So Phuc-Bieu Dien Hinh Hpc-So Phuc Lien Hgp

Một phần của tài liệu cẩm nang luyện thi đại học nguyên hàm tích phân số phức (Trang 155)

1. D i n h nghia: mot so phuc la mpt bieu thuc dang: a + bi trong do a,b la cac so thuc va so i thoa man: i^ = - 1 . Ky hi^u so phvic: Z = a + b i ; a goi la phaV, thuc va so i thoa man: i^ = - 1 . Ky hi^u so phvic: Z = a + b i ; a goi la phaV, thuc, b goi la phan aọ

CM y:

+ M o i so thuc a duoc coi la mpt so phuc c6 phan ao bang 0: z = a -t- Oi = a e R + So phuc CO phan thuc b3ng 0 ggi la so ao z = 0 + bi = bi; i = 0 + l i + So phuc CO phan thuc b3ng 0 ggi la so ao z = 0 + bi = bi; i = 0 + l i

+ Cho z = a + b i v a z' = a ' + b ' i z = z <=> < a = a z = z <=> < a = a

b = b' 2. Bieu dien h i n h hpc 2. Bieu dien h i n h hpc

+ M o i so phuc Z = a + bidugc bieu dien bai diem M(a,b) va ngugc lai, ky hieu: M(z) hoac M(a + bi) hieu: M(z) hoac M(a + bi)

+ Cac diem tren Ox bieu dien cac so thuc do do true Ox ggi la trur thuc + Cac diem tren Oy bieu dien cac so ao do do true Oy ggi la true ao + Cac diem tren Oy bieu dien cac so ao do do true Oy ggi la true ao 3. So p h u c l i e n hgrp

So phuc lien hgp cua so phuc: Z a + bi (a, b € R) la so phuc Z = a - bi + l = z + l = z

+ Hai so phuc lien hgp c6 diem bieu dien tuang ung dol xung qua Ox 4. M o d u n ctia so phuc 4. M o d u n ctia so phuc

D i n h nghia: Modun ciia so phuc Z = a + bi (a, b e R) la so phuc am + b^ ducyc ky hieu la |Z ky hieu la |Z

+ Néu Z = a + bi thi: Z = O M . M la diem bieu dien cua 2 trong he true xOy I I . Phep t i n h so phuc I I . Phep t i n h so phuc

1. Phep cpng va phep t r u so phuc:

a) Tong ciia 2 so phuc: Cho Z = a + b i v a Z ' = a ' + b ' i Z + Z ' = a + á+(b + b')i (a,b,á,b'e R) Z + Z ' = a + á+(b + b')i (a,b,á,b'e R)

+ (Z + Z') + Z " = Z + ( Z ' + Z " ) voi Z , Z ' Z " e C '

z + z = z + z

Cty 'J 'NHH MTV D VVH Khang Vi^t

•A

z+o=ơz=z

Z = a + bi thi - Z = -a - bi ggi la só phuc dol ciia Z+(-Z)=0

J) Hieu ciia hai so phuc

Hieu cua hai so phuc Z va Z' la tong cua Z va - Z ' Z - Z ' = Z + ( - Z ' ) Z - Z ' = Z + ( - Z ' )

Voi Z = a + bi va Z ' = a ' + b ' i thi Z - Z ' = a - á+(b - b')i nghia h i n h hpc ciia phep cpng va phep t r u nghia h i n h hpc ciia phep cpng va phep t r u

Trong mat phang phuc M(a,b) la tieu diem bieu dien ciia sóphuc Z = a + bi ta ciing ggi u = (a,b)la bieu dien ciia Z nghia la néu M la diem bieu dien ta ciing ggi u = (a,b)la bieu dien ciia Z nghia la néu M la diem bieu dien

ciia so phiic Z = a + bi thi O M la vecto bieu dien ciia Z ' . Néu u , u ' Ian lugt la vecto bieu dien ciia Z va Z ' thi u + u ' la vecto bieu . Néu u , u ' Ian lugt la vecto bieu dien ciia Z va Z ' thi u + u ' la vecto bieu

1 ~ - • —

' dien ciia Z+Z' va u - u ' la vecto bieu dien ciia Z - Z ' 2. Phep nhan so phuc: 2. Phep nhan so phuc:

a) Dinh nghia: Cho hai so phiic Z = a + bi va Z ' = á+ b' i Z.Z' = aá-bb'+(ab + bá)i (a,b,á,b' eR) Z.Z' = aá-bb'+(ab + bá)i (a,b,á,b' eR)

i) Tinh chat: Z.Z' = Z'.Z

Z ( Z ' Z " ) = (Z.Z')Z" Z ( Z ' + Z " ) = Z.Z'+ Z.Z" Z ( Z ' + Z " ) = Z.Z'+ Z.Z"

