Trường THPT Nguyễn Du BÀI KIỂM TRA TIẾT Môn: Hình Học ÑEÀ : x = t (4đ) Trong mặt phẳng Oxy cho tam giác ABC, biết A(−1; 2), B(3;1) BC: y = −2 + t a) Tìm vectơ phương, vectơ tơ pháp tuyến hệ số góc đường thẳng BC b) Viết phương trình tham số đường cao AH c) Viết phương trình tổng quát đường thẳng d qua A song song với BC d) Tìm toạ độ đỉnh C cho ∆ABC cân A x = −2t (3đ) Cho hai đường thẳng ∆: ; ∆’: x + y − = y = 1+ t a) Xét vị trí tương đối hai đường thẳng ∆ ∆’ b) Tính số đo góc hai đường thẳng ∆ ∆’ c) Tính khoảng cách từ điểm M(7; −5) đến ∆ (3đ) Cho hai điểm P(7; −3), Q(1; 7) (C): x2 + y2 + 2x − 2y − = a) Viết phương trình đường tròn đường kính PQ b) Xác định tâm bán kính đường tròn (C) c) Viết phương trình tiếp tuyến (C) M(−3; 2) r r Câu 1: a) u BC = ( 1;1) , nBC = ( 1; −1) , k = ĐÁP ÁN x = −1 + t r r b) AH ⊥ BC ⇒ u BC = ( 1;1) VTPT AH ⇒ u AH = ( 1; −1) ⇒ PTTS AH: y = − t r r c) d // BC ⇒ u BC = ( 1;1) VTCP d ⇒ nd = ( 1; −1) ⇒ PTTS d: x + − (y − 2) = d) C ∈ BC ⇒ C(t; −2 + t) ∆ABC cân A ⇒ AB = AC ⇔ AB2 = AC2 ⇔ 17 = (t +1)2 + (t − 4)2 ⇔ 2t2 − 6t = ⇔ t = t = ⇒ C ≡ B C(0; −2) r r Câu 2: a) ta có: ∆: x + 2y − = ⇒ n∆ = ( 1; ) ; ∆’: x + y − = ⇒ n∆ ' = ( 1;1) Vì ≠ ⇒ ∆ cắt ∆’ 1 r r b) cos(∆, ∆ ') = cos ( n∆ , n∆ ) = − 2.5 − 1.2 + 1.1 1+ 1+1 = 10 ⇒ (∆, ∆’) = 18026’ = 1+ Câu 3: a) Đường tròn đường kính PQ có tâm I(a; b) trung điểm PQ +1 a = = ⇒ ⇒ I(4;2), BK R = IP = 52 + 32 = 25 = − + b = =2 Vậy PT đường tròn: (x − 4)2 + (y − 2)2 = 25 −2a = a = −1 ⇔ b) Ta có: ⇒ tâm I(−1; 1) BK R = + + = −2b = −2 b = c) Ta có: + − − − = ⇒ M ∈ (C) uuur PT tiếp tuyến (C) P có VTPT IM = (−2;1) ⇒ PTTT là: −2(x + 3) + y − = ⇔ −2x + y − = c) d(M,∆) =