cos X
Vay F(x) la mpt nguyen ham ciia f(x) •
2 + x Bai 5: Chung minh F(x) = x In + 21n(4 - x^) la mot nguyen ham cua ham so
f ( x ) = l n ^ ^ tren(-2;2) v-^
2 - x
Giai , 2 + x 4x 4x , 2 + x , ^ , ^
Taco: F'(x) = i n - + - 5 - - - ^ = l n - - t ( x ) , V x 6 ( - 2 ; 2 )
2 - x 4 - x 4x- 2 - x
Do do: F(x) la mot nguyen ham ciia f(x)
asinx + bcosx Bai 6: Chung mmh ham so f(x) = (c^ + > 0) co nguyen ham
csmx + dcosx dang: F(x) = Ax + Bin I csinx + dcosx | + C
Giai ccosx - d s i n x (Ac - Bd)sinx + ( A d + Bc)cosx
Ta c6: F '(x) = A + B = -^^ ^
csmx + dcosx csmx + dcosx F(x) la nguyen ham cua f(x) <=> F '(x) = f(x), Vx
o (Ac - Bd)sinx + (Ad + Bc)cosx = asinx + bcosx, Vx {A c - B d = a ^ , ac + bd „ b c - a d
Giai he ta co: A = — — - y ; B = — —
A d + Bc = b c - + d ^ c ^ + d ' Vay ho nguyen ham ciia f(x) la:
ac + bd be - ad , ^ ^
F(x) = r - + — r- In csinx + dcosx + C
^ ' c ' + d - c - + d ' Bai 7:
a) Tim a, b, c sao cho ham so: F(x) = (ax^ + bx + c) V2x - 3 la mpt nguyen ham ^ ^ 2 0 x - - 3 0 x + 7 ^ 3
cua ham so: f(x) = , tren ( - , « )
V 2 X - 3 2 b) Tim nguyen ham G(x) cua f(x) thoa man man G(2) = 0
Giii
ax^ + bx + c a) Ta co: F '(x) = (2ax + b) V 2 x - 3 + ,
V 2 x - 3 (2ax + b)(2x - 3) + ax- + bx + c Sax' + (3b - 6a)x + c - 3b
V 2 X - 3 ~ V 2 X - 3
5
Trang 4ihiiiy, liivci] nil - Xyjiv'ii lu'iiii - Tirh f)ficiii - Soptiijc - Trcin Bci Ha
F(x) la nguyen ham ciia f(x) <=> F '(x) = f(x), Vx e (—; oo)
Ta c6: F '(x) = (2ax + b)e'^ + (ax^ + bx + c)e'' = (ax^ + (2a + b)x + b + c ) ^
De F(x) la nguyen ham ciia f(x), Vx e R thi phai c6
Bai 9: Tinh dao ham ciia ham so': F(x) = (x^ - 1) In 1 + x - x^In
T u do suy ra nguyen ham ciia ham so': f(x) = xln
Xet G(x) = F(x) + X => G '(x) = F '(x) + 1 = f(x) nen G(x) la nguyen ham ciia f(x;
Vay: G(x) = (x^ - l ) l n I x + x | - x^ln I x I + x la mot nguyen ham ciia f(x)
Bai 10: Chung minh F(x) =
la nguyen ham ciia f(x) =
k h i x ; t 0 khi X = 0 ( x - l ) e ^ + 1
Trang 5K ^ u i i i iiuii^ luy^n ini uii - ivguyeri nam - i icnpmm - AOpmtC - Iran tsa na
Vamde2:TIM HQ NGUYEN HAM CUA HAM SO y = f(x) BANG D I N H NGHIA
Phuong phap: Phan rich f(x) thanh tong (hieu) cua cac ham so' ca ban c6 the
tim nguyen ham bang each ap dung bang cong thuc nguyen ham ca ban, ap
dung rinh cha't cua nguyen ham de tinh hoac dua ve dang nguyen ham cua
ham so'hgp
Bai 1: Tim hp nguyen ham cua f(x) = cosxcos3x
Giai f(x) = ^ [cos4x + cos2x]
Jf(x)dx = — J(cos4x + cos2x)dx = — [ — sin4x + — sin2x] + C
a) (sinx + cosx)^ b) sin-'x + cos^x
c) sin''2x + cos*2x d) cos'^x