I K e R , K . Z - k a + kbi

K

8. Phep chia so phuc khac 0

D i n h nghia: Cho so phuc Z = a + bi(a,b e R) khac 0 Z Z

So phuc Z =

â+b^ ggi la nghjch dao ciia Z

Thuong — ciia phep chia so phuc Z' cho so phuc Z khac O la tich ciia Z' voi nghjch dao ciia Z voi nghjch dao ciia Z

^ . z ' . z - = ^

Z " 2

Z' Z ' Z Z . Z ^ ^ . . Z ' . . ~, — r - = —= - Do do de tim — ta nhan mau vai Z — r - = —= - Do do de tim — ta nhan mau vai Z

' Z.Z Z

ua/w nang liiyen thi ±)tl - Nguyen ham - lich phdn - So phuc - Trdn Ba Ha

B. P h u o n g phap giai cac dang ca ban

V a n de 1: B I E U D I E N SO PHL/C D A N G H I N H H Q C

P h u o n g phap: M o i so p h u c Z= a+bi dugc b i e u d i e n v o i m p t d i e m M(a,b) hoac vecto u =(a,b) do do ap d u n g cac phep tinh vecto, toa do diem de i<hao sat t i n h chat, tap hop d i e m bieu dien cua so phuc, ket h o p cdc phep tinh l i e n quan

Bai 1: Cho cac so phuc: Z, = 3 + 2i, = 1 - 2i

a) Viet cac sóphuc doi v o i bieu dien trong chiing trong mat phang phuc b) Viet cac so phuc lien hgp va bieu dien chiing trong mat phSng phuc.

G i a i

a) Z , = 3 + 2i CO diem bieu dien M , (3,2)

So p h u c doi la: - Z , = -3 - 2i c6 diem bieu dien la '(-3, -2)

Z j = 1 - 2i CO diem bieu dien (1, -2); so phuc d o i la - Z j = - 1 + 2i c6 diem

bieu dien la: '(-1,2)

b) So p h u c lien hgp ciia Z, la Z, = 3 - 2i c6 diem bieu dien la N , (3, - 2 ) ;

Sóphuc lien hop ciia Z j la Z j = 1 + 2i c6 diem b i l u dien la '^^{'^,1)

Bai 2: T i m tap hop cac diem bieu dien ciia cac sóphuc sau: 1) Z = a + 2i k h i a t h a y doi

2) Z = a - ai k h i a thay d o i 3) Z = a + 3ai khi a thay d o i

Giki

1) Z = a + 2i CO diem bieu dien trong mat p h l n g phuc la diem M(a,2) do do khi

a thay doi thi tap hop cac diem M la d u o n g thang y = 2

2) Z = a - ai co diem bieu dien la M(a, -a) do do k h i a thay doi thi tap hgp cac d i e m M la d u o n g thang y = - x hay x + y = 0

3) Z = a + 3ai c6 diem bieu dien ciia so phiic la M(a,3a) do do tap hop cac d i e m M la d u o n g thSng y = 3x

Bai 3: Cho A la diem bieu dien ciia so phuc Z = 1 - 2 i . Goi M , Ian l u g t la

d i e m bieu dien ciia cac s o p h i i c Z-^.Z^. Chiing m i n h rang dieu Kien de

A A M j M j cantai M , la: Z , - l + 2i Z , - Z , G i a i

A A M ^ M j cantai M , la M , A = M , M 2

M i A = Z, Z| = |Z, - 1 + 21

M ^ M , = | Z 2 - Z , | . D o d 6 : | Z , - 1 + zi = Z ^ - Z ,

Bai 4: Cho Z = a + b i . T i m tap hgp cac diem bieu dien ciia Z thoa dieu kien Z - 2 - i = 1

G i a i

Goi 1(2,1) la diem bieu dien ciia so phuc: 2 + i Z - 2 - i

I

( a - 2 + b - l ) i | = J( a - 2 ) ' + ( b - l ) ' = 1 • : ' < ^ ( a - 2 ) ^ + ( b - l ) ^ = 1

Do do tap hop cac diem M(a,b) ( Bieu dien so phuc Z) la d u o n g tron tam I ban kinh R=l

