1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 3 trang 82 sgk toán 11

1 1,8K 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 4,33 KB

Nội dung

Bài 3. Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức: Bài 3. Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức: a) 3n > 3n + 1;                  b) 2n + 1 > 2n + 3 Hướng dẫn giải: a) Dễ thấy bất đẳng thức đúng với n = 2   Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là                        3k > 3k + 1 Nhân hai vế của (1) vơi 3, ta được:                        3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1. Vì 6k - 1 > 0 nên                         3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1. tức là bất đẳng thức đúng với n = k + 1. Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2. b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2 Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là                        2k + 1  > 2k + 3                                                         (2) Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh                        2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5 Nhân hai vế của bất đẳng thức (2) với 2, ta được:                       2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1. Vì 2k + 1> 0 nên 2k + 2 > 2k + 5 Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.                           

Bài 3. Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức: Bài 3. Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức: a) 3n > 3n + 1; b) 2n + 1 > 2n + 3 Hướng dẫn giải: a) Dễ thấy bất đẳng thức đúng với n = 2 Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là 3k > 3k + 1 Nhân hai vế của (1) vơi 3, ta được: 3k + 1 > 9k + 3 3k + 1 > 3k + 4 + 6k -1. Vì 6k - 1 > 0 nên 3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1. tức là bất đẳng thức đúng với n = k + 1. Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2. b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2 Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là 2k + 1 > 2k + 3 (2) Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh 2k + 2 > 2(k + 1) + 3 2k + 2 > 2k + 5 Nhân hai vế của bất đẳng thức (2) với 2, ta được: 2k + 2 > 4k + 6 2k + 2 > 2k +5 + 2k + 1. Vì 2k + 1> 0 nên 2k + 2 > 2k + 5 Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.

Ngày đăng: 09/10/2015, 08:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w