= l((sin22x + cos22x)2- 3sin22xcos22x) = 1 - - sin24x
Trang 6Bai 6: T i m hp nguyen ham ciia cac ham so':
a) cosx.cos2x.sin4x b) cos'x.sinSx
Giai a) Ta c6: cosxcos2xsin4x = ^ [cos3x + cosx]sin4x Ai»
= — [sin4x cos3x + sin4x.cosx] = - [sin7x + sinx + sinSx + sin3x]
Do do: fees X cos 2x sin 4xdx = — f(sin 7x + sin 5x + sin 3x + sin x)dx
J 4 J
+ C
1 + cos2x^
4 ' —cos7x+—cos5x+ —cos3x+ C O S X
7 5 3
4^
b) Ta c6: sinSx.cos-'x = sinSx cosx
= ^ [sinSx.cosx + sin8xcosx.cos2x] = ^ sinSxcosx + ^ sin8x(cos3x + cosx)
= — (sin9x + sin7x) + — sin8xcos3x + — sinSx.cosx
88 24 56 49 Bai 7:
3x +1 A B a) Xac djnh cac he so' A, B sao cho: ^ = ^ +
(x + 1)' (x + 1)' (x + 1)'
3x + 1
b) Suy ra ho nguyen ham ctia ham s6'f(x) = —'-
r-(x + 1) Giai
= 64
Giai ''sin" 2x + cos^ 2x^
sin"2x = 64
cot^2x^ , sin 2x sin 2x , / 1 cot" 2x cot" 2x cot^ 2x
sin 2x sin 2x sin 2x snr 2x
2 4cot-2x 2cot^2x
3M sin"2x sin"2x sin"2x
Do do: I = 32Icot2x + - cot^2x + - cot^2x] + C
3 5 Bai 9: Tinh
Trang 7a) T i m nguyen ham F(x) cua fn(x) thoa man man F(0) = 1 Suy ra bieu thuc thu gon
cua fn(x)
b) C h u n g m i n h : gn(x) = f 'n*i(x) T i m bieu thuc thu gon ciia gr.(x)
G i a i a) fn(x) = 1 + 2x + 3x2 + + n X " - ' F(x) = x + x^ + x^ + + x" + C
n(n + l)
khi X ^ 1 khi X = 1
b) fn+i(x) = 1 + 2.x + 3x2 + + n.2"-' + (n + l ) x " suy ra:
4 4 Hay C = 1 + ; Vay: F(x) = -cotx - x + 1 + ^
Bai 2: Cho f(x) = sin^x(1 + tanx) + c o s \ ( l + cotx)
T i m nguyen h a m F(x) cua f(x) biet F( — ) = 1
4
G i a i Rut gon f(x) ta c6: f(x) = sinx + cosx Jf(x)dx = sinx - cosx + C => F(x) = sinx - cosx + C
F ( - ) = l < : ^ s i n - - c o s - + C = 1 « C = 1
4 4 4 Vay F(x) = sinx - cosx + 1 Bai 3: Cho f(x) = ? T i m nguyen ham F(x) biet F( - ) = 0
l + cos2x 3
G i a i f(x) = = —
Trang 8Cam iwn}^ luy('n thi DH - Nguyen ham - Ticli plum - So phi'rc - Trdn Bd Ha
Bai 4: C h o f(x) = ^ ^, F(x) la mot nguyc"n ham cua f(x) thoa man m a n : F(2) =
a) C h i i n g m i n h F(x) = tanx In(sinx) - x la mot nguyen h a m cua:
f(x) = (1 + tan^x) In(sinx) tren (0; ^ )
b) T i m nguyen ham F(x) cua f(x) bie't F( —) = —
D o d o F(x) = tanx In(sinx) + ^ Xnyjl , *
Bai 7' C h o f(x) = — \ — T i m nguyen ham F(x) ciia f(x) bie't d o thj ham so:
X - 1 Bai 8: Cho bie't F(x) = la nguyen ham cua f(x) T u n f(x - 1)
x + 1
f(x) = F ( x ) =
G i a i
^ x - l V 2 , x + 1 ( x + 1)-^
2
D o d o : f ( x - l ) = — r
Trang 9Cdm nang luyeti ihi DH - Nguyen ham - Tich phciii - So phi'rc - Trdn Ba Ha
Chuyendel: P H l / O N G P H A P T I M N G U Y E N H A M
Van de 1: T I M H Q N G U Y E N H A M B A N G P H U O N G P H A P D O I B I E N S O