Bai 5: Cho A,B,C Ian l u g t la diem bieu dien ciia cac so phiic Z ^ = 3 - i , = - 2 + 3i va Z^ = - 1 - 2 i . Chiing m i n h rang diem bieu dien ciia so phiic tong Z ^ + Zp + Z^ la trong tam AABC

G i a i

Ta c6: Z ^ + Zg + Z^ = 3 - i + (-2 + 3i) + (-1 - zi) - 0 . Bieu dien hinh hgc ta c6: O A + OB + OC = 0 o O la trong tam A A B C . Vay diem bieu dien ciia so phuc tong Z ^ + Z„ + Zc trong mat phSng phuc goc O cung la trgng tam tam giac A B C

3. Bai tap t u l u y # n

B a i l : T i m tap hgp cac diem bieu dien ciia so phiic z thoa man cac h^ thuc sau: a) z + i > I z - i

b) I z - 1 + i I < 4 c) 2 < l z - l + 2 i | < 3

G i a i

z + i I > I z - i I =i> + (y + 1)2 > x2 + (y - 1)2 o y > 0

Tap hgp cac diem M la nua mat ph§ng phan 6 phia tren true Ox.

b) I z - 1 + i I < 4 (x - 1)2 + (y - 1)2 < 16; tap hgp cac diem M la hinh tron tam

1(1,1), ban k i n h R = 4 (tap hgp cac diem n i m trong d u o n g tron).

c) Tap hgp cac diem M(x, y) thoa man: 4 < (x -1)2 + (y + 2)2 < 9

. B a i l : Trong mat phSng (xOy) cho Ă-2, 0), B(0, 1), M va M ' Ian l u g t la diem z + 2

bieu dien ciia so phuc z va z' voi z' = z - i

a) T i m tap hp^p cac d i e m M sao cho O M ' = 1

b) T i m tap hgp cac d i e m M sao cho M ' 6 tren Ox

c) T i m tap h g p cac diem M sao cho M ' 6 tren Oỵ

Giai

a) O M ' = 1 z I = z + 2

z - 1

A M

B M = 1 <=> A M = B M . Tap hgp cac diem M la dirang trung true doan AB. b) Dat M(x, y) la diem bieu dien cua z

X + 2 + y i _ x^ + y^ + 2x - y + (x - 2y + 2)i

Ta CO z '

x + ( y - l ) i x^+iy-lf

M ' e Ox • » X - 2y + 2 = 0: tap hgp cac diem M la d u o n g thang y - 2y + 2 = 0

( d u o n g t h i n g qua ABO),

c) M ' € O y <=> x^ + y2 + 2x - y = 0: tap hgp cac diem M la d u o n g tron tam

- ) ban k i n h R = j -

Bai 3: Cho cac diem A, B, C, D Ian l u g t la diem bieu dien cua cac só phíic;

2-i, 3+2i, - l + 4 i va -2+ị C h u n g m i n h A B C D la h i n h b i n h hanh

Giai

A B = 1 + 3i, D C = 1 + 3i => A B C D la hinh b i n h hanh.

Bai 4: T i m tap hgp cac diem M bieu dien ciia sóphuc z thoa m a n dieu kien

a) z + 1 + 2i c) I z - 2 + i I = 1 c) I z - 2 + i I = 1 z + 2 b) z - 3 i = 2 Giai a) D u o n g t r u n g true doan A B v o i A ( - l , -2), B(-2, 0) b) D u o n g tron tam 1(0, 3), R = 2 c) D u o n g tron tam ]{-2, -1), R = 1

Bai 5: Cho z = x + y i (z i). T i m tap hgp cac diem bieu dien ciia z thoa man

z + 1 Z - 1 7 la so thuc d u o n g . , z + i x^ + - 1 + 2xi z - 1 x ' + ( y - i ) ' Giai só thuc d u o n g k h i x = 0

> 1 . Tap hgp cac diem M nSm tren tryc O y c6 t u n g d g thoa m a n y > 1

312

Cty TNHHMTVDVVHKhang

pai 6: T i m tap hgp cac diem bieu dien ciia so phiic z thoa man: 2 < | z- l + 2 i | < 3

Giai

Tap h g p cac diem M(x, y) thoa man 4 < (x - 1)^ + (y + 2)^ < 9 ' z + i

Bai 7: T i m tap hgp cac diem bieu dien ciia sóphuc z thoa man: = 1

, z - 3 i

Giai

Tap hgp cac d i e m M la d u o n g thSng y = 1.