Phuong phap: Co the doi bien so theo hai each sau:
a) Dat u = cp(x) la ham so'co dao ham thi:
Jf (x)dx = |f(u)du =F(u) + C
b) Neu f(x) Hen tuc c6 dao ham, dat x = (p(t) th'i: Jf(x)dx = Jf{(p(t))(p'(t)dt
B a i l : Tim ho nguyen ham cua cac ham scYsau:
cosx Giai
Trang 10Ccim nang liiyen thi DH - Nguyen ham - Tich phdn - So phiic - Trdn Bd Hd
Giai a) Dat u = In I In(lnx) | du = i l l l i l E ^ j x
V a ' - x" = aVcos" t = a(cot) = acost
fVa' - x" , f a cos t.a cos tdl rcos" t ,
Trang 11( iiiir.yi /in cii llii /'// - A i v / i iv; • ;/ - / A /; plum - So phllV BaHa
V a n de 2: T I M H Q N G U Y E N H A M B A N G P H l J O N G P H A P N G U Y E N
H A M T l / N G P H A N
Phucmg phap: Gia six u(x), v(x) la cac ham so c6 dao ham lien tuc khi do ta c6:
Ju(x)v'(x)dx = u(x)v(x) - v(x)u'(x)dx
hay udv = uv - vdu
Chu y: Cac dang sau:
+ P(x) Inxdx: Dat u = Inx, dv = P(x)dx
+ P(x) sin(ax)dx , P(x) cos(ax)dx: Dat u = P(x), dv = sinax (cosax) dx
+ |P(x) e-^^dx: Dat u = P(x), dv = e-'^dx
+ e"" sin(bx)dx hoac je'" cos(bx)dx v
Dat u = e-'"; dv = sin(bx)dx hoac dv = cos(bx)dx
+ Tong quat: Phan tich f(x)dx thanh u va dv sao cho: tu dv suy ra duq^c v va
Jvdu don gian hon
Bai 1: Tim hp nguyen ham ciia cac ham so'sau:
Do do: J = - (x + 1 )2sin2x + |(x + l)sin 2xdx
Xet A: (x + l)sin2xdx Dat u = x + 1 =>du = dx
dv = sinZxdx => V = — cos2x
2
A = - - i ( x + l ) c o s 2 x + - fcos2xdx = - - ( x + l)cos2x + ^sin2x + C
Trang 12Cam nang luyen thi DH - Nfjiiyen ham - Tich phiin - Sd phirv - Trdn Bd Ha
Vay |f(x)dx =
6 2 ^ ( x +1)^ sin2x - ^ ( x + l)cos2x + l s i n 2 x + C
^ O i : ^ 2 L + I ( x + i)2 s i n 2 x - i ( x + l)cos2x + i s i n 2 x + C
6 4 4 8 Bai 3: T i m ho nguyen ham cua cac ham so'sau:
dv = sin xdx => v = -cos xdx do do I = -o^cosx + j e " cos xdx (1)
C / y IWlltl mi V UV Vll l\.nun^ r tcr
XetJ= j e " C O S x d x Dat u = e" => du = e"dx
dv = cos xdx => V = sin xdx e"" sin xdx = e^sinx - 1
Giai < : - ci
dv = sin^ X - V = - c o t x
a) f(x) = e"2^cos3x b) f(x) = sin(lnx)
Giai a) Dat u = e-2>= d u = -2e-2^dx - ifs.:c 1 > ' ?'/ ^ /K^*
Trang 13Vay A = ~" (xsin(lnx) - cos(lnx)) + C
Bai 7: T i m ho nguyen ham ciia cac ham so:
180 81 180 81
25
Trang 14Ccim ncing hiyen ihi DH - N}^iiycn ham - Tich plidn - So phirc Trdn Ba Ha
Chuyen de3: N G U Y E N H A M CUA C A C H A M S O CCf B A N
Van de 1: N G U Y E N H A M C U A C A C H A M SO H U U T I
P(x) Phuang phap: De t'lm ho nguyen ham ciia cac ham so'dang , voi P(x),
Q(^) Q(x) la cac da thiic ta thyc hien: , i ; 5.^ I T ?
+ Ne'u bac ciia P(x) nho han bac cua Q(x) th'i phan h'ch Q(x) thanh tich cac
thira so bac nhat va bac hai roi phan tich thanh tong (hieu) ciia cac phan
thuc don gian (mau so' la cac thiia so' bac nhat, bac hai 6 tren) de tim ho
nguyen ham
+ Ne'u bac cua P(x) Ion hon hoac bang bac cua Q(x) thi dung phep chia da
thuc de du'a ve truong hop tren
+ Chu y cac ho nguyen ham C O ban '>
CIV TNIIIIMTVDVVHKhang Viet
gai 2: T i ' " ho nguyen ham cua cac ham so'
Bai 1: Tim hp nguyen ham cua
Khix = l = 5 B = - 4 ; x = 2=>C = 7
x = - l => A = -7
( x - i r ( x - 2 )
Vay 3x + l 4 dx = - 7 1 n x - l + + 7 1 n x - 2 + C ( x - l ) - ( x - 2 ) x - l
Trang 15Cam nang luy^n thi DH - Nguyen ham - Tich phdii - So pht'rc - Trdn Bd Ha
Do do: k = x + 1 dx X + 1
2 ( 2 x - l ) ' 2 - ' ( 2 x - l ) - 2 ( 2 x - l ) - ' 4 ( 2 x - l ) + C
Bai 7: Tinh M =
x- + X + 1 Dat
X" + X +1 ( x - l ) -
cx + d
29
Trang 16Cam nang hiyen /hi DH - Nguyen ham - Tich phcin - So phi'cc - Trdn Bd Ha
b) H p nguyen ham dang: J R X, Vax" + bx + c Jx
Neu a > 0: dat t + V a x = Vax" + bx + c
Neu c > 0 : dat xt ± - / c = V a x ' + bx + c
Neu ax^ + bx + c c6 nghiem xi, X2, dat Vax' + bx + c = t(x - xi)
(Truong hop a < 0 hoac c < 0 thi dat x = — dO diia ve dang tren)
u
Chu y: Co the h u u ti hoa bang each bie'n doi
roi dat II = X + -— de dua ve cac dang:
2a ax2 + bx + c = a X + — b A
J R , ( U , Va' - i r )du : cTat u = asint
c) H o nguyen ham dang: f (Ax + B)dx
t = - 3 ^ 1
= X => dx = — 2(t + l) 2
Trang 17Cdm nang luy^n thi DH - Nguyen ham - Tich plidii - So phi'rc - Trdn Bd Ha
ix + 3 + -\/x- +6\ 8 E= f - ^ = lnlt + 3 + C = ln
Jt + 3 '
Bai 6: Tinh F = J V x " - 4 x + 8dx
+ C
Giai Dat t - X - A = - 4 x + 8 X = - ^ ^ - ^
b D^ng bac cao theo sinx, cosx, tanx: Bien doi ve d^ng chiira hai nhom ham Itr^ng giac c6 lien quan dao ham roi diing doi bien so'de tinh hoac dung cong thuc ha bac de dua ve nguyen ham cac ham lugng giac co ban
p ^ l ; Tim nguyen ham aia cac ham so sau:
I 1+sinx
a)f(x) =
cosx b ) f ( x ) = sin x (l+cosx)
Giai , f dx rcosxdx fcosxdx
i) I = I = I 5— = r - r
""cosx "'cos^x • ' l s i n D$t u = sinx ==> du = cosxdx, ta co: I = 6 : 1 - J ^
-2 - ' V l - u 1 + u ; du = —In
2
l + u 1-u + C = - l n 2
1