y£n de 2: X A C D I N H P H A N T H l / C , P H A N A O , M O D U N

phtfong phap: Thuc hien cac phep tinh lien quan ciia bieu thuc de dua ve dang:

z = a + bi t u do suy ra phan thuc, phan ao ciia so phirc B i l l : T i m phan thuc, phan ao ciia cac so phiic sau:

a) ( l + 2 i ) ^ b ) ( l + i ) ^ + 2i c) (2 + i)(l - i)i d) Giai T + 2i 1 - i a) z = ( l +2i)2 = l - 4 + 4i = -3 + 4i Vay a = -3; b = 4 b) z = ( l + i p + 2i = l + 3i + 3i2 + i^ + 2i = -2 + 4i Vay a = - 2 , b = 4 c) z = (2 + i)(l - i ) i = (2 + i)(i + l ) = l + 3i V a y a = l , b = 3. d)z = _ l + 2 i _ ( l + 2 i ) ( l + i ) _ - l + 3 i _ 1 3 . 1 - i ~ 2 ~ 2 ~ 2 ^ 2 ^ Vay a = — , b = - 1 • y 2' 2

5 ^ : T i m phan ao cua sóphuc z cho biét: z = (72 + i)^(l - 72 i)

Giai

Taco: z = (^2 + i)^ (1 - ^ i ) = (1 + 2 V2 i ) 0 - V2i)

z = 5+ V 2 i= > z = 5 - N/ 2 i

Vay phan ao cua z la b = - \/2 ,

tCho sóphuc z thoa man: z = . T i m m o d u n cua so phirc: z + iz

Cdm nang Iuy4n thi DH - Nguyen ham - Tich phdn - So I'lnn Trdn Bd Ha

Giai

~ = (1 - >/3i)^ 1 - 3V3i + 9i^ - 3>/3i^ _ -8 _ -8(1 + i)

^ ' 1 - i ~ 1 - i 1 - i 2

z = -4 - 4i do do: z + iz = -4 - 4i + i(-4 + 4i)

Hay: z + iz = -8 - 8i I z + iz | =764 + 64 = 8 V2 . _

Bai 4: Cho so phuc z thoa man dieu kien: (2 - 3i)z + (4 + i) z = -(1 + Si)^. Tim phan thuc, phan ao cua sophuc z.

Giai

Dat z = X + yi

Ta c6: (2 - 3i)z + (4 + i) z = -(1 + 3i)2

(2 - 3i)(x + yi) + (4 + i)(x - yi) = -(1 + 3i)2

<=> 2x + 3y + (2y - 3x)i + 4x + y + (x - 4y)i = -(-8 + 6i) <=> 6x + 4y - (2x + 2y)i = 8 - 6i

6x + 4y = 8 2x + 2y = 6

Vay z = -2 + 5i nen phan thuc la -2 va phan ao la 5.

Bai 5: Cho so phuc z thoa man I z | = 1, z 5^ 1. Hay tim phan thuc, phan ao cua

<=> \ <r> X = -2, y = 5 só phuc z + 1 z - 1 Giai Dat z = a + bi, ta c6: a ^ + b ^ = l a + bi 1 z + l _ a + 1 + b i _ ( a + l + bi)(a - 1 - bi) b _ . z - 1 a - l + bi ( a - l ) ^ + b ^ 1-a z+1 ^ ^ —b Do do so phuc CO phan thuc bang 0 va phan ao bang

z - 1 1-a

^ , , , . , > . - u ' y3 + i

Bai 6: Tim phan thuc, phan ao va modun cua so phuc: z = + • 1 - i 2i Giai ^ _ ( N/ 5 - i ) ( l + i) ^ (V3 + i)(-i) _ 2 + N/5 ^ V s - V s - l . 1 - i ' -2í , „ 2 + V5 >/5-73-l Vay a = va b =

r jggi_7: Tim so phuc z c6 modun nho nhat thoa man: | z + 1 + 2i | =1 Cty TNHHMTl IHIH Khang Viel

Giai

Goi z = X + yi va M(x, y) la diem bieu dien so phuc z. Ta C O I z + 1 + 2i I = 1 <=> (x + 1 )2 + (y + 2)2 = 1

Duong tron (C): (x + 1)2 + (y + 2)2 = 1 c6 tam I(-l; -2) Duong OI CO phuong trinh y = 2x.

I So phuc z thoa man dieu kien tren va c6 modun nho nhat khi diem bieu dien cua no 6 tren (C) va gan goc O nhat, do la mgt trong hai giao diem cua OI

Một phần của tài liệu cẩm nang luyện thi đại học nguyên hàm tích phân số phức (Trang 155)

Tải bản đầy đủ (PDF)

(180 trang)