1 + sin x + cos X b ) f ( x ) = - r V -sin
X
Trang 18Cdiii ncing luyen thi DH - Nguyen ham - Tich phuii - So phi'rc ~ Trdn Ba Ha
t-1 + - y + , 1+t- 1 + t-
Bai 3: Tim nguyen ham cua cac ham so sau:
cosx a) f(x) =
a) f(x) =
1 3 - l O s i n x - cos2x
cosx
COS" X b) f ( x ) = -
sinx Giai
cos X
13-lOsinx - ( 1 -2sin- x) 2sin- x -lOsinx + 12
Dat t = sinx => dt = cosxdx, do do:
ny_ TNHH MTV D VVH Khang Vi^
Suy ra: cos'x^ f ( l - t ' ) ' d t -dx =
sin X
1= flzZL±l!<it= ((i-2t + t'ldt = l n t - l ^ + - + C
I = In I sinx I - sin^x + — sin^x + C
Bai 4: Tim ho nguyen ham cua cac ham so:
a) f(x) = cos''xsin^x
Giai a) Jcos^ xsin' xdx = Jcos^ x(l - cos" x).sin xdx Dat t = cosx => dt =-sinxdx Do do:
b)Tac6: - 1 sin"x + cos-x I cot"\
sin"* X sin"* X sin^x sin'x - + •
Do do: cof^x = — + cot^ X , + cot' x — + — — +1
sin X sin" X sin x sin x
Trang 19Cam nang lny^n thi DH - Nguyen ham - Tich p/ic'in - So phiic — Tran Bd Ha
a) f(x) = cos^x b) f(x) = cos*x
Giai a) Taco:
cos''x • ri + cos2xV ^_i_r,
4 1 + 2cos2x + COS" 2x l + 2cos2x +
l+cos4x
- [ - + 2cos2x + - cos4x]
4 2 2
Suy ra: Jcos' x dx = ^ [ ^ x + sin 2x + ^ sin4x] + C
cos* x d x Dat I u = cos' xdx => du = - 5 cos'' x sin xdx
i = cos'^xsinx + 5
dv = cos xdx => V = sin X
cos' X sin^xdx = cos^xsinx + 5 cos' x (1 - cos'x)dx
= cos'xsinx + 5 Jcos' xdx - 5 Jcos^' xdx
Trang 20)iung luyirii - i^yny>in nuiii - i icn jnuni - M)pniK - JYdn lid tia ~
C B A I T A P T O N G H Q P VE N G U Y E N H A M
1 B A I T A P TV" L U A N
Bai 1: Cho f(x) = x V 3 - x Tim a, b, c de ham so F(x) = (ax^ + bx + c ) V 3 - X la
mot nguyen ham cua f(x)
Giai Taco: D y = (-co; 3]
ax^ +bx + c _ -5ax- h(12a - 3 b ) x + 6 b - c
F{x) la nguyen ham cua f{x) <=> F '(x) = f(x), V \ Dy
Trang 21B a i 6; T i m ham so y = f(x) biet r3ng: f (x) = ifx + + 1 va f(l) = 2
Vay F(x) la mot nguyen ham ciia f(x)
Bai 8: T i m ham so'y = f(x) biet rang f '(x) = taii\.sin2x va f( —) = —
4 4
f '(x) = tanx.sin2x •• s m x
Gi.ii 2sinxcosx = 2sin x cosx
i ) f f ( x ) d x = - f ^ ( ^ ' " ^ + ^ " ^ ^ ) ^ _|„i^i,, ^ + ^.^^^X + C
J •' s i n x + c o s x
b) f<x)=cot- 2x +
-4 j sin"(2x + - )
sin' X
1 + sin X
Trang 22Ctim naug /iivi'ii ihi DH - Nguyen ficiiii - 'llcli plum - So phi'rc - Trdn Bd Ha
J t ' ~ 4t^ + C = -4 1 n ' x + C
Bai 15: T i n h B = Jx 'Vl -x''dx
Giai Dat t = 1 - x'' => d t = -Sx^dx <=> x^dx = d t
Trang 23Dat t = cosx ^ E = -1(1 - t2)f dt = 4 l ( - l ' + t'')til
E = - - t ^ + - P + C = - - cos'^x + - cus'x + C
Bai 19: Ti'nh I : Jsin x-Jlcos x - Idx
Gi.ii Dat t = 2cosx - 1 => d t = -2sinxdx
Bai 21: D u n g p h u o n g phap lay nguyCn honi lung phan hay t i m hp nguyen
ham ciia cac ham so':
Ta c6: [x'^e" - nin-i]' = n.x"-' e" + e^x" - n.x" ' = e« x"
Do do: x^e" - nln-i = Jcx'^dx = L (dpcni) b) t = l x V d x
11 = xe" - lo = xe" - e" = (x -1)6" + C
12 = x^e" - 2I1 = x^e" - 2(xe'' - e") + C
Trang 24Cdni >icin^ luyen ihi DH - Nyiiyeii ham - lichphim - Sophi'rc — Tran Bd Ha
G i a i
X e t B =
cos X sin"* X + cos' X
Trang 25Cam nang luy^n thi DH - Nguyen ham - Tic/i pluiii - So phuc - Trdn Ba Ha
C i a i
2 3
'-Vx e (-2; 2) ta c6: F ' ( x ) = - ( 4 - x " ) - 2.\
3 2 F'(x) = 2x V 4 - X - =f(x)
l - 2 s i n 2 x
<:> f(x) = sin2x + 2sin2xsinx = sin2x + C()sx - i.\is3x
|f(x)dx = - — cos2x + sinx - — sin3x + C F ( \
Bai 36: T i m mot nguyen ham cua ham s.V f(\ s i n x \ / c o s x biet nguyen ham
tri^t tieu khi x = 7t
Trang 26Cam nang luyen thi DlI \'i;^iiyri; ham rich i>lh!ii So phin Iran Bd Ha
- Vl + x^ = f(x), Vx G R
Bai 38: Cho f(x) = sin3x(l + cotx) + cos''x(l + tanx) (0 < x < —)
Tim nguyen ham F(x) biet F( —) = 0
Giai
f(x) = sin"* x 1 + cosx
sinx + cos"^ x 1 +
sinx cosxy
= sin^x + cos^x + sin^xcosx + cos^xsinx
= sin^x(sinx + cosx) + cos2x(sinx + cosx)
Bai 41: Cho biet If(x)dx = In^x + C tim f(x):
Trang 27Cam nang luy$n thi DH - Nguyen ham - Tich phdn - So phuc — Trdn Bd Ha
Bai 46: Cho f(x) = sin2x Tim nguyen ham F(x) biet F( —) = 0
F ( - ) = -ln>/2 +C = 0 « l n > ^ = C « C = - l n 2
F(x) = -In I sinx + cosx | ~ '"2
Bai 53: Cho Jf(x)dx = In ^ = + C tim f(x)
x + V x ' + l
Giai
ff (x)dx = In ] + C => F(x) = In ]
x + Vx^+1 x + Vx^+1 oF(x) = -ln(x+ Vx^+1)
(x + V x ' + l ) ' 1 f(x) = F'(x) =
x +Vx^ +1 Vx- +1 Bai54: Cho f(x) = r—?——. Tim nguyen ham ciia f(x)
Trang 28Giai Jxcosxdx = Jxd(sinx) = xsinx - Jsinxdx = xsinx + cosx + C
MiSZ: Cho biet F(x) la nguyen ham ciia f(x) = — ^ va F(2) = 2 tim F(-2):
j j O : Cho biet F(x) la mpt nguyen ham ciia f(x) = tanx.sin2x thoa man
Giai
f(x) = sin''x.sin2x = 2sin'*x.cosx
2 ' If(x)dx = 2/sin''xd(sinx) = - sin'^x + C
Bai 62: Tinh
Giai xVx + ldx
54164: Cho ff(x)dx = - - I n coskx + C Tim f(x)
Trang 29Shi rr" hp nguyen han, cOa f(x)
-Bai 7: T i m hp nguyen ham ciia f(x) = tan
g a i j : T i m hp nguyen ham ciia:
Trang 30Ccim nang luyen thi DH - Nguyen ham - Tich phdn - So phirc — Trdn Ba Ha
1 sin X + C O S X + sin X - c o s x 1 sin x - c o s x
2(sin x + cos x )
+ C
c) F(x)= — s i n 4 x + — s i n 8 x + — + C
^ ^ ^ 32 128 16
Bai 3: Tinh F '(x) rut gon j V x " + l d x = ^ InVx" +1 + l n X + N/X^ +1
Bai 4: Dong nhat da thiic ta duoc A = 3, B = 2, C = l
Trang 31Chvrong 2 : T I C H P H A N
A T O M T A T L Y T H U Y E T
1 Dinh nghia: Cho h a m so f lien tuc tren khoang I, a, b la hai so' ba't ky thuQC I
Ne'u F(x) la n g u y e n h a m cua f(x) thi hieu so: F(b) - F(a) du-gc ggi la tich
h
b
phan cua f(x) tir a den b va ky hieu: f (x)dx = F(x)
2 Dinh ly 1: Cho ham so y = f(x) lien tuc khong am tren khoang I va a, b la hai
so thuoc I (a < b) Dien tich hinh thang cong gioi han boi do thj y = f(x) tryc
b
Ox va hai duong thang x = a, x = b la: f (x)dx
a
3 Tinh chat cua tich phan:
Gia sir f(x) va g(x) lien tuc tren I va a, b, c la ba so'ba't ky thuoc I Khi do ta c6:
Van de 1: T I N H TICH PHAN CO BAN B A N G D I N H NGHIA
Phuong phap: Bien doi ham so trong da'u tich phan ve dang tong, hieu cac
ham so c6 the tim dugc nguyen ham va dung djnh nghla de suy ra gia tri
cua tich phan
cos X cos X cosx
Do do: I = 2 J tan' xd(tan x) = -tan' x
Trang 32Cam nang luyen thi DH - Nguyen ham - Tich phdn - So phirc - Trdn Bd Ha
Bai 11: Tinh cac tich phan sau:
a)C= (sin^xcos3x + cos^xsin3x)ix b) D = cos"xcos4xdx
0 0
Giai a) f(x) = sin^xcos3x + cos^xsin3x
= — (3cosx + cos3x)sin3x + — (3sinx - sin3x)cos3x 4 4
3 3
= — (sin3xcosx + cosSxsinx) = — sin4x Suy ra:
4 4
3 3 C= |f(x)dx = — sin4xdx = cos4x = - A , A o
16 16
) Ta CO cos^xcos4x = f l+cos2x cos4x = -[cos4x + cos4x.cos2xl
= cos4x + —(cos6x + cos2x)
Trang 33Cam nang luyjn thi DH - Nguyen ham - / / ( / / /)/;.;/; So pln'n Trdn Bd Ha
Ta c6: tanx + cot2x = + = c o s 2 x c o s x + sin2xsin x
cosx sin2x cosxsin2x cos X 1
c o s x s i n 2x s i n 2 x
A ' CI \x _
U o a o r ( x ) = S i n 2 x s i n 3 x s i n 4 x
tan X + c o t 2 x
= — [cos2x - c o s 6 x ] s i n 3 x = — [sinSx cos2x - sin3xcos6x]
= — [sinSx + sinx - ( s i n 9 x + sin(-3x)] = - [sinx + sin3x - sin9x + sinSx]
= J ( l - s i n ^ x)d(sinx)+ J(l-cos^ x)d(cosx)
T a c o : r ( x ) = ; —; = sinx + cosx + cosx - smx = 2cosx
Sin X + cos X sm X + cos x
Trang 34Cam mifii; In\\n I hi ni! y^uyen ham - Tich/'hchi phirc - J ran JiaTJa'
Bai 19: Cho hiai iiam so: f(x) = 4cosx + 3sinx va g(x) = cosx + 2sinx
a) Tim cac so A va B de g(x) = Af(x) + Bf '(x)
Af(x) + Bf '(x) = 4Acosx + 3Asinx + (-4Bsinx) + SBcosx
= (4A + 3B)cosx + (3A - 4B) sinx
[•4A + 3B = 1 2 „ 1 Dong nhat voi g(x) ta co: J 3 ^ _ 4 Q ^ 2 ^ 5 5
+ Xet dau f(x) tren [a; b]
+ Dung tinh chat phan doan cua tich phan roi tinh tich phan tren tiing doan
Trang 35Cdm nang luy^n thi DH - Nguyen ham - Tich phdn - So phuc - Trdn Bd Ha
Bai 2: Tinh I = f Vf — sin 2xdx
I = sin x + cosX - (sin x + cos x) "'^ = - 2
Bai 3: Tinh I = f Vtan' x + cot^ x - 2dx
3
Vay I = 4
I I / 2 Bai 5: Tinh I = J (Vl + cos2x - V l - c o s 2 x j d x
Giai sinx|)dx
Trang 36Cam nang luyjn thi DH - Nguyen ham - Tich phan - S6 phuc ~ TrAr, Ba Ha
Giai
Ta C O cac truong hop sau:
Ne'u a < 0 vi 0 < x < 1 => x - a > 0 khi do 1(a) = J(x=-a.x)dx = y - ^
Phan nua duong thang y ~ ^ ~ ^ ^^^^
Bai 12: Tinh I(m) = | x ' - 2x + m|dx
1
Giai
Trang 37Cam nang luy^n thi DH - Nguyen ham - Tich phdn - S6 phuc - Trdn Bd Ha
Ta CO cac trirong hop sau:
Phuomg phap: Xet da'u hieu so' f(x) - g(x) tren [a, b] de xac djnh max hoac min
roi diing tinh cha't phan doan de tinh
Bai 1: Tinh I = max x^ + l ; 4 x - 2 dx
Giai
Xet g(x) = x2 - 4x + 3 tren [2; 4] ta c6:
1 2 f(x) + 0 —
Do do: max{x2; 4x - 3| = x^ tren [3, 4]
max|x2; 4x - 3| = 4x - 3 tren [2, 3]
• r f i ,
73
Trang 38Cdm nang luy^n (hi DM - Nguyen ham - Tich phdn - So phirc ~ Tran Bd Ha
B a i l : Tinh cac tich phan sau:
Trang 39Cdm nang luy^rt thi DH - Nguyen ham - Tich phdn - So phirc - Tran Bd Hit
-(e^ - i f +-(e^ -1) ,3/2 -(e^ -\f^e^ - 1 5
5 9
- i ; i / 2
J - i t / 2 45 sin^ X sin^ x
e e e Bai 5: Tim K de: J[(K - 4x)dx = 6 - 5K
Trang 40T \ ; / / / II, my, I men iJii HI I - \yii\\'n Ih'iiii I'ich phdn - So phirc - Iran Bd lid
Bai 10: Tinh cac tich phan sau:
a) I = [(e""' + cos x)cos xdx b)